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A new method based on uniform Haar wavelets is proposed for the numerical solution of sixth-order 
two-point boundary value problems (BVPs) in ordinary differential equations. Numerical examples are 
given to illustrate the practical usefulness of present approach. Accuracy and efficiency of the 
suggested method is established through comparison with the existing spline based technique and 
variational iteration method. Haar wavelets have useful properties like simple applicability, 
orthogonality and compact support. In comparison the beauty of other wavelets like Walsh wavelet 
functions and wavelets of high order spline basis is overshadowed by computational cost of the 
algorithm. In the case of Haar wavelets, more accurate solutions can be obtained by increasing the level 
in the Haar wavelet. The main advantage of this method is its efficiency and simple applicability. 
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INTRODUCTION 
 
In this paper, we consider linear and nonlinear sixth-order 
boundary-value problems (BVPs) of the form: 
 

             (1) 
 

subject to the following two types of boundary 
conditions 
 
Type I 
 

 
                                                                                      (2) 

 
Type II  
 

                                                                     
                                                                                      (3) 
 
 
*Corresponding author. E-mail: fhaq2006@gmail.com. 

Where  and  are continuous functions defined in the 

interval ,  is real and  
are finite real numbers. Such problems are known to 
arise in astrophysics, the narrow convecting layers 
bounded by stable layers, which are believed to surround 
A-type stars, may be modeled by sixth-order BVPs 
(Toomre et al., 1976). Dynamo action in some stars may 
be calculated by such equations (Glatzmaier, 1985). 
Chandrasekhar (1981) determined that when an infinite 
horizontal layer of fluid is heated from below and is under 
the action of rotation, instability sets in. When this 
instability is at ordinary convection, the ordinary 
differential equation is sixth-order. 

Theorems which list the conditions for the existence 
and uniqueness of solutions of sixth-order BVPs are 
thoroughly discussed in the book (Agarwal, 1986). The 
literature on the numerical solution of sixth-order BVP is 
sparse. Some of the methods include finite difference 
method (Twizell, 1988; Twizell and Boutayeb, 1990), 
various  forms  of  splines  (Siddiqi  and   Twizell,  1996;  
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Siddiqi et al., 2007; Islam et al., 2008), variational 
iteration method (VIM) (Noor et al., 2009) and sinc-
Galarkin method (Gamel et al., 2003). Decomposition 
and modified domain decomposition methods were 
applied by Wazwaz (2001) to find solution of such BVPs. 

Recently, wavelet approach is becoming more popular 
in numerical approximations. Different types of wavelets 
have been used in this context. A short survey on Haar 
wavelets is given in Lepik (2005, 2007), Hsiao and Wang 
( 2001) and Hsiao (2004). Recently, Islam et al. ( 2010) 
used Haar wavelets for the numerical solution of BVPs 
and Aziz et al. ( 2011) used them for numerical 
integration. Haar wavelets have useful properties like 
simple applicability, orthogonality and compact support. 
In comparison, the beauty of other wavelets like Walsh 
wavelet functions and wavelets of high order spline basis 
is overshadowed by computational cost of the algorithm.  
 
 
HAAR WAVELETS 
 

The Haar wavelet family for  is defined as: 
 

                                           (4) 
 

Where 
 

                                           (5) 
 

In the above definition, integer ,  
indicates the level of the wavelet and integer 

 is the translation parameter. 

Maximum level of resolution is  The index i in Equation 4 

is calculated using the formula . In case of 

minimal values   we have . The maximal 

value of  is, . For , the function  
is the scaling function for the family of Haar wavelets 
which is defined as: 
 

                                               (6) 
 

We introduce the notations 
 

                                                        (7) 
 

                              (8)  
 

Evaluating these integrals using Equation 4, we obtain 

 

                                          (9) 

 
 
 
 

                               (10) 
 

            (11) 
 

                (12) 
 

                      (13) 
  

              (14) 
 

We also introduce the following notation: 
 

                                 (15) 
 

Any function  which is square integrable in the 
interval (0,1) can be expressed as an infinite sum of Haar 
wavelets as: 
 

                                                     (16) 
  

The above series terminates at finite terms if  is 
piecewise constant or can be approximated as piecewise 
constant during each subinterval. 
 
 
METHOD OF SOLUTION 
 

We assume that 
 

             (17) 
   

Equation 17 is integrated repeatedly with suitable limits of 
integration depending upon the boundary conditions. In 

this way, we express the solution  and its first six 
derivatives in terms of Haar functions and their integrals. 
We consider the collocation points  



 
 
 
 

                                          (18) 
 

The expressions of are substituted 
in the given differential equation and discretization is 
applied using the collocation points given in Equation 18. 

Thus, we obtain a system of equations in  

unknowns. The Haar coefficients  are 
calculated by solving this system. The approximate 
solution can be easily recovered with the help of Haar 
coefficients. The method is further explained with the help 
of specific boundary conditions. We will consider two 
different sets of boundary conditions here. The other 
types of boundary conditions can be handled in a similar 

manner. In this study, we take  and  
 
Type I: Boundary conditions 
 

 
 

 
 
We assume that  
 

                                                   (19) 
 
Integrating and using boundary conditions, we obtain the 
following: 
 

                    (20) 
 

      (21)    
 

  

            (22) 

 

                  
                                                                                     (23) 

 

     
                                                                                     (24) 

 

      
                                                                                     (25)                

 
Type II: Boundary conditions 

 

 
 

The numerical solution  and its derivatives in this 
case can be expressed as: 
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                                                 (26) 
 

                                 (27) 
 

                (28) 
 

 

                                                                                     (29) 
 

 

                                                                                   (30) 
 

   

                                                                                     (31) 
 

  

                                                                                     (32) 
 

The unknown values  and  can be 
calculated using boundary conditions and are given by: 
 

 

                                                                                    (33) 
 

 

                                                                                    (34) 
 

   

                                                                                               (35) 
 
 
NUMERICAL VALIDATION 
 
In order to demonstrate the efficiency and applicability of 
the new method developed in the previous section, we 
apply it to a number of problems from the literature. For 
the sake of comparison, we have taken problems from 
the work of Siddiqi et al. ( 2007) and Noor et al. (2009). 
Double precision arithmetic is used to reduce the round-
off errors to minimum. 
 
 
Example 1 
 

Consider the linear BVP 
 

                            (36) 
 

subject to the boundary conditions 
 

  (37) 

 
The exact solution is given by: 
 

            (38) 
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Table 1. Maximum absolute errors for Example 1 with 
boundary conditions of Type I. 
 

2M Present method Siddiqi et al. (2007) 

8 1.7187E-07 3.6463E-6 

16 4.4137E-08 3.0209E-07 

32 1.1101E-08 2.1369E-08 

64 2.7778E-09 1.2289E-09 

128 6.9440E-10 1.4821E-09 

256 1.7361E-10 - 

512 4.3404E-11 - 

1024 1.0851E-11 - 
 
 
 

 
 

Figure 1. Uniform Haar solution of Example 1 for 2M = 16. 
 
 
 

We have compared our results with quintic spline method 
(Siddiqi et al., 2007); the results are shown in Table 1. It 
is clear from the table that accuracy of the quintic spline 
scheme degrades at and beyond 128 number of mesh 
points. On the other hand, our scheme produces stable 
results and performs better when the number of points is 
increased. Figure 1 shows exact and approximate 

solution for   
 
 
Example 2 
 
Consider the linear BVP 
 

                         (39) 
 
subject to the boundary conditions 

 
                               

                                                                                     (40) 

 
The exact solution is given by 

 

                                                     (41) 

 
 
 
 

Table 2. Maximum absolute errors for Example 2 with boundary 
conditions of Type I. 
 

2M Present method Siddiqi et al. (2007) 

8 9.6894E-08 1.8429E-6 

16 2.4988E-08 1.3951E-07 

32 6.2943E-09 9.4848E-09 

64 1.5761E-09 5.6293E-10 

128 3.9413E-10 6.4848E-10 

256 9.8531E-11 - 

512 24633E-11 - 

1024 6.1582E-12 - 

 
 
 

 
 

Figure 2. Uniform Haar solution of Example 2 for 2M = 32. 
 
 
 

We have again compared our results with quintic spline 
method (Siddiqi et al., 2007) and are shown in Table 2. 
We observe similar comparison as in the case of 
Example 1. Figure 2 shows exact and approximate 

solution for   
 
 
Example 3 

 
Consider the linear BVP 

 

            (42) 

 
subject to boundary conditions 

 
   

                                                                                     (43) 

 
The exact solution is given by 
 

                                                (44) 

 
Table  3 exhibits  maximum  absolute  errors  for   various  
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Table 3. Maximum absolute errors for various values of c in Example 3. 
 

Methods 

Present c=1 c=10 c =10
2 

c=10
3 

c =10
6
 c =10

8 
c =10

10 
c =10

12 

2M = 2 1.6833E-7 1.7910E-7 5.0573E-7 2.1862E-7 1.7972E-7 1.7969E-7 1.7969E-7 1.7969E-7 

2M = 4 2.7863E-8 2.7034E-8 2.6853E-8 1.3595E-8 3.3547E-9 3.3484E-9 3.3483E-9 3.3483E-9 

2M = 8 7.1515E-9 6.6044E-9 4.0645E-9 2.5490E-9 5.6348E-10 5.6393E-10 5.6394E-10 5.6394E-10 

2M = 16 1.8213E-9 1.6584E-9 9.0835E-10 2.3478E-10 5.6208E-11 5.6146E-11 5.6146E-11 5.6146E-11 

2M = 32 4.5667E-10 4.1435E-10 2.2036E-10 4.6002E-11 4.1498E-12 4.1152E-12 4.1145E-12 4.1138E-12 

2M = 64 1.4112E-10 1.0345E-10 5.4631E-11 1.0772E-11 2.8688E-13 2.7622E-13 2.1757E-13 2.7578E-13 

2M = 128 2.8536E-11 2.5864E-11 1.3634E-11 2.6477E-12 2.1094E-14 1.7764E-14 1.7986E-14 1.8208E-14 

VIM 8.6E-8 3.4E-5 9.2E-3 1.0E-1 6.5E-4 - - - 

 
 
 

 
 

Figure 3. Uniform Haar solution of Example 3 for 2 M = 16 
when c = 106. 

 
 
 

 
 

Figure 4. Uniform Haar solution of Example 3 for 2M = 32 
when  c = 1012. 

 
 
 
values of the parameter c. From the table, it is clear that 
the   solution  obtained   by   the   semi-analytical  method 

previously mentioned is dependent on the parameter c 
and the method is valid only for c < 10

6
. The main reason 

for this failure is that this method lacks well established 
theoretical convergence analysis according to the value 
of c. Figures 3 and 4 show exact and approximate 

solutions for  when , 
respectively. 
 
 
Example 4 
 
Consider the nonlinear BVP 
 

                                      (45) 
 
subject to the boundary conditions 
 

   
                                                                                     (46) 
 
The exact solution is given by 
 

                                                                      (47) 
 
We again compare our results with VIM (Noor et al., 
2009). The point wise errors are shown in Table 4 and 
better performance of present method is obvious. Figure 

5 shows exact and approximate solution for . 
 
 

Example 5 
 

Consider the linear BVP 
 

                   (48) 
 

subject to the boundary conditions 
 

                                                                                    (49) 
 
The  exact   solution   of   the   problem   does   not   exist  
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Table 4. Point wise errors for Example 4. 
 

Errors in present method  Errors in reported method 

x 2M = 2 2M = 4  2M = 8 2M = 16 2M = 32 2M = 64 2M = 128 2M = 256 2M = 512 Noor et al.  (2009) 

0 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 5.0960E-6 1.6633E-8  4.3865E-7 1.1106E-7 2.7852E-8 6.9684E-9 1.7424E-9 4.3563E-10 1.0891E-10 -1.233E-4 

0.2 9.6537E-6 3.1657E-7  8.3490E-7 2.1138E-7 5.3011E-8 1.3263E-8 3.3164E-9 8.2914E-10 2.0729E-10 -2.354E-4 

0.3 1.3259E-5 4.3631E-6  1.1505E-6 2.9128E-7 7.3047E-8 1.8276E-8 4.5699E-9 1.1425E-9 2.8563E-10 -3.257E-4 

0.4 1.5618E-5 5.1359E-6  1.3547E-6 3.4229E-7 8.6017E-8 2.1521E-8 5.3813E-9 1.3454E-9 3.3635E-10 -3.855E-4 

0.5 1.6489E-5 5.4104E-6  1.4274E-6 3.6143E-7 9.0642E-8 2.2678E-8 5.6707E-9 1.4177E-9 3.5444E-10 -4.086E-4 

0.6 1.5690E-5 5.1557E-6  1.3608E-6 3.4461E-7 8.6425E-8 2.1623E-8 5.4069E-9 1.3518E-9 3.3795E-10 -3.919E-4 

0.7 1.3242E-5 4.3930E-6  1.1605E-6 2.9390E-7 7.3712E-8 1.8443E-8 4.6116E-9 1.1530E-9 2.8824E-10 -3.361E-4 

0.8 9.4764E-6 3.1977E-6  8.4498E-7 2.1404E-7 5.3682E-8 1.3431E-8 3.3585E-9 8.3967E-10 2.0992E-10 -2.459E-4 

0.9 4.9038E-6 1.6815E-6  4.4493E-6 1.1271E-7 2.8271E-8 7.0734E-9 1.7687E-9 4.4220E-10 1.1055E-10 -1.299E-4 

1.0 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.000E-9 

 
 
 

 
 

Figure 5. Uniform Haar solution of Example 4 for 2M = 16. 
 
 
 

Table 5. Numerical results for Example 5. 
 

Solution 

x 2M = 2 2M = 4 2M = 8 2M = 16 2M = 32 

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 

0.1 1.05480 1.05490 1.05500 1.05500 1.05500 

0.2 1.22197 1.22201 1.22202 1.22202 1.22202 

0.3 1.35063 1.35067 1.35069 1.35069 1.35070 

0.4 1.49270 1.49275 1.49277 1.49278 1.49278 

0.5 1.64961 1.64967 1.64969 1.64970 1.64970 

0.6 1.82294 1.82299 1.82301 1.82302 1.82302 

0.7 2.01443 2.01447 2.01449 2.01445 2.01445 

0.8 2.22602 2.22605 2.22606 2.22607 2.22607 

0.9 2.45985 2.45987 2.45987 2.45988 2.45988 

1.0 2.71828 2.71828 2.71828 2.71828 2.71828 
 

 
 

Noor et al., 2009). The approximate solution is shown in 
Table 5  for  various  values  of  x.  Figures  6 and 7 show 

 
 

Figure 6. Uniform Haar solution of Example 5 for 2M = 16. 

 
 
 

 
 

Figure 7. Uniform Haar solution of Example 5 for 2M = 32. 
 
 
 

(approximate solution for  and , 
respectively. 



 
 
 
 
Conclusion 
 
Uniform Haar wavelets are used to develop numerical 
method for solving linear and nonlinear sixth-order BVPs. 
The method is computationally efficient and the algorithm 
can easily be implemented on a computer. Comparison 
was made with quintic spline based scheme and VIM 
method in the case of linear and nonlinear BVPs. 
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