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This paper illustrates an application of adaptive tabu search (ATS) to optimal power flow (OPF) 
problems in comparison with some effective mathematical and evolutionary optimization methods. 
Although, the ATS was originally developed for solving a combinatorial optimization problem whose 
parameters are discrete, it has the ability to handle continuous variables by treating them as discrete 
ones with a very small variable step-size to gain accuracy. The proposed algorithm was tested with 9-
bus and 300-bus test systems to represent a small-scale and a comparatively large-scale power system, 
respectively. Each test power system was challenged by performing three test cases. The first test case 
was given by applying a quadratic function to generators’ fuel-cost curve, whereas a non-smooth fuel-
cost function was assigned to the second. In addition, the system voltage profile was considered and 
set as the objective function to be minimized in the last test case. The comparisons among solutions 
obtained by sequential quadratic programming (SQP), evolutionary programming (EP) and the ATS 
were carried out, from which satisfactory results and the selection of solution methods to OPF 
problems were summarized. 
 
Key words: Optimal power flow problem, sequential quadratic programming, evolutionary programming, 
adaptive tabu search, quadratic fuel cost, non-smooth fuel cost. 

 
 
INTRODUCTION 
 
To date, an electrical power system is very large and 
obviously complicated due to technological enhancement 
of power system engineering. Increase of electrical 
energy consumption often leads to extending and 
upgrading an existing power transmission and distribution 
network to serve all customers sufficiently, effectively and 
economically. To achieve good performance for power 
delivery, a real power dispatching problem must be taken 
into account in order to minimize total generation cost (El-
Abiad and Jaimes, 1969). Also, appropriate reactive 
power flows relate to power losses and system voltage 
profiles, directly. In this viewpoint, tap setting of under-
load tap-changing transformers (ULTCs), voltage magn-
itude of voltage-controlled buses or installing re-active 
power sources can improve voltage characteristics and 
reduce power losses considerably (Mansour and Abdel, 
1984). Dommel and Tinney (1968) proposed the method 
of optimal power flow (OPF), which employs allocation of 
real power generated by generators to co-operate with 

controlling ULTCs, magnitude of voltage-controlled buses 
or reactive power sources for minimizing the system 
objective.   

As a general approach, a typical OPF problem employs 
an optimization method for balancing the power flow 
equations and finding the optimum solution. The solution 
satisfies the constraint of the minimum value of an 
objective function, that is, total generation cost for most 
cases, within the entire search space. The OPF problem 
is in general non-convex and non-linear. It may exist in 
many local minima. Many mathematical techniques have 
been developed and applied to this problem such as 
linear programming, interior point method, etc., (Wood 
and Wollenburg, 1996). The algorithms essentially need 
some problem simplification such that the problem is 
linear or convex. Thus, a true global minimum cannot be 
guaranteed. Then, stochastic optimization methods such 
as genetic algorithms (GAs), simulated annealing (SA), 
artificial neural network (ANN)  and evolutionary  



 

 
 
 
 
 
programming (EP) (Walters and Sheble 1993; Pradhan 
and Lee, 2009; Yang et al., 1996; Wong, 1997; Herault, 
2000) were applied for solving such a problem directly 
without any simplification. The followings are some recent 
reviewed literature concerning with optimal power flow 
solutions. 

Santos and Costa (1995) presented a novel approach 
for solving optimal power flow problems based on 
Newton's method. Using the Lagrangian functions to 
combine problem constraints, the nonlinear optimization 
problem can be solved effectively. Muriithi (1996) 
presented the problem of power flow optimization taking 
into account the principles of economics and reliability as 
its objective. This paper used some efficient 
mathematical programs, such as the steepest descent 
method, the quadratic programming and the gradient 
projection method. Leung at al. (2000) proposed a 
genetic algorithm (GA) for solving optimal power flow 
problems in power systems which are equipped with 
flexible AC transmission systems (FACTS). Abido et al. 
(2002a) proposed the optimal power flow solution by 
using tabu search method (TS). The test was simulated 
by using the IEEE 30-bus test system with four test 
cases. The result of this simulation concluded that tabu 
search method is capable to solve optimal power flow 
problem with the lowest objective function and the fastest 
convergence. Abido (2002b) proposed a power flow 
optimization by means of particle swarm optimization 
(PSO). This work was carried out by simulating the IEEE 
30-bus test system with the fuel-cost function is the 
system objective. Gaing (2005) employed the mixed-
integer particle swarm optimization (MIPSO) for solving 
optimal power flow problems with a combination of 
continuous and discrete control variables. The total 
production cost with smooth and non-smooth curves was 
used as the system objective to be minimized. The IEEE 
9-bus and 26-bus test power systems were challenged. 
Vaisakb and Srinivas (2005) proposed optimal power flow 
solutions by using differential evolution (DE), which was 
tested in the IEEE 30-bus test system with fuel-cost 
objective functions. Younes et al. (2007) proposed the 
optimal power flow solutions using genetic algorithms. 
The IEEE 57-bus test system was used together with the 
total production cost as the objective function. The 
simulations were conducted by using MATHPOWER 
software package. Tangpatiphan and Yokoyama (2008) 
presented evolutionary programming with artificial neural 
network by solving the transient stability based optimal 
power flow problems. The swing equation and the rotor 
angle dynamic were determined. The IEEE 30-bus test 
system was used for the test. Wenjuan et al. (2008) 
presented the problem of reactive power planning (RPP) 
to determine the optimal location and the size of the 
reactive power sources. This work included the 
consideration of (1) the ability of power transfer capability,  
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(2) fuel-cost minimization and (3) the voltage stability 
enhancement. Oumarou et al. (2009) presented the 
optimal power flow solution by using the particle swarm 
optimization. The IEEE 30-bus test power system was 
used for the test to adjust generators’ powers, bus 
voltage magnitudes, reactive powers from the var 
sources and transformer taps. Tangpatipphan et al. 
(2009) presented the evolutionary programming for 
solving the optimal power flow problem with consideration 
of steady-state voltage stability. The system objective 
function was the total production cost with system 
security and voltage stability constraints. In this paper, 
the IEEE 30-bus test system was employed. Va et al. 
(2010) presented the optimal power flow solution using 
some efficient intelligent search methods. Genetic 
algorithms, differential evolution and ant colony 
optimization (ACO) were challenged with the IEEE 30-
bus test system. 

These methods can successfully manipulate a problem 
in non-convex or non-linear. Therefore, an obtained 
optimal solution is more accurate and realistic. Unfortu-
nately, these algorithms normally take lengthy calculation 
time when compared with the mathematical optimization 
methods. Since the beginning of the previous decade, 
tabu Search (TS) and its variants, such as adaptive tabu 
search (ATS) have been introduced and performed 
drastically improved search performance. Regarded as 
one of the random search processes, ATS provides a 
near global minimum by successfully avoiding local-
minimum traps. Successful applications of the ATS have 
emerged (Mantawy et al., 1998; Mori and Hayashi, 1998; 
Mori and Ogita, 1999a; Mori and Sone, 1999b; Denna et 
al., 1999; Kulworawanichpong and Sujitjorn, 2002; Abido, 
2002a; Lin et al., 2002). Although, ATS algorithm was 
developed as a stochastic optimization technique, it can 
find an optimal solution within a short calculation time. 
Consequently, this paper applied ATS for solving the 
OPF problem. 

 
 
PROBLEM FORMULATION 

 
The OPF problem is a problem that considers dispatching real 
power among power generation plants sufficiently, effectively and 
economically together with reactive power-flow control to gain the 
minimum for some particular objective, normally the total generation 
cost. The OPF is in nature non-convex and non-linear; there exist 
many local minima that can trap an inefficient optimization method. 
Due to largely sizing and complexity of the OPF formulation in the 
past where a high-speed computer was rare, it could be 
decomposed into two consecutive sub-problems, such as P- and Q-
problems (Shoults and Sun, 1982). However, with continuously 
emerging high-speed computer technologies within the last two 
decades ago, a digital computer nowadays is able to handle bulky 
and very complicated problems. To combine the P- and Q-problems 
together, a set of control variables must be re-formed by combining 
all  control   variables   altogether  from   both    sub-problems.   The  
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combined OPF formulation is defined by the following explanation.  

The main objective focuses on minimizing the total generation 
cost by considering real power output of all controlled generators, 
tap position of ULTCs, voltage magnitudes of the slack bus and 
voltage-controlled buses or reactive powers injected by reactive 
power sources as control variables (Wood and Wollenburg, 1996). 
Assuming that a given power system has the following properties, 
containing NPV voltage-controlled buses and NT ULTCs. 

Let u~  be a control variable and be defined by: 
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The formulation of the OPF problem is given as: 
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2. Inequality constraints: limits of control or state variables  
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Voltage variations for all load buses to find optimal solutions for the 
OPF problem, an appropriate optimization method has to be 
chosen to handle its non-linear and non-convex nature. In fact, 
although there is no restriction for making selection, searching 
speed and accuracy are mainly the matter of concern. This paper 
attempts to demonstrate the effectiveness of three different 
optimization techniques, namely SQP, EP and ATS. Here, only 
sequential quadratic programming (SQP0 and EP are discussed.  

The general form of a non-linear optimization problem (Nash and 
Sofer, 1996) can initially be expressed as follows: 
 
Minimize f(x) 
 
Subjects to gi(x) = 0 ; for i = 1, 2, …, ME  
 

hj(x) ≤ 0; for i = ME + 1, …, M 
 

l ≤ x ≤ u  
 
f(x) is the objective function describing the mathematical formula of 
the aim. u and l are upper and lower bounds of the variable x, 
respectively. 
 
 
Sequential quadratic programming 
 
The SQP algorithm is a generalization of Newton's method for an 
unconstrained optimization. At any iteration k, the SQP employs 
quadratic approximation to characterize the objective function in the 
following expressions (Nash and Sofer 1996; MathsWork, 2001): 
 

Minimize [∇f(xk)]
T
dk +

T
kd ( ) kkk
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ci(xk) + [∇ci(xk)]
T
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As can be seen from the aforementioned expressions, the 
Hessian matrix needs to be updated at every iteration. In addition, 
this matrix must be a positive definite matrix to ensure its 
convergence. Thus, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
approximation Bk is used to replace the Hessian matrix at each 
iteration and can be updated by using the following formula (Nash 
and Sofer, 1996): 
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To find the step dk, a line search must be applied. Unlike the 
unconstrained optimization where the optimal step length can be 
chosen by minimizing the objective function directly  along  a  given  



 

 
 
 
 
 
search direction, it needs to satisfy all the constraints at the same 
time. This often causes conflict and usually makes obtained 
solutions infeasible. So, it is necessary to include these criteria. To 
avoid this conflict, the merit or penalty function is applied as follows 
(MathsWork, 2001):    
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Although, there are some other forms of the merit function such as 
the augmented Lagrangian merit function, Equation 10 was used 
MATLAB’s optimization toolbox, which is the reference for the SQP-
based optimizer used in this paper.  

When xk and dk have already been attained somehow from the 

previous iteration, the xk+1 was computed by xk+1 = xk + αkdk, where 

the step length αk is to minimize the merit function in the form of 

( )να+ ,dxM kkk . By repeating these processes, solutions found 

obviously satisfied all constraints while minimizing the objective 
function. Nevertheless, this generated sequence converges to a 
local minimum only due to the use of gradient information. 

 
 
Evolutionary programming 
 
Evolutionary programming was invented by Fogel et al. (1966). At 
this time, artificial intelligence was limited to two main avenues of 
investigation: modeling the human brain or neural networks and 
modeling the problem solving behavior of human experts or 
heuristic programming. Both focused on emulating humans as the 
most advanced intelligent organism produced by evolution. The 
alternative, envisioned by Fogel, was to refrain from modeling the 
end product of evolution, but rather to model the process of 
evolution itself as a vehicle for producing intelligent behavior. Fogel 
et al. (1966) viewed intelligence as a composite ability to make 
predictions in an environment coupled with the translation of each 
prediction into a suitable response in light of a given goal (for 
example, to maximize a payoff function). Thus, the viewed 
prediction is a prerequisite for intelligent behavior. The modeling of 
evolution as an optimization process was a consequence of Fogel’s 
expertise in the emerging fields of biotechnology (at the time 
defined as the utilization of mathematics to describe the functioning 
of a human operator), cybernetics and engineering.  

This method involves a random search technique. Some 
researchers (Yuryevich and Wong, 1999; Lai and Ma, 1995, Lai 
1998) have applied the EP of various forms to solve the OPF 
problem. The solution obtained was based on the fitness measure 
of members of selected population. Hence, the effectiveness of the 
EP depends on the computation of the fitness function. In this 
paper, the fitness function is simple and is the direct sum of the 

objective function and some penalty γ. This penalty was introduced 
to handle all constraints and to simply classify members of the 

population into two categories, namely a feasible set (ψ) and an 

infeasible set (ϑ). The fitness function is herein defined by: 
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From Equation 14, γ denotes a penalty when any considered 
member does not belong to the feasible region. This penalty is 
positive and is added up to increase the fitness function. It is likely 
that an increased fitness value is  highly  possible  to  be  discarded  
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due to competition and selection. The value of γ to ensure that an 
infeasible member of the population must be eliminated is given as:    
 

γ ≥ ( ){ }iT
p

pFmax
i

                (12) 

 
The EP technique consists of the following steps: 
 

1. An initial sampling of the population pi ∈ ψ, is made on the basis 
of uniform random selection with NP members, where pi = [pi1 pi2 … 
pin].  
2. Each offspring qi is then generated through the mutation operator 

applied to each member pi in which qij = pij + N(0,σ
2
), where pij is 

the j-th element of pi. The variance σ
2
 is given by the following 

expression: 
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Where β j is suggested to be in between 0 and 1 and fave is the 
average fitness value of the population (Yang et al., 1996; Lai and 
Ma, 1995; Yuryevich and Wong, 1999).   
3. A competing pool for competition and selection of offspring and 
initial members are formed and their fitness functions are 
evaluated. Each member of the pool must compete with other 
members to get its chance for surviving. The selection is based on 
evaluation of a weighting value Wp of each member, randomly. The 
weighting value is given by: 
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where Q is some largely positive number and pr is a uniformly 
random-selected member.   
4. Half of the population from the competing pool that depend on 
their weighting values will survive to the next generation for creating 
their offspring.     
5. This iterative process will be stopped when the termination 
criteria, for example reaching the maximum number of generation 
are satisfied. 
 
This can be summarized briefly as shown in the flowchart of Figure 
1. 
 
 
ADAPTIVE TABU SEARCH 

 
The tabu search method (Glover and Laguna, 1997) is an iterative 
process that searches for the best solution by moving from a 
current solution to find a better solution repeatedly. One of the 
important features of the TS method is its tabu list that keeps the 
history of search paths. The information in the list is used for finding 
a new direction of search movement. Every ‘new’ is expected to 
search for a better solution and ultimately the optimum one. 
Another feature of the tabu search method is its aspiration criterion. 
The aspiration criterion provides preferable characteristics of any 
possible  solutions. It  is  particularly  useful  for  the  selection  of  a  
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Figure 1. Flowchart of the EP procedure. 

 
 
 
proper solution from a set of satisfied solutions.  

In order to improve the performance of the tabu search method, 
we have proposed two additional mechanisms namely back-
tracking and adaptive search radius. The enhanced version of the 
tabu search method has been named the adaptive tabu search 
(Kulworawanichpong et al., 2004; Pungdownreung et al., 2007). 
Regarding to the intensification mechanism, the back-tracking 
mechanism allows the search to look backward to some previous 
solutions stored in the tabu list. This mechanism may become 
necessary when the search encounters an entrapment caused by a 
local solution. An alternative solution is then chosen from the 
current and the previous solutions. With the back-tracked solution, 
a new search space is created. Given this new search space to 
explore, the search moves in a new direction away from that 
approaching the local solution. Note that the new solution chosen 
here is not necessary to be the best solution within the current 
search space but it helps the search to escape from an entrapment.  

As shown in Figure 2, from the starting point x1, a neighborhood 
N(x1) given as a set of point around x1 with a certain radius r is 
randomly generated. The best solution x2 among them is selected 
randomly for creating the next neighborhood N(x2) and is also put 
into the TL if it is not there before. However, the forbidden that 
moves in the TL can be released if some conditions are satisfied 
according to aspiration criteria. This method can be performed step- 

 
 
 
 

 
 
Figure 2. Search space and neighborhood of ATS. 

 
 
 

 
 
Figure 3. Radius of a neighborhood. 

 
 
 
by-step as follows: 
 
1. Generate randomly an initial solution x0 from the feasible set. Set 
x0 is an initial optimal solution. 
2. Create randomly a neighborhood of a current optimum. As briefly 
described in the abstract, the TS was developed based on a 
discrete-variable problem. Applying the TS to a continuous-variable 
search space needs some modification. With a radius r given by the 
Equation 4 and shown in Figure 3, each member of the 

neighborhood is defined by x2 = x1 + αr (xmax – xmin), where α is a 
random number generated in the range of [-1,1], x1 is a previously 
visited solution and x2 is a randomly generated member of 
neighborhood. 
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3. Let xb be the best solution in the neighborhood. Update the TL if  
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Figure 4. Movement of ATS solutions. 

 
 
 
xb is not in the list.  
4. Check the termination criteria, such as the maximum number of 
iteration and the aspiration criteria. 
 
Many forms of aspiration criteria are used in different problems to 
allow us to override the TL and change the direction of movement if 
all the solutions found along the current direction cannot be better 
within a certain number of consecutive iteration. The demonstration 
of TS movements is as shown in Figure 4. This can be summarized 
briefly as shown in the flowchart of Figure 5. 

 
 
OPTIMAL POWER FLOW SOLUTION USING ADAPTIVE TABU 
SEARCH 

 
To apply the ATS algorithm to an OPF problem, all relevant 
variables must be re-defined in discrete form with a very small 
variable step-size. It notes that, throughout the paper, variable step-
sizes of power output, voltage-magnitude at controlled buses and 
ULTC tap are all set to be 1 × 10

-4
 p.u. for all test cases.  

As all neighborhood of a current solution are not explored, a 
certain number of the neighborhood members are chosen to form 
candidate to the next move. So, NNH is set as 10 in this paper. Also, 
the radius of neighborhood is selected at r = 0.10. To precede the 
TS method, TL and AC must be specified. These two parameters 
critically depend on the nature of problems and they could be varied 
when a different system is applied. In this paper, TL is capable to 
store previously visited solutions up to 10 places, 5 to 30 is 
suggested by Lin et al. (2002). When the searching process is 
trapped at a local minimum, the AC is activated to release forbidden 
moves to gain better solutions. In this paper, after 10 moves, if the 
best solution obtained thus far cannot be improved, then it releases 
the forbidden move.  

The OPF based on the ATS method consists of the following 
procedures. 

 
START: 
 - Set the counter k = 0 
 - Randomly generate an initial feasible solution 
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 2) Evaluate feasibility and the objective function of candidates 
      for q = 1:NNH  
          - Solving power flow equations  
          - Checking feasibility 
          Evaluate the objective function if it is feasible 
 3) Obtain the best solution from the candidates 
                  - Check for the forbidden move 
          - Check AC satisfaction 
          - Accept the solution and update TL if satisfied  
 4) Check the termination criteria 
     - If satisfied, Update the counter and go to LOOP  
     - Otherwise, Go to STOP  
STOP: 
 - The optimal solution is already obtained 
 - The searching process is terminated. 
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Figure 5. Flowchart of the ATS procedure. 

 
 
 
SIMULATION RESULTS  
 
Although, modern electric power system consists of many 
types of power plants, in this research, the tests focused 

on fossil power generation units only. A simple model of 

such a generator is made from its input fuel cost in ℜ/h 
and corresponding power output was generated in MW 
as input and output variables, respectively  



 

 
Kulworawanichpong          6401 

 
 
 

 
 
Figure 6. Fuel cost curve of a selected generator. 

 
 
 

 
 
Figure 7. IEEE 9-bus test power system. 

 
 
 
(Kulworawanichpong and Sujitjorn, 2002). The test case 
scenarios were divided into three main conditions. There 
were smooth and non-smooth fuel-cost curve conditions. 
In the smooth curve case, all generators’ fuel-cost curves 
were quadratic whilst the second test employed a valve-
point loading function as shown in Figure 6 (Walters and 
Sheble, 1993; Yang et al., 1996). The last test case was 
to employ the system voltage profile as the system 
objective to be minimized. Fuel cost function of each 

generator connected to the system is generally given in 
the form of valve-point loading function with having a 
quadratic term in it and is expressed by: 
 

f(PGi) = Ai + BiPGi + Ci
2
GiP + ( )Gi

min
Giii PPFsinE − ℜ/h  (19)     

 
In this paper, 9-bus and 300-bus test systems as shown 
in Figures 7 and 8 were used to perform the effectiveness  
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Figure 8. IEEE 300-bus test power system (Sanchez, 2009). 
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Table 1. Simulation results of the 9-bus test system with quadratic fuel-cost function. 

 

Statistic 
Cost function (ℜℜℜℜ)  SSVD  Execution time (s) 

SQP EP ATS  SQP EP ATS  SQP EP ATS 

Minimum 4205.9 4205.9 4205.6  0.0499 0.0492 0.0477  1.4 68.3 12.6 

Mean 4205.9 4205.9 4206.0  0.0499 0.0497 0.0489  2.0 110.1 22.5 

Maximum 4205.9 4206.0 4206.1  0.0499 0.0498 0.0496  5.2 174.0 37.0 

SD 0.00 0.01 0.07  0.0000 0.0001 0.0005  0.6 25.2 5.5 
 

SQP: sequential  quadratic programming; EP: evolutionary programming; ATS: adaptive tabu search; SSVD: sum of square of 
system voltage deviation. 

 
 
 

Table 2. Simulation results of the 300-bus test system with quadratic fuel-cost function. 
 

Statistic 
Cost function (ℜℜℜℜ)  SSVD  Execution time (s) 

SQP EP ATS  SQP EP ATS  SQP EP ATS 

Minimum 173426.8 173899.2 174296.1  0.0915 0.1598 0.1684  4887.6 3175.3 689.7 

Mean 177337.5 174396.0 174693.1  0.2015 0.2554 0.3175  5035.7 3787.0 754.3 

Maximum 182345.0 174689.1 175498.4  0.3128 0.5212 0.5125  6536.5 5273.4 868.5 

SD 3381.3 168.7 282.7  0.0664 0.0595 0.0924  347.5 452.1 49.5 
 

SQP: sequential quadratic programming; EP: evolutionary programming; ATS: adaptive tabu search; SSVD: sum of square of system 
voltage deviation. 

 
 
 

of the proposed methods. The SQP used in these tests is 
of MATLAB optimization toolbox. Limits of voltage 
magnitudes for voltage-controlled buses and limits of tap 
setting for ULTCs used for all test cases were 0.95 to 
1.05 p.u. and 0.90 to 1.10 p.u., respectively. 

More careful assessments are needed to confirm the 
performance of the proposed method. In this paper, the 
IEEE 9-bus and IEEE 300-bus test systems with 5 and 
244 control variables, respectively, were used for the test 
with two fuel-cost functions and one voltage deviation 
minimization.  For voltage profile calculation, the sum of 
the square of system voltage deviation (SSVD) was 
expressed as follows: 
 

∑
≠
=

−=
BN

CBi
1i

2
irated VVSSVD                        (20) 

 
where Vrated = 1.00 p.u. and CB denotes controlled buses 
 
 

Smooth fuel-cost function (Quadratic case) 
 
In this circumstance, a quadratic fuel-cost function was 
assigned to all generators. The test was performed on an 
Intel

®
 1.7 GHz, 1.0 GB RAM with MATLAB. It was noted 

that all optimization methods used in this test was 
performed with 40 computational trials per method. The 
SQP used in these tests is of MATLAB optimization 

toolbox. The parameter setting for the SQP was fixed as 
follows: 
 
1. Tolerance for control variables = 1 × 10

-4
  

2. Tolerance for objective function = 1 × 10
-8

 
3. Termination criterion for constraint violation = 1 × 10

-6
 

4. Maximum number of function evaluation = (100 × total 
number of control variables). 
 
Referring to the EP algorithm (Yang et al., 1996; Lai and 
Ma, 1995; Yuryevich and Wong, 1999), EP parameters 
used in this paper are given as: 
 
1. Total number of population NP = 30 

2. Mutation scaling factor β = 0.03 
3. Maximum number of generation = 1000 
4. Termination criterion for the change of the objective 
function is set to 1 × 10

-8
. 

 
For the TS, all parameters that give the best results are 
given as: 
  
1. Total number of neighbourhood, NH = 10 
2. Radius of neighbourhood, r = 0.1 
3. Maximum number of generation = 1000 
4. Termination criterion for the change of the objective 
function is set to 1 × 10

-8
  

 
As shown in Tables 1 and 2, the SQP can find the  lowest  
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Table 3. Simulation results of the 9-bus test system with non-smooth fuel-cost function. 

 

Statistic 
Cost function (ℜℜℜℜ)  SSVD  Execution time (s) 

SQP EP ATS  SQP EP ATS  SQP EP ATS 

Minimum 4559.4 4592.8 4589.9  0.0239 0.0011 0.0009  1.4 47.6 8.0 

Mean 4758.6 4662.5 4682.1  0.0452 0.0121 0.0094  7.6 90.6 13.2 

Maximum 5257.7 4799.1 4820.7  0.0502 0.0364 0.0218  18.0 224.6 24.7 

SD 158.5 49.9 61.5  0.0067 0.0086 0.0056  4.1 33.6 3.8 
 

SQP: sequential quadratic programming; EP: evolutionary programming; ATS: adaptive tabu search; SSVD: sum of square of system 
voltage deviation. 

 
 
 

Table 4. Simulation results of the 300-bus test system with non-smooth fuel-cost function. 
 

Statistic 
Cost function (ℜℜℜℜ)  SSVD  Execution time (s) 

SQP EP ATS  SQP EP ATS  SQP EP ATS 

Minimum 211062.7 233487.2 240813.9  0.1211 0.3826 0.3301  4800.5 1328.4 164.02 

Mean 288970.8 256222.5 259738.9  0.3916 0.5209 0.4858  5085.9 2406.6 477.69 

Maximum 310574.6 282472.6 269542.3  1.1909 0.7558 0.7932  7221.9 5165.9 831.22 

SD 25129.8 14275.3 7287.0  0.3025 0.0905 0.1246  469.2 1054.0 220.15 
 

SQP: sequential quadratic programming; EP: evolutionary programming; ATS: adaptive tabu search; SSVD: sum of square of system voltage 
deviation. 

 
 
 

averaged minimum cost function among them, that is 

4205.9 ℜ with zero SD to indicate its accuracy. Although, 
the EP can reach the same amount of averaged 
minimum cost function, it spent very long computation 
time (110.1 s for the EP method and 2.0 s for the SQP 
method). Undoubtedly, the SQP is the best choice of a 
small 9-bus test system with quadratic fuel-cost function 
in the execution time and minimum cost considerations. 
In this case, the voltage profiles of the three methods are 
not significantly different. Table 2 represents simulation 
results of the 300-bus system. The solution obtained by 
EP method is the best among the three methods (177.34 

× 10
3
, 174.40 × 10

3
 and 174.69 ×10

3
 ℜ for SQP, EP and 

ATS, respectively), but it spent a long execution time 
(5035.7, 3787.0 and 754.3 s for SQP, EP and ATS, 
respectively). So that, the ATS is comparatively better 
with slightly higher minimum cost function found than 
those found by the EP but remarkably about 5-time faster 
calculation time. However, the SSVD of the solution 
obtained by the ATS method is relatively high.  
 
 
Non-smooth fuel-cost function (Valve-point loading 
case) 
 
This test case used non-smooth fuel-cost curves (Figure 
6) to produce system complexity. In this circumstance, 
there exist many local minima that can effectively trap an 
inefficient search method. All proposed methods still hold 

their parameter settings with 40 computational trials as 
previously described. To asset the effectiveness among 
them, their simulation results are compared in both 
accuracy and calculation speed as illustrated in Tables 3 
and 4, respectively. 

The results show that, for the 9-bus system, the EP can 
again obtain the lowest minimum cost function (4758.6, 

4662.5 and 4682.1 ℜ for SQP, EP and ATS, 
respectively). It also reveals that the solution found by the 
SQP method is far from a true global minimum. 
Therefore, it is not appropriate to apply this technique to 
such a test case. In this test case, the ATS still performed 
a solution finding with outstanding execution time with 
satisfactorily accurate results. For the 300-bus system, 
when comparing the averaged minimum costs obtained 
among the methods, the EP is the best method (288.97 × 

10
3
 ℜ for the SQP, 256.22 × 10

3
 ℜ for the EP and 259.74 

× 10
3
 ℜ for the ATS). However, with calculation time 

comparison, the ATS method can obtain the solution with 
the fastest calculation time consumed (477.69 s), while 
the others are very far behind (5085.9 and 2406.6 s for 
the SQP and EP, respectively).      
 
 
Sum of square of voltage deviations and power 
losses 
 
The characterization of system voltage profiles for the 
test systems was given by the sum of  square  of  voltage  
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Table 5. Simulation results of the 9-bus test system for SSVD minimization. 

 

Statistic SSVD (p.u.) Cost function (ℜℜℜℜ)* Cost function (ℜℜℜℜ)
+
 

Minimum 0.00056334 4265.2 4935.7 

Mean 0.00056615 4295.2 5388.6 

Maximum 0.00057324 4325.9 5947.0 

SD 0.00000252 15.3 271.3 
 
+
Valve-point loading fuel-cost function; *Quadratic fuel-cost function. SSVD: sum of square of 

system voltage deviation. 

 
 
 

Table 6. Simulation results of the 300-bus test system for SSVD minimization. 
 

Statistic SSVD (p.u.) Cost function (ℜℜℜℜ)
*
 Cost function (ℜℜℜℜ)

+
 

Minimum 0.0075 193205.2 292145.5 

Mean 0.0119 203574.9 318387.5 

Maximum 0.0182 218945.4 348515.6 

SD 0.0026 5845.0 14333.3 
 

*Quadratic fuel-cost function; 
+
Valve-point loading fuel-cost function. SSVD: Sum of square of 

system voltage deviation. 
 
 
 

Table 7. Comparison of power losses, fuel cost and SSVD minimization for the 9-bus test system 
with quadratic fuel-cost function. 
 

System profile 
Objective function 

Power loss Fuel-cost SSVD 

Power losses (MW) 2.32 2.73 3.12 

Cost function (ℜ) 4232.4 4206.0 4297.5 

SSVD (p.u.) 0.0496 0.0491 0.0006 
 

SSVD: Sum of square of system voltage deviation. 
 
 
 
deviations as previously described in Equation 20. Here, 
all control variables were adjusted to gain a minimum 
voltage deviation for the whole system as good as 
possible. The aim of this test is to verify that the solutions 
obtained according to the given objectives in the first two 
test cases can give a satisfactory system voltage profiles 
or not. To precede the test, the fuel-cost function was 
replaced by the SSVD as the new objective function. It 
notes that this test case was carried out to collect the test 
results when compare with the solutions obtained by 
minimizing cost functions. So, only the ATS method was 
selected to precede the test due to the shortest execution 
time with the satisfactorily accurate solution. All 
simulation results of this section are shown on Tables 5 
and 6 for the two respective test systems. 

As can be seen, it is clear that the minimum cost 
function and the minimum voltage deviation are mutually 
exclusive. While minimizing the system voltage deviation, 

the cost function was significantly raised (4206.0 and 

4295.2 ℜ for fuel-cost and SSVD minimization, res-
pectively, in the case of the 9-bus system with quadratic 
fuel-cost function). The same trends can be found for the 
300-bus test case and the case of valve-point loading 
fuel-cost function.  

In addition, the comparison among power loss, fuel-
cost and SSVD minimization of the 9-bus test system 
was investigated and put on Table 7 for more 
explanations. Table 7 illustrates system performances 
when minimizing some particular objective. It is obvious 
that the minimum of the three functions is mutually 
exclusive. It critically depends on the true main objective 
of a problem itself. For example, in electrical power 
generation and transmission viewpoint, the fuel-cost 
function in general acts as the main criterion to operate 
the system with system voltage profiles being inequality 
constraints.  
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Figure 9. System voltage profile of each test case for the 9-bus test system. 

 
 
 

In some particular power feeding systems like alternate 
current (AC) railway power distribution systems (Hill, 
1994; Goodman et al., 1998), where electric power is fed 
at the substation point, there was no generation cost, 
therefore system voltage deviation becomes obviously 
critical. Although, the AC railway feeding systems can 

operate with about ±30% voltage deviations (White, 
1997), it also affects traction drive performances (Hill, 
1994b, 1994c), voltage stability and limitation of feeding 
capacity to railway power systems. Thus, the SSVD 
minimization is more attractive for this case.  

To picture system voltage profiles of the fuel-cost 
minimization, some test results were selected and 
presented in Figures 9 and 10, comparatively with the 
system voltage profile obtained by minimizing SSVD. 
 
 
DISCUSSION  
 
For decades, there have been many  publications  related 

to solution methods for searching OPF solutions. Many 
methods either classical or evolutionary optimizations 
have been continually developed and widely published. 
This research proposes comparative studies to lead 
some key conclusions for selecting an appropriate 
optimization method applied to the OPF problem.  

As can be seen, when many local minima exist, 
typically a non-convex problem, the SQP does not fit to 
such a circumstance according to their trapped local 
minimum found. Among the three methods, EP is suitable 
for a problem that needs very accurate results but does 
not attend calculation speed. Nonetheless, for a small-
scale, convex OPF problem like a small 9-bus power 
system, the SQP can guarantee that the solution 
obtained is the global minimum and also provides 
satisfactory calculation speed, but does not for a large-
scale system. 

In literature (Lai and Ma, 1995; Wong, 1997; Yuryevich 
and Wong, 1999; Tangpatiphan and Yokoyama, 2008, 
2009),   the   execution  time  consumed  by  the  SQP  is  
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    Fuel-cost minimization 

                  Voltage profile minimization 
 

 
Figure 10. System voltage profile of each test case for the 9-bus test system. 

 
 
 

roughly 1/6 of that of the EP. However, this estimated 
CPU time is evaluated on the IEEE 30-bus test system. 
For a smaller-sized test system, e.g. 6-bus, 14-bus, etc., 
the execution time of the SQP can be as fast as 1/10 of 
that of the EP while a larger-sized test system gives a 
contrary results. In this work, results from the small 9-bus 
test system show that the execution times taken by the 
SQP are 1/55 and 1/12 of those required by the EP for 
smooth quadratic and non-smooth fuel-cost cases, 
respectively. In the IEEE 300-bus test system, the SQP 
consumes longer execution time than that required by the 
EP, 4/3 and 2 of the execution time consumed by the EP 
for smooth quadratic and non-smooth fuel-cost cases, 
respectively. In the same manner, the execution time 
required by the SQP of the small 9-bus test system is 
roughly 1/11 and 2/3 of those of the ATS when compared 
with 1/55 and 1/12 between the SQP and the EP for 
smooth quadratic and non-smooth fuel-cost cases, 

respectively. This confirms that the ATS can give 
satisfacorily execution time for the small 9-bus test 
system. In the IEEE 300-bus test system, the SQP 
consumes longer execution time than that required by the 
ATS, 20/3 and 10 of the execution time consumed by the 
SQP for smooth quadratic and non-smooth fuel-cost 
cases, respectively. This confirms the effectiveness of the 
ATS for solving non-smooth fuel-cost cases of optimal 
power flow in the large 300-bus test system.  
 
 
Conclusion  
 
The ATS is of course like the EP in which to obtain a near 
global minimum is dependent on their parameter settings 
and termination criteria. But its calculation time is 
remarkably less than that spent by the EP or even the 
SQP for the 300-bus system. In a very  complicated  OPF 
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problem like the second test system with 244 control 
variables (68 for generation output, 69 for voltage 
magnitudes and 107 for ULTCs), the ATS can completely 
escape a deadlock from local minima to reach a near 
global minimum that other search methods cannot or 
spend too much calculation time to do so. For 
applications that need highly accurate solutions, the ATS’ 
parameters can be easily tuned to achieve the 
requirement at the expense of long calculation time. 
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