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INTRODUCTION 
 
As is well-known, a surface is said to be “ruled” if it is 
generated by moving a straight line continuously in 
Euclidean space E3 (O'Neill, 1997). Ruled surfaces are 
one of the simplest objects in geometric modeling. One 
important fact about ruled surfaces is that they can be 
generated by straight lines. A practical application of this 
type surfaces is that they are used in civil engineering 
and physics (Guan et al., 1997). 

Since building materials such as wood are straight, they 
can be considered as straight lines. The result is that if 
engineers are planning to construct something with 
curvature, they can use a ruled surface since all the lines 
are straight (Orbay et al., 2009). 

The curves are a fundamental structure of differential 
geometry. An increasing interest of the theory of curves 
makes a development of special curves to be examined. 
Especially, Bertrand curves are well-studied classical 
curves (Carom, 1976). In this study, we introduce and 
study the Mannheim curves, which are other special 
curves and not well known. 

In recent works, Liu and Wang (2007, 2008) are curious 
about the Mannheim curves in both Euclidean and 
Minkowski 3-space and they obtained the necessary and 
sufficient conditions between the curvature and the 
torsion for a curve to be the Mannheim partner curves. 
Meanwhile, the detailed discussion concerned with the 
Mannheim curves can be found in literature (Wang and 
Liu, 2007; Liu and Wang, 2008; Orbay and et al., 2009) 
and references therein. 
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MATERIALS AND METHODS 
 
Let E3 denote Euclidean 3 space with an inner product<,> and a 
vector product∧. Consider two space curves C and C*: I→ E3, 
where I is a real interval that has at least four continuous 
derivatives. If there exists a corresponding relationship between the 
space curves C and C* such that the principal normal lines of C 
coincides with the binormal lines of C* at the corresponding points 
of the curves, then C is called as a Mannheim curve and C* is 
called as a Mannheim partner curve of C. The pair of {C, C*} is said 
to be a Mannheim pair (Liu and Wang, 2008). 

Let C: ( )sα  be the Mannheim curve in E3 parameterized by its 

arc length s and C*: ( )** sα  is the Mannheim partner curve of C 

with an arc length parameter *s . Denote by ( ) ( ) ( ){ }sBsNsT ,,  the 

Frenet frame field along C: ( )sα , that is; ( )sT  is the tangent vector 

field, ( )sN  is the normal vector field, and ( )sB  is the binormal 
vector field of the curve C respectively. The famous Frenet 
equations and the derivative formulas are given by (O’Neill, 1997; 
Struik, 1988) 
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Here, that’s; in the above equations, and after that, we use the dot 
notation to denote the derivative with respect to the arc length 
parameter of a curve. In this paper, we study the Mannheim partner 
curves in E3. We will obtain the relationships between the 
curvatures and the torsions. 
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Figure 1. The Mannheim partner curves. 

 
 
 
of the Mannheim partner curves with respect to each other. Using 
these relationships, we will comment again Bertrand’s, Schell’s and 
Mannheim’s theorems. 
 
 
RESULTS AND DISCUSSION 
 
We can represent the Mannheim pair {C, C*} in the 
following Figure 1. 
 
Theorem 1: The distance between corresponding points 
of the Mannheim partner curves in E3 is constant. 
 
Proof: From the figure1, we can write 
 

( ) ( ) ( ) ( )***** sBsss λαα +=                                                     (3) 
 
for some function ( )*sλ . By taking the derivative of 
Equation (3) with respect to *s and using Equation (2), 
we obtain 
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Since N  and *B  are linearly dependent, 0*, =BT , we 
get  
 

 
 
This means that λ  is a nonzero constant. On the other 
hand, from the distance function between two points, we 
have 
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Namely, ( ) ( )( ) =ssd αα ,** constant. 
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Figure 2. Frenet frame. 

 
 
Theorem 2: For a curve C in E3, there is a curve C* so 
that (C, C*) is a Mannheim pair. 
 
Proof: Since N and B are linearly dependent, Equation 
(3) can be re written as 
 

Nλαα −=*                                                                    (5) 
 
Now that λ is a nonzero constant, there is a curve C* for 
all values of λ . 
 
Theorem 3: Let {C, C*} be a Mannheim pair in E3. The 

torsion of the curve C* is
λτ
κτ =* . 

 
Proof: By considering λ  is nonzero constant in Equation 
(4), we obtain 
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Even so, we know that  
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Where θ  is the angle between T  and *T  at the 
corresponding points of C and C* (Figure 2). 

By taking into consideration Equations (6) and (7), we 
get  
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Besides, by taking the derivative of Equation (5) with 
respect to s and using Equation (2), we have  
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From Equation (7), we obtain 
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By applying Equations (8) and (9), we get 
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From both values of θcos  and θsin , we see 
 

.*sin,1cos 222 ττλθλκθ −=+=  
 
Here, with the help of the fundamental 
equation 1sincos 22 =+ θθ , we reach the  
 

equation
λτ
κτ =* . 

 
Result 1: Let {C, C*} be a Mannheim pair in E3. Then the 
products of torsions τ  and *τ  at the corresponding 
points of the Mannheim curves are not constant. Namely, 
Schell’s theorem is invalid for the Mannheim curves. 

By looking over again the equation *sin 22 ττλθ −=  
obtained from the proof of the theorem 4, we write easily 
the following result too. 
 
Result 2: If {C, C*} is a Mannheim pair in E3, then τ  and 

*τ  have opposite signs. 
 
Theorem 4: Let {C, C*} be a Mannheim pair in E3. 
Between the curvature and the torsion of the curve C, 
there is the relationship  
 

1=− λκµτ  
 
Where λ  and µ  are nonzero real numbers. 
 
Proof: From Equation (10), we have 
 

λτ
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λκ
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1
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Arranging this equation, we obtain 
 

1cos =− λκθτλ  
 

1=− λκµτ  
 
Result 3: Let {C, C*} be a Mannheim pair in E3. Then 
there  exists  a linear relationship between κ  and τ  with  
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constant coefficients. Namely, Bertrand’s theorem is valid 
for the Mannheim curves. 
 
Theorem 5: Let {C, C*} be a Mannheim pair in E3. There 
are the following equations for the curvatures and the 
torsions of the curves C and C*: 
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iv. .

*
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Proof: i. By taking the derivative of the equation 

θcos*, =TT  with respect to *s , we have 
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Furthermore, by considering N  and *B  are linearly 
dependent and using Equations (9) and (1), we reach 
 

.
*
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By considering the equations 0*,,0*, == BTNN  

and 0*, =BB , we can do the proofs of ii, iii and iv of the 
theorem respectively as in the proof of i. 

From iii and iv of the theorem 5, we obtain the 
following result. 
 

Result 4: .*
* 222 ττκ

ds
ds=+  

 
Theorem 6: Let {C, C*} be a Mannheim pair in E3. For 
the points )(sα  and *)(* sα  are two corresponding 
points of {C, C*} and M and M* are the curvature centers 
at these points, the ratio 
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is not constant. 
 
Proof: From Figure 1, we obtain the following equations: 
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So, we have 
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Result 5: Mannheim’s theorem is invalid for the 
Mannheim curves. 
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