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In this paper, observer design problem for rectangular discrete-time singular systems with time-varying
delay is discussed. Based on restricted system equivalent (RSE) transformations and by introducing
new state vectors, the problem is transformed into observer design problem for time-varying delay
discrete-time standard state-space systems. By Lyapunov function method and linear matrix inequality
(LMI) technique, the delay-dependent sufficient condition that there exists a state observer is
established. The design method of matrix K is discussed and the coefficient matrices of function
observer are given. Finally, a numerical example is given showing the effectiveness of the method given

in the paper.
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INTRODUCTION

Time-delay is frequently a source of instability and is
commonly encountered in various areas such as
engineering, economics, etc. Compared to systems
without time-delay, time-delay systems are more
complex. So, the study of time-delay systems has
attracted a lot of interest. Observer design for time-delay
systems has been extensively investigated (Bhat and
Koivo, 1976; Fairman and Kumar, 1986; Boutayeb, 2001;
Trinh and Aldeen, 1997). Commonly, the approaches for
solving time-delay systems can be classified into two
types: delay-dependent conditions which include
information on the size of delays, and delay-independent
conditions which are applicable to delays of arbitrary size.
Since the stability of a system depends explicitly on the
time-delay, a delay-independent condition is more
conservative especially for small delays, while a delay-
dependent condition is usually less conservative.
Singular systems are also referred to as descriptor
systems or generalized state-space systems. It has
extensive applications in many practical systems such as
chemical processes, circuit boundary control systems,
economy systems and other areas (Aplevich, 1991; Dai,
1989). In the last decades, many control theories based
on singular systems, have been extensively studied. In

recent years, much attention has been focused on time-
delay singular systems. The observer design problem for
time-delay singular systems was investigated in Feng et
al. (2005), Ma and Cheng (2005) and Ma and Cheng
(2006). Feng et al. (2005) discussed observer design
problem for continuous-time singular time-delay systems.
Ma and Cheng (2005, 2006) solved observer design
problem for discrete time-delay singular systems with
unknown inputs, the conditions in Feng et al. (2005) and
Ma and Cheng (2005, 2006) are all delay-independent.
However, to the best of our knowledge, the delay-
dependent conditions for observer design problem for
time-varying delay rectangular discrete-time singular
systems have not yet appeared in the literature.

In this paper, observer design problem for time-varying
delay rectangular discrete-time singular systems is
discussed. First, based on restricted system equivalent
(RSE) transformations and by introducing new state
vectors, the problem is transformed into observer design
problem for time-varying delay discrete-time standard
state-space systems. Then, by Lyapunov function method
and linear matrix inequality (LMI) technique, the delay-
dependent sufficient condition that there exists a state
observer is established. Next, the design method of
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matrix K is discussed and the coefficient matrices of
function observer are given. Finally, a numerical example
is given showing the effectiveness of the method given in
the paper.

Notation: Throughout this paper, for real symmetric
matrices X and Y, the notation X >Y means that the
matrix X —Y is positive definite. I is the identity matrix
with appropriate dimensions. A superscript T represents

transpose. ||x|| refers to the Euclidean norm of the vector

x, that is ||x||2 =x"x. * denotes the matrix entries
implied by the symmetry of a matrix.

DESCRIPTION OF PROBLEM AND PRELIMINARIES

Consider the time-varying delay rectangular discrete-time
singular system described by:

Ex(k+1) = Ax(k)+ A, x(k —d(k))+ Bu(k),

¥(K) = Calk)+ G x(k —d (k) + Duk), "
z(k) = Lx(k),
where, x(k)<=R" is the state variable, u(k)e F.°
is the control input, v(k) e R is the measurement
output, =(k) = E' is the vector to be estimated, d (k)
is the integer time-varying delay and O0<d(k)<d,
d>0 is a known integer. The matix E €E" " is
singular, and rankE =r<min{m,n}, A€ R™"
4, er™, BeER™ ceRr™, C,eR"™,
— _ mmxn
DeR"" LeX " arereal constant matrices.

The purpose of this paper is to design a function
observer for system (1) as follows:

{§(k+1) = NEWR)+N,Ek=d()+D+Juk) +1,y(K), (2)
20k) = M,EG) + T, y(K),

where the coefficient matrices have corresponding
dimensions such that for any admissible initial value it
satisfies that:

lim(z(k)—Zz(k)) =0.
o @)

In order to design the functional observer above, we
assume that:

Assumption 1

0 E
rank| E A |=n+r. (4)
0 C

Assumption 2

0O E 0 O
0O E 0 O
E A B
rank =rank| E A A, B| (5)
0 C C, D
0 C C, D
0O L 0 O
Assumption 3
rankL =1. (6)

Remark 1. If system (E,A) is regular, then Assumption
1 is the definition of Y-observable for system (E,A,C)

(Dai, 1989), which is the necessary condition for the
existence of observer.

The following lemmas are useful in the proof of the
main results.

Lemma 1 (Xie and de Souza, 1992). Given any matrices
X, Y, Z with appropriate dimensions and Y >0.
Then,

X'ZZ'X<X'YXx+7Z'Y'Z
Lemma 2 (Xu, 2002). Given a symmetric matrix

S = S11 S12 . i, . .
= 7 , the following conditions are equivalent:
S12 S22

(1) $<0;
2 S, <0, S,,— SszSfllS12 <0;
@) S,, <0, S, —Sle;;Ssz <0.

MAIN RESULTS

Since rankE =r, there exist two nonsingular matrices

T WX 830
MeR™ jnd N e B™ such that :
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- Falm=r) ~ T {m—r)r ~ T (= oo m—r =
du . 443 c L - _.'Ll: . .."ilﬂn_

~ T (m=r)r o (m=r)x(n-r)

mr ~ T r(m—r) =
R, 4,€ek . A eR . Aj ek

3 M

I, 0 A A ;
MEN = , MAN = , 2
0 0 A, A,
(7) . ™ (m—r)x -
B eR™, B,eR™"? C eR". G, e
R&CT e R . C,LeRTUTT D LeRM

L, € B 5o system (1) is RSE to the following

e

system:

A, A B
MAdN:{ « “}, MB:{BI}, CN=[C, ]

x, (k)
% (k)]

CdN:[Cdl CdZ]’ LN:[L1 Lz]’ x(k)=N|:

T Fer

where x;(K)eR", x,(k)eR"". 4R

x(k+1) = Ax (k) +Ax, (k) + Ay x (k—d(k) + A,,x, (k—d(k) + Buk),
0= A, (k) +Ax, (k) + Ay, (k—d(k) + A,x, (k—d (k) + Bu(k),

(k) =Cx, (k) + C,x, (k) +C, x, (k —d(k)) +C, x, (k—d (k) + Du(k), ®
2(k) =Lx (k)+ Lx, (k).

- (m—m+q)=r e T (m—r pe(m—r) — £
C,eR , A, €R . Cpn €

A
By Assumption 1, {Cﬂ is of full column rank (Dai, E{m—w—q}rtn-r}_gﬁ EFEH-"J*.F_ D c | mntakp
5 2
1989). So, there exists a non-singular matrix P € WEYeR"™ . »(k)ysR™"7 Letting
;_im-r*q)-f.m-r—q}i such that: o {PH P12
- - Py B,
A 1 A A
BRI o
Cz 0 Cl C1 Cdl Cd1 (9) P — B {m=ri={m=r — TH (r=r)tg
= = 11 = = - A2 &S +
ALl [A B] [B 0] [nw o -
P{qj{éﬂ’ P{D}{Bﬁ’ P{y(k)}:{y:(k) ’ B e Rmraxn) - p e RO e,

where »(k)=R,yk), y,(k)=P,yk). (10)

By transformation (9), system (8) is RSE to the following
system:

x,(k+1)=Ax,(k)+ A, x,(k—d(k)+A,,x,(k —d(k))+ Bu(k)+ A,y k),

X, (k) =—Aux, (k)= Ayx, (k= d (k) = A, ,x, (k —d (k) = Byu(k) + y, (k), (11)
y,(k)=Cx,(k)+C,, x,(k—d(k))+C,,x,(k—d(k))+ Du(k),

2(k) = Lx, (k) + L, x, (k),

where FhAD =[x kD) k) K], (12)
A =A-AA, A=A, ~-AA,, A,=A,-AA,, B=B-AB,.

A system (11) is rewritten as:
Remark 2. Since { 4} is of full column rank, the

G, X(k+1) = Ax(k)+ A x(k —d (k) +1)+ Bu(k) + Gy(k),
solution of x, (k) is unique. So the expression of system y,(k) = Cx(k) +C, % (k —d(k)+ 1)+ Du(k), (13)

(11) is independent of matrix P and is unique. =
By introducing new state vectors as 2(k)=Lx(ke+1),
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where

A o0 o A4, 4,

A=| 1, 0 0|, A,=|0 0O 0 |,
-4, 0 0_ 0 —-A,, -A,
5 AP,

B=| 0 |.G=] 0 0 0],
| -B, P,

Ed:[o (’Td :' l_‘ 1 LZ] (14)

Remark 3. Based on the RSE transformations (7), (9)
and by introducing new state vectors (12), time-varying
delay discrete singular system (1) is transformed into a
time-varying delay discrete standard state-space system
(13). Hence, we can discuss the problem of observer
design for system (13) instead of that for system (1).

First, we design a (n+r)-order state observer for
system (13) as follows:
E(k+1) = AE(k) + A, E(k —d (k) +1)+ Bu(k) + Gy(k) (15)

+K (v, (k)= C&(k)—C,E(k —d (k) +1)— Du(k)).

Theorem 1. The system (15) is a state observer for
system (13), if there exist matrices X >0, Z>0,

U>0, N, N,, N;, §,, S,, S, and K satisfying the
following LMI

q)ll cblz q)13 (d _1)N1
b b d-1)N
) >l<22 23 ( ) 2 0, (16)
o, (d-DN,
*x % _(d-1)Z
where

=d+DU+N,+N" +S,(A-D)+(A-I)"S",
@, =—N,+N' +S A, +(A-1)'ST,
D,=X+N -8 +(A-1)' ST,
®,=-U-N,—N! +S,A,+A’ST,

D, = NT—S-hPS;
O, =X+(d-1)Z-5,-S5I,
A=A- Ksz =A,—KC,.

Proof. Let
e(k)=x(k)-&(k). (17)
By (13) and (15),

e(k+1)=(A-KC)e(k)+(A, - KC,
= Ae(k)+ A e(k —d (k) +1).

Ye(k—d(k)+1) (18)

If system (18) is stable, then system (15) is a state
observer of system (13). Next, we prove the stability of
system (18). Rewrite system (18) as:

{e(k+1)=e(k)+h(k), (19)

0=—h(k)+(A=De(k)+ A,e(k —d(k)+1).
Construct the discrete Lyapunov-Krasovskii functional as:

V=V +V,+V,+V,,
k-1

Y. e (DUe(),

I=k—d (k)+1

V,=e'(k)Xe(k), V, =

0 k-1

Vy= Z
O=—d+2 I=k—1+6
1 k-1

V.= D D e (DUe(),

O=—d+2 I=k+6

h" (1)Zh(1),

where X >0, Z>0, U >0.Then,

AV, =e" (k+1)Xe(k +1)—e” (k) Xe(k)
= (e(k)+h(k))" X (e(k)+h(k))—e" (k)Xe(k)
=e" (k)Xh(k)+h" (k)Xe(k)+ h" (k)Xh(k),

(20)

k k=1
AV,= Y WUey- Y, e (DUe(l)
I=k—d (k+1)+2 I=k—d (k)+1
k=1
=e' (kUe(k)y+ Y. e (HUe(l)
I=k—d(k+1)+2
- kZ‘: e" (HUe(l)—e" (k—d(k)+DUe(k —d (k)+1)

I=k—d (k)+2 (21)
<e"(kUe(k)—e" (k—d(k)+DUe(k —d(k)+1)
k-1 k=1

+ > e (Ue()= Y e (DUe(l)
I=k—d+2 I=k+2
=e" (k)Ue(k)—e" (k—d(k)+1)Ue(k —d(k)+1)
k+1 k-1 k-1

+ > e (DHUe(l)+ Y, e (DUe(l)= Y ' (DUe(l)
I=k-d+2 I=k+2 I=k+2
=e' (k)Ue(k)—e" (k—d (k)+D)Ue(k —d (k) +1)
k+1

+ > e (DUe(D),

I=k—d+2



0 0 k-1

S T zhy- D D T (DHzh(D)

O=—d+2 [=k+6 O=—d+21=k-1+6
0

AV,

O=—d+2
=(d-Dh" (k)Zh(k)—- 3 K" (1) Zh(1)

I=k—d+1

<(d -Dh" (k)Zh(k) - kzi h"(HZh(D),

I=k—d (k)+1
1 k 1 k—1
AV, = > > e Ue)- Y D e (DUe)
O=—d+2 [=k+1+6 O=—d+2[=k+6

1 k=1

> lef (kUetky+ . e (HUe(l)

O=—d+2 I=k+1+60

k=1
= D, " (DUe(l)—e" (k+6)Ue(k +6)]
I=k+1+6
= 21: [e" (k)Ue(k)—e" (k+6)Ue(k +6)]
O=—d+2
k+1
=de' (k)Ue(k)— Y e (HUe(l),

I=k—d+2

From (20) to (23), it follows that:

AV <(d +1)e’ (k)Ue(k)+e" (k) Xh(k)+h" (k) Xe(k)+ h" (k) Xh(k)

—e' (k—d(k)+DUe(k—d (k) +1)+(d —Dh" (k)Zh(k)— Z h" (D)Zh().

According to the first formula of (19), for appropriate
dimensions N,, N,, N,, the following is true

2(e" (k)N, +e" (k—d(k)+1)N, +h" (k)N,)-(e(k)—e(k —d (k) +1)— Z h(l))=0.

Also, according to the second formula of (19), for
appropriate dimensions S|, S,,S; , the following is true

2e" (K)S, +e" (k—d(k)+ 1S, + h" (k)S,)- (=h(k) + (A= De(k)+ A, e(k —d (k) +1)) =0.

By Lemma 1, the following holds

k-1
—2(e" (k)N +e" (k=d(k)+ DN, + h" (k)N,) Y,
I=k—d (k)+1
k—1

=-2 Y [eT(k) e"(k—dk)+1) hT(k)][N{ NT

I=k—d (k)+1
<(d —1)[eT(k) e’ (k—dk)+1) hT(k)]Q :

k-1

[e" (k) e (k-dt)+D) K] + 3 K OzhW),

I=k—d (k)+1

> [AT(OZh(k) = h" (k =1+ 6)Zh(k —1+6) |

Lin 427
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where 0=[N/ NI NI| zZ'[N] NI NI]

Then, adding the terms on the left of (25) and (26) to AV,
and by (27), we obtain

AVE[e (k) ¢ (k=d(k)+D) K (k) |(A+@-DQ)[e' (k) € (k—d(k)+D) K (k)] . (28)

where
P, P, P,
A=| * P, P,
# * P

It A+(d-1Q<0, then AV <-ale®) for a
sufficiently small & >0, which ensures the stability of
system (18). According to Lemma 2, A+(d -1)0 <0,
which is equivalent to (16) holds. So, (15) is a state
observer for system (13).

It is notable that there is quadratic terms in LMI (16).
So, it cannot be solved directly. In order to obtain

observer (15), we must work out unknown matrix K .
Therefore, we have the following theorem.

Theorem 2. There exists a function observer for system
(1), if for given scalars t, 1, t; there exist matrices

X>0,2>0,U>0, N, N,, N,, W, W,, S and
non-singular matrix R , satisfying the following conditions

lPu lPlz lPB (d _1)N1
W Y, ¥, (d-DN, (29)
¥ % W (d-DN,|
* * *  (d-1)Z
SL* =L'R, (30)
where

¥, =(d+DU+N,+N +1,SA+1,A"S" —1,S—1,S" —tWC—1,C'W"
~C'[C, D]'[A, B] LL'S"'~SL'L[A, B][C, D|C
+W[C, D|C, D] C+C'[C, D]'[C, D] W'
~+'W[C, D], b]c-c'[c, D]'[C, D] w/L",
¥, =—N,+N, +1,5A, —tWC,+t,A'S" —1,8" —t,C'W/
~SCL[4, B][C, D] C,~«L'W[C, D|C, DJC,
+#W[C, D|C, D] C,~C'[C, D|'[A, B]LL'S

~+C'[C, D]'[C, D] WI"+C'[C, D]'[C, D] W.

W, =X +N! 1S+, A'S ~1,5" ~C'W' +1,C"[C, D]'[C, D] W/
~+C'[¢, D|'[¢, D] WI"-+C'[C, D|'[4, B]L'L"S",

¥, =-U—-N,-N] +1,5A,+,A]S" =, W,C,—t,C, W
~+SCL[A, B][C, D] C,-+CI[C, D|'[4, B]LL's"
~+L'W[C, DJ[C, DJC,-uG[C, D]'[C, DI wL”
wW[C, DJC, D] C+1Ci[C, DI'[C, DI'W.

W, =N ~1,S+1,A1S" - CiW' -1,C1[C, D|'[A, B] LL"s"
+C;[C, D]'[C, D] WL"+G[C, DJ'[C, D] W,

Y, =X+d-)Z-1S-1S",

L'=L"(LL")™" is the generalized inverse of L,

It e o=l gatisfies LL* =0, and is of full

column rank, [Ed ET is the generalized inverse of

[Ed 5] . And the expression of observer is

Ek+1) = AEK) + A, E(k—d +1)+ Bu(k)+Gy(ky BT
+K (y,(k) = C&(k) ~ C,§(k—d +1)— Du(k)),

(k) = (LA~ LKC)E(k) + (LG + LKP,) y(k),

Where

S

Kk=L'L[A, B][C, D] +L'K[C, D][¢, D]

Proof. Let

Z(k) = LE(k +1). (32)
By Theorem 1, if (16) is satisfied, then system (18) is
stable. On this condition, from the third formula of (13),

(17) and (32),

lim(z(k) — Z(k)) = lim Le(k+1)=0.

According to the second formula of (10), (15) and (32),



Z(k) = (LA— LKC)&(k) + (LG + LKP,) y(k)
+(LA, = LKC ))é(k—d +1)+ (LB — LKD)u(k).

Compared with (31), we obtain

LA, —LKC,=0, LB—LKD =0. (33)

By the analysis above, if we can work out K satisfying
both (16) and (33), then (31) is a functional observer for

system (13). First, we discuss the design of matrix K.
From (33),

IK[C, D]=L[4, B] (34)
By Assumption 3, L

L'(LL )7

L__ =& (m+r)e(n+r=1I)

is of full row rank, so
is of full column rank. Relating that

satisfies LL" =0, and is of full
column rank. Hence, [Z* I?] is a non-singular matrix.
From (34), we obtain

k[, D]-L'L[4, B]+I*R[C, D], (9

where K is an arbitrary matrix of appropriate dimension.
By (14), we get

(¢, D]=[o ¢, C, D]
And
Z[Ad EJZ[O -LA,;, -LA, _ngzj-
It is easy to prove that Assumption 2 is equivalent to
LA, LA, LB, _
ranl{ T e e :I—rank[Cd1 C,, D].
Cdl Caz D
On this condition,
rank[éd 5]:rank[5d1
:I'aI]_k|:L2Zd3 L2;d4 L2§2:|

Lin 429

Therefore, from (35),
k=FI[4, B][C, B +EK[C, BJ[C, B
+k-R[C, D|[C, DJ.

where K is an arbitrary matrix of appropriate dimension.

Next, we discuss the design of matrices K and K.
Setting S, =S, S, =15, S, =4S, from ®,,<0, §

is a nonsingular matrix. In @, ,

S,A=1,SA—1,SKC
=4SA-1SL'L[4, B|[C, D] C-4SL'K[C, D]|C, D|C

p|c, bJcC

Set SI%le, then I%zS‘WVF By equality constraint
(30), then SL'K =L'RK . And set RK =W,, then
K = R™'W,. Hence,

-4,SKC+1,SK[C,

k=LL[A, BJ[C, DI +LRW[C, DG D] (g5

+$"W-s"W[C, D|C, DJ.

And substituting (36) into LMI (16), we obtain LMI (29).
This completes the proof.

Theorem 3. If for given scalars #, 1, t; there exist
matrices X >0, Z>0, U >0, N,, N,, N,, W,
W,, § and nonsingular matrix R, satisfying conditions

(29) and (30) (Yu, 2002), then there exists a function
observer such as (2) for system (1), and the coefficient
matrices of observer are:

N,=A-KC, N Z KC,, J,=B—KD,
J,=G+KP,, M1 —~LKC, J,=LG+LKP,.

Proof. By Theorem 2, the second formula of (10) and
(31), we can directly obtain the conclusion.

— |1
For the case of L=1, LL:{O’] We can set
S:|:Sl } where S| sR™ . 8§, =E™. Due to
s, -

SZLI?:|:511?:|, we can set SII? :W_IZ, then I? — Sl_lw_/z
0 :
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Kk=LL[4, BJC D] +L's"W[C, DJC, D]
bJé bl

On this condition, equality constraint can be omitted. We
obtain the following conclusion.

+5'W,-S"W[ C,

Corollary 1. If for given scalars 7, 1, f; there exist
matrices X >0, Z>0, U >0, N,, N,, N,, W,

— S
w,, S, S ={ : S } satisfying the following LMI
2

an lP12 lP13 (d- 1)N1
* ¥, W, (d-D1N,
* % W, (d-DN,|
% x —(d-1Z

Then, there exists a state observer (31) for system (13),
where K = S;'W,, other parameter matrices
are the same as that in Theorem 2.

EXAMPLE

Consider system (1) with

10 4 1 04 -04 0.4
E=|0 0|, A=|2 1|, A,=| 03 01|, B=|0.1],
00 30 -0.5 02 03
0.

50 0.1 04 -0.1
C= , C, = ., D= . L=[0 1].
-2 0 02 -06 0.5

Then, the coefficient matrices of system (13) are

(2 0 0 0 01 -0.5 0.3
A=|1 0 o,Ad{o 0 0 |.B=| 0

-2 0 0 0 -0.3 -0.1 -0.1

0 0 0 300 0 -05 02
G_oool,c__s 0 0[,C,={0 -0.1 04

0 0 0 -2 0 0 0 02 -06
L=[0 o0 1]

Let d =2, t,=0.8, 1, =-0.02, £, =0.6, solve the LMI
(29), it is obtained that

95.988
X =|-2.7473

-2.1658

1.255 1.4257 0.1553 0.0952 0.1139

—2.7473 -2.1658 5.6762 0.1553 0.6644
VA )
1.4257  2.8297 0.6644 0.1139 0.5976

3.0023 —0.0701 —0.1203 73712 0.0820 0.3388
U=|-00701 0.1545 0.2081 |, N,=|-0.8775 -0.0730 -0.1077
—-0.1203 0.2081 0.3717 —4.0129 —0.1242 -0.6190
(23225 0.0145 0.1043 1.1583  0.0460 0.3148
N,=|0.1886 0.0803 0.0924 |, N,=|-0.1899 0.0040 -0.0054|,
1 0.7109 0.0967 0.5113 —-2.3134 -0.0206 —0.0686
[17.166 203.5 143.03
17.661 68.151 128.97
W, =|40.479 525.86 364.07 ,WZ:{ }
-0.2840 1.6731 —0.7105
| 64.194  831.05 575.8}
95988 -2.7473 1.255
S=|-2.1658 14257 2.8297|.
0 0 5.6762
95.988 —2.7473
By (30), R= .
—2.1658 1.4257
Then,

0.2103 2.5566 1.7877
K=| 6265 82.134 56.738, K={

11.309 146.41 101.44

0.1864 0.7774  1.3897
K=10.0839 23545 1.6128

0.6143 -2.0143 -0.9714

0.1864 0.7774 1.3897
0.0839 2.3545 1.6128

|

Thus, the coefficient matrices of observer (2) are

03333 0 0 0 —0.0070

N,=[-7.7985 0 0|, N,=[0 -0.0451
42857 0 0 0 0
~0.3730 0.1864 0.7774

-0.5961, J,=]0.0839 2.3545
0 0.6143 -2.0143

M,=[4.2857 0 0], J,=[0.6143 -2.0143
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