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In this article we apply the first integral method to construct the exact solutions of some nonlinear 
fractional partial differential equations (PDES) in the sense of modified Riemann–Liouville derivatives, 
namely the nonlinear fractional Zoomeron equation and the nonlinear fractional Klein- Gordon- 
Zakharov system of equations. Based on a nonlinear fractional complex transformation, these two 
nonlinear fractional equations can be turned into nonlinear ordinary differential equations (ODE) of 
integer order. This method has more advantages: it is direct and concise. 
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INTRODUCTION 
 
Fractional differential equations have been the focus of 
many studies due to there frequent appearance in 
various applications in physics, biology, engineering, 
signal processing, systems identification, control theory, 
finance and fractional dynamics (Miller and Ross, 1993; 
Kilbas et al., 2006; Podlubny, 1999). Recently, a large 
amount of literature has been provided to construct the 
solutions  of   fractional  ordinary   differential   equations, 

integral equations and fractional partial differential 
equations of physical interest. Several powerful methods 
have been proposed to obtain approximate and exact 
solutions of fractional differential equations, such as the 
Adomian decomposition method (El-Sayed et al., 2009; 
Safari et al., 2009), the variational iteration method (Inc, 
2008; Wu and Lee, 2010; Fouladi et al., 2010), the 
homotopy  analysis  method  (Song   and   Zhang,   2009;  
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Abbasbanby and Shirzadi, 2010; Barania et al., 2010; 
Rashidi et al., 2009), the homotopy perturbation method 
(Ganji et al., 2010; Gepreel, 2011; Gupta and Singh, 
2011), the Lagrange characteristic method (Jumarie, 
2006a), the fractional sub-equation method (Zhang and 
Zhang, 2001), the local fractional variation iteration 
method )Yang and  Baleanu, 2013; Liu et al., 2013; Wang 
et al., 2014; Zhao et al., 2014; Baleanu et al., 2014; He, 
2012; Yang et al., 2013; Yang et al., 2013) and so on.    

Jumarie (2006b) proposed a modified Riemann-
Liouville derivative. With this kind of fractional derivative 
and some useful formulas, we can convert fractional 
differential equations into integer-order differential 
equations by using variable transformations. The first 
integral method (Feng and Roger, 2007; Feng, 2008; 
Raslan, 2008; Lu et al., 2010; Taghizadeh et al., 2011) 
can be used to construct the exact solutions for some 
time fractional differential equations. 

The objective of this paper is to investigate the 
applicability and effectiveness of the first integral method 
on fractional nonlinear partial differential equations, 
namely the nonlinear fractional Zoomeron equation and 
the nonlinear fractional Klein- Gordon- Zakharov system 
of equations.  
 
 

The modified Riemann-Liouville derivative and first 
integral method 
 

Here, we first give some definitions and properties of the 
modified Riemann-Liouville derivative which are used 
further in this paper.  Assume that 

: , ( )f R R x f y   denote a continuous (but not 

necessarily differentiable) function. The Jumarie’s 
modified Riemann-Liouville derivative of order   is 

defined by the following expression: 
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Some properties of the fractional modified Riemann-
Liouville derivative were summarized and three useful 
formulas of them are: 
 

(1 )
, 0

(1 )
xD x x   


 

 
 
  

,                                 (2) 

 

 ( ) ( ) ( ) ( ) ( ) ( )x x xD f x g x f x D g x g x D f x    ,     (3)  

 

 ( ( )) ( ( )) ( ) ( ( ))[ ( )]x g x g xD f g x f g x D g x D f g x g x             (4) 
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which are consequences of the equation 

( ) (1 ) ( )d x t dx t    . 

 
Next, let us consider the following time fractional 
differential equation with independent variables 

1 2( , ,..., , )mx x x x t  and a dependent variable u: 

 

1 2 3 1 1 2 2

2( , , , , , , , ,...) .t x x x t x x x xF u D u u u u D u u u o        (5) 

 
Using the fractional complex transformation  
 

1 2 3 1 1 2 1( , , ,..., , ) ( ), ...
(1 )

m m m

ct
u x x x x t u x k x k x



 


     
 

    (6)    

                                                            

where ,ik c  are constants to be determined later; the 

fractional Equation (5) is reduced to the nonlinear ODE of 
integer orders: 
 

( , , ,...) 0H u u u   ,                                                   (7)    

                                      

where 

2

2
, ,....

du d u
u u

d d 
   . 

 
We assume that Equation (7) has a solution in the form 
 

( ) ( )u X  ,                                                           (8) 

 
and introduce a new independent variable 

( ) ( )Y X   which leads to a new system of 

equations 
 

( ) ( ),

( ) ( ( ), ( )).

X Y

Y G X Y

 

  

 

 
                                          (9) 

 
Now, let us recall the first integral method. By using the 
division theorem for two variables in the complex domain 
C[X,Y] which is based on the Hilbert-Nullstellensatz 
Theorem (Bourbak, 1972), we can obtain one first 
integral to Equation (9) which can reduce Equation (7) to 
a first- order integrable ordinary differential equation. An 
exact solution to Equation (5) is obtained by solving this 
equation directly. 
 
 
Division theorem 
 

Suppose that ( , )P x y and ( , )Q x y are polynomials in 

C[X,Y]  and ( , )P x y  is irreducible in C[X,Y]. IF 

( , )Q x y vanishes at all zero points of ( , )P x y  , then 

there exists a polynomial ( , )H x y  in  C[X,Y]  such that  
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( , ) ( , ) ( , )Q x y P x y H x y .                                    (10) 

 
 
Applications 
 
Here, we present two examples to illustrate the 
applicability of the first integral method to solve nonlinear 
fractional partial differential equations. 
 
 
Example 1. The nonlinear fractional Zoomeron 
equation  
 
This equation is well- known (Alquran and Al-Khaled, 
2012; Abazar, 2011) and can be written in the form: 
 

2 2[ ] [ ] 2 [ ] 0, 0 1.
xy xy

tt xx t x

u u
D D u

u u

            (11)   

 
For our purpose, we introduce the following 
transformations 
 

( , , ) ( ),
(1 )

t
u x y t u x cy


 


   

 
,             (12) 

 

where , ,c   are constants. Substituting Equation (12) 

into (11), we have the ODE: 
 

2 3 22 ( ) 0
u u

c c u
u u

 
     

     
   

               (13)      

                              

Integrating Equation (13) twice with respect to  , we get 

 

2 2 3( ) 2 0c u u ru                                 (14) 

 
where r is a non zero constant of integration, while the 
second constant of integration is vanishing. 
On using Equations (8) and (9), then Equation (14) is 
equivalent to the two dimensional autonomous system:  
 

( ) ( )X Y                                                         (15) 

 
3

2 2

( ) 2 ( )
( )

( )

rX X
Y

c

  





 


,                              (16) 

 

where  ( ) ( )X u  . 

According to the first integral method, we suppose that 

( )X   and ( )Y   are nontrivial solutions of Equations 

(15) and (16) and ( , )Q X Y is an irreducible polynomial 

in the complex domain C[X.Y]  such that 

 
 
 
 

 
0

( , ) ( ) ( ) 0
m

i

i

i

Q X Y a X Y 


                                (17) 

 

where ( ), ( 1,2,... )ia X i m  are polynomials in X and 

( ) 0ma X  . Due to the Division theorem, there exists a 

polynomial  ( ) ( ) ( )g X h X Y   in the complex 

domain C[X,Y]  such that 
 

 
0

( ) ( ) ( ) ( ) ( )
m

i

i

i

dQ Q dX Q dY
g X h X Y a X Y

d X d Y d
 

   

 
   
 


  (18) 

 
Let us now consider two cases. 
 
 
Case 1   
 
If  m = 1.  
 
Substituting Equations (15) and (16) into Equation (18) 

and equating the coefficients of ( ), ( 0,1,2)iY i   on 

both sides  of  Equation (18), we have  respectively 
                                                                                                       

3

0 1 2 2

( ) 2 ( )
( ) ( ) ( )[ ]

( )

rX X
g X a X a X

c

  







,          (19) 

 

 
1

( )
( ) ( ) ( ) ( )o

o

da X
g X a X h X a X

dX
  ,             (20) 

 

1
1

( )
( ) ( )

da X
h X a X

dX
 .                                         (21) 

  

Since  ( ),  ( 0,1)ia X i   are polynomials, then from 

Equation (21) we deduce that 1 ( )a X  is a constant and 

( ) 0h X  . For simplicity we take 1( ) 1a X  . 

Balancing the degrees of ( )g X  and  0( )a X  we 

conclude that deg ( ( )) 1g X  . Suppose that 

1( ) ,og X A X B   then we find 

                                                                                                                                                                                                                                                                                                                                                                              

2

0 1

1
( )

2
o oa X A X B X A    ,                           (22)   

                     

where 1, ,o oA B A are constants to be determined. 

Substituting 
0 1( ), ( ), ( )a X a X g X  into  Equation (19) 

we get 
 

3
2

1 0 1 0 0 2 2

1 ( ) 2 ( )
[ ( ) ][ ( ) ( ) ] [ ] 0

2 ( )

rX X
A X B A X B X A

c

  
  




    

   (23)    



 
 
 
 

Setting the coefficients of powers of  ( )X   to zero, we 

obtain the following system of algebraic equations: 

 

2 2

0 0 1 0 0 1 0 12 2 2 2

3 4
0, , 0,

( ) 2 ( )

r
A B A A B A B A

c c



 
    

  (24) 

 
On solving these algebraic equations, we have the 
results 
 

1 0 02 2 2 2
2 , 0,

( ) 2 ( )

r
A B A

c c



  


   

 
 (25) 

 
From Equations (17), (22) and (25) we conclude that 
 

  

2

0 2 22 2
( ) ( ) ( )

( )2 ( )

r
Y a X X

cc


 

 


   


  (26) 

 
and consequently we obtain the equation 
 

2

2 22 2
( ) ( )

( )2 ( )

r
X X

cc


 

 


  


        (27) 

                                                                 
Equation (27) is just the well-known Riccati equation. 
With reference to the article (Ma and Fuchssteiner, 1996) 
the authors proved that the Riccati 

equation
2

0 1 2V V V     ,where  0 1 2, ,   are 

constants such that 2 0   has the following solutions: 

 

(i) If 
2

1 0 24 0       , then 

 

0
1 0

2

0
1 0

2

1 0

2

ln1
[ tanh( )] 0

2 2 2

ln( )1
( ) [ coth( )] 0

2 2 2

1
[ ] 0

2

if

V if

if

   
      


   

        


 
     



 (28) 

 

(ii) If 
2

1 0 24 0       , then 

 

1 0

2

1 0

2

1
[ tan( )],

2 2
( )

1
[ cot( )].

2 2

V

  
     


  

 
     

 

       (29) 

 

(iii) If 
2

1 0 24 0       , then 
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1

2 2 0

1
( )

2
V


  

   
                                       (30) 

 

where 
0  is an arbitrary constant and 1   . 

With the aid of Equations (28) - (30) the solutions of 
Equation (11) have the forms: 
 

(i) If 
2 2

0, 0
( )

r r

c  
 

 , we get 
 

0
1 02 2

0
2 02 2

3 0

ln
( ) tanh[ ] 0

2 2 ( ) 2

ln( )
( ) coth[ ] 0

2 2 ( ) 2
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2 2

r r
u if

c

r r
u if

c

r
u if

 
  

 

 
  

 


 



 
   



 
   




  

(31)                                       
 

(ii) If 
2 2

0, 0
( )

r r

c  
 

 , we get 
 

4 02 2

5 02 2

( ) tan[ ]
2 2 ( )

( ) cot[ ]
2 2 ( )

r r
u

c

r r
u

c

  
 
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 

  


  


  (32) 
 

(iii) If 
2 2

0, 0
( )

r
c




 

 , we get 
 

6

02 2

1
( )

( )

u
r

c



 








 ,                                  (33) 

 
where    is  given  by Equation (12). 

As a result, we find the periodic and solitary solutions of 

Equation (11) are new and when 1   they are also 

different from the solutions found in (Alquran and Al-
Khaled, 2012; Abazar, 2011). 

 
 
Case 2   

 
If m = 2.  
 
In this case, Equations (17) and (18) respectively reduce 
to  
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2

1 2[ ( ), ( )] ( ) ( ) ( ) ( ) ( ) 0oQ X Y a X a X Y a X Y         (34)  

 

and  
 

3
20 1 2

1 2 2 2

2

0 1 2

( ) ( ) ( ) ( ) 2 ( )
( ) ( )] ( ) [ 2 ( ) ( )][ ]

( )

[ ( ) ( ) ( )][ ( ) ( ) ( ) ( )]

da X da X da X rX X
Y Y Y a X a X Y

dX dX dX c

g X h X Y a X a X Y a X Y

  
   



  


   



     (35) 
 

Equating the coefficient of powers of ( )Y   on both sides 

of Equation (35) we have  
       

2
2

( )
( ) ( )

da X
h X a X

dX
                                            (36) 

  

1
2 1

( )
( ) ( ) ( ) ( )

da X
g X a X h X a X

dX
                (37) 

 
3

0
2 1 02 2

( ) ( ) 2 ( )
2 ( )[ ] ( ) ( ) ( ) ( )

( )

da X rX X
a X g X a X h X a X

dX c

  




  

  (38)                 
 

3

0 1 2 2

( ) 2 ( )
( ) ( ) ( )[ ]

( )

rX X
g X a X a X

c

  






            (39) 
 
Since ( ),  ( 0,1,2)ia X i   are polynomials, then from 

Equation (36) we deduce that 
2 ( )a X  is constant and 

( ) 0h X  .  For simplicity we take
2( ) 1a X  . 

Balancing the degrees of ( )g X and 
1( )a X  we 

conclude that deg ( ( )) 1g X  , and  hence we get 

  

1( ) ,og X A X B                                                (40)   

   

and 2

1 1

1
( )

2
o oa X A X B X A                           (41) 

 
where 

1, ,o oA B A are constants to be determined, such 

that 
1 0A  .  Now, Equation (38) becomes 

 

2 20
1 0 0 1 02 2

2 3

1 0 02 2

( ) 2 3
[ ] ( ) ( )

( ) 2

4 1
[ ] ( )

( ) 2

da X r
A A B X A B X

dX c

A X A B
c

 








   




  

  (42) 
     
and                
 

2 2 3

0 1 0 0 1 02 2

2 4

1 0 02 2

1 1 1
( ) [ ] ( ) ( )

( ) 2 2 2

1
[ ] ( ) ( )

( ) 8

r
a X A A B X A B X

c

A X A B X d
c

 



 




   




   

  (43)   
 
where d is the constant of integration. 

Substituting Equations (40), (41) and (43) into Equation 

 
 
 
 

 (39) and equating the coefficients of powers of  ( )X   

we get 
 

2

1 0 0 2 2 22 2 2 2

4
, 0, ,

4 ( )( ) ( )

r r
A B A d

cc c



    

 
   

 

 
Consequently, we deduce that 
 

2
2 4

0 2 2 2 2 2 2 2
( ) ( ) ( )

( ) ( ) 4 ( )

r r
a X X X

c c c


 

   
  

   (44)                   
 
and   
 

2

1
2 2 2 2

2
( ) ( )

( ) ( )

r
a X X

c c




   
  

 
 (45) 

 
Substituting Equations (44), (45) into Equation (34) we 
deduce after some reduction  that  
 

1

1
( ) ( )

2
Y a X                                                  (46) 

 
and hence   
 

2

2 2 2 2
( ) ( )

2 ( ) ( )

r
X X

c c


 

   
   

 
  (47)   

 

which has the same form Equation (27) and gives the 
same solutions (31) to (33). This shows that the two 
cases m=1 and m=2 give the same solutions. Comparing 
our results with the results ((Alquran and Al-Khaled, 
2012; Abazar, 2011), it can be seen that our solutions are 
new. 
 
 

Example 2. The nonlinear fractional Klein-Gordon-
Zakharov equations  
 
These equations are well- known (Thornhill and Haar, 
1978; Dendy, 1990; Ebadi et al., 2010; Shang et al., 
2008) and can be written in the following system: 
 

2

1 0tt xxD u u u uv     ,      

                                                                           
2

2( ) 0, 0 1tt xx xxD v v u       ,                      (48)  

  

with ( , )u x t is a complex function and ( , )v x t  is  a real 

function, where 1 2,   are nonzero real parameters. This 

system describes the interaction of the Langmuir wave 
and the ion acoustic in a high frequency plasma. Using 
the wave variable  



 
 
 
 

1( , ) ( , )exp ( )
(1 )

t
u x t x t i kx


 



 
   

  
,        (49) 

 

where ( , )x t  is  a real-valued function, ,k   are real 

constants to be determined and 
1  is  an arbitrary 

constant. Then the system (48) is carried to the following 
PDE system: 
 

2 2 2

1

2 2

2

( 1) 0

0

( ) 0

tt xx

t x

tt xx xx

D k v

D k

D v v







     

  

 

     

 

  

                  (50) 

 
Setting  
 

2( , ) ( ), ( , ) ( ),
(1 )

kt
v x t v x t x



      


    
 

     (51) 

 

where 2  is an arbitrary constant, then we get     

     
2 2

2

2 2

( )
( )

( )
v C

k

   



 


,                                          (52) 

 
and 
 

3

1 2( ) ( ) ( ) 0                                             (53) 

 

where  

2 2 2

1 2 1
1 22 2 2 2 2

( 1)
,

( ) ( )

k C

k k

    

 

  
 

 
, C is an  

 

integration constant, and k   . 

On using Equations (8) and (9), we deduce that Equation 
(53) is equivalent to the two dimensional autonomous 
system:  
 

( ) ( )X Y                                                            (54) 

 
3

1 2( ) ( ) ( )Y X X                                        (55)   

 

where  ( ) ( )X    . 

Now we consider the two cases. 
 
 

Case 1  
 

If m = 1. 
 
Substituting Equation (54) and (55) into Equation (18) 

and equating the  coefficients  of  ( ), ( 0,1,2)iY i    on 
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both sides of Equation (18), we have respectively.  
       

3

0 1 1 2( ) ( ) ( )[ ( ) ( )]g X a X a X X X    ,    (56) 

 

 1

( )
( ) ( ) ( ) ( )o

o

da X
g X a X h X a X

dX
  ,             (57) 

 

1
1

( )
( ) ( )

da X
h X a X

dX
 .                                         (58) 

 

 Since ( ),  ( 0,1)ia X i   are polynomials we deduce 

that  ( ) 0h X  , 
1( ) 1a X   and  deg ( ( )) 1g X  . 

Then we obtain 
  

1( ) ,og X A X B                                                  (59) 

                                                                                

2

0 1

1
( )

2
o oa X A X B X A                                    (60)        

 

Substituting 0 1( ), ( ), ( )a X a X g X  into Equation (56) 

we get   
 

2 3

1 0 1 0 0 1 2

1
[ ( ) ][ ( ) ( ) ] ( ) ( ) 0

2
A X B A X B X A X X         

 (61)  
    

Setting the coefficients of powers of  ( )X   to zero, we 

obtain  
 

2 2

0 0 1 0 0 1 1 0 1 2

3
0, , 0, 2

2
A B A A B A B A      

           
 
On solving these algebraic equations, we have the 
results 
 

1
1 2 0 0 2

2

2 , 0, , 0
2

A B A      


.  

      
Now, we deduce that  
 

21
2

2

1
( ) 2 ( )

22
X X    


                       (62)     

         
which represents the well- known Riccati equation. With 
the help of Equations (28) to (30) the solutions of the 
system (48) can be written in the forms: 
 

(i) If    1 0
   and   2 0

   we get the hyperbolic and 
rational solutions 



180          Int. J. Phys. Sci. 
 
 
 

01
1 1 2 0

2
2 02 1 1

1 02 2

2

ln
( ) tanh( )exp( ), 0

2 2

ln
( ) tanh ( ) , 0

( ) 2 2

u i if

v C if
k

 
   

  
  




    




    
      (63)  
                                

01
2 1 2 0

2
2 02 1 1

2 02 2

2

ln( )
( ) coth( )exp( ), 0

2 2

ln( )
( ) coth ( ) , 0

( ) 2 2

u i if

v C if
k

 
   

  
  



 
    




    
     (64) 
 

3 1 2

2

2 1
3 2 2

2

( ) exp( ),

( ) ,
( )

u i

V C
k

 

 




   

 

 
                                 (65) 

  

(ii) If    1 0
   and   2 0

   we get 
 

1
4 1 2 0

2
22 1 1

4 02 2

2

( ) tan( )exp( )
2

( ) tan ( ) ,
( ) 2

u i

v C
k

   

 
  



 
   




    
     (66) 
 

1
5 1 2 0

2
22 1 1

5 02 2

2

( ) cot( )exp( )
2

( ) cot ( ) ,
( ) 2

u i

v C
k

   

 
  



 
   




    
     (67) 
 

(iii) If  1 0
   and   2 0

   we get the rational 
solutions 
 

6

2
0

2
6

2 2 22
0

1
( ) exp( )

[ ]
2

( )

( )[ ]
2

u i

v C

k

 

 

 


  





 


  
 

 


                 (68)    
 
 
Case 2 
 
If m = 2. 
 
Substituting Equations (54) and (55) in  to  Equation  (18) 

  
 
 
 

and equating the coefficients of powers of ( )Y   on both 

sides of Equation (18), we get 
 

2
2

( )
( ) ( )

da X
h X a X

dX
                                         (69) 

 

1
1 2

( )
( ) ( ) ( ) ( )

da X
h X a X g X a X

dX
                 (70) 

 

30
2 1 2 1 0

( )
2 ( )[ ] ( ) ( ) ( ) ( )

da X
a X X X g X a X h X a X

dX
    

   (71) 
 

 
3

0 1 1 2( ) ( ) ( )[ ]g X a X a X X X  
.                   (72)   

     

Since ( ),  ( 0,1,2)ia X i   are polynomials, then from 

Equation (69) we deduce that 2 ( )a X  is a constant and  

( ) 0h X  .  For simplicity we take 2( ) 1a X  . 

Balancing the degrees of ( )g X and 1( )a X  we 

conclude that deg ( ( )) 1g X  , and hence we get  

 

1( ) og X A X B  ,                                               (73)   

   

 2

1 1

1
( )

2
o oa X A X B X A   ,                            (74)  

     

 where 1, ,o oA B A are constants to be determined, such 

that 1 0A  . Now, Equation (71) reduces to 

 

2 2 2 30
1 0 1 0 1 0 2 1

( ) 3 1
[2 ] [2 ]

2 2

da X
A A B X A B X A X

dX
     

 (75) 
 

Integrating Equation (75) with respect to ( )X  , we have 

 

2 2 3 2 42
0 1 0 1 0 1 0 1

1 1 1 1
( ) [ ] [ ]

2 2 2 2 8
a X A A B X A B X A X d      

 (76) 
 
where d is the constant of integration. 
 
Substituting Equations (73), (74) and (76) into Equation 

(72) and equating the coefficients of powers of ( )X   we 

get 
 

2

1
0 1 1 2 0

2 2

2
, 2 2 , 0,

2
A A B d


       

  
 

where  2 0
. 



 
 
 
 
Consequently, we deduce that 
 

2
2 4 1

0 1 2

2

1
( ) 3 ( ) ( )

2 2
a X X X                       (77)  

 

and 
 

2

1 2 1

2

2
( ) 2 ( )a X X 


   

.                  (78)  
 

Substituting Equations (77) and (78) into Equation (34) 
we deduce that 
 

1 1

1
( ) ( ) 2 ( )

2
Y a X X    

.                (79) 
 

Hence we conclude that  
 

21
1 2

2

2 1
( ) 2 ( ) 2 ( )

2 2
X X X  


      

,      (80) 
 

which represents the generalized Riccati equation. With 
the help of Equations (28) and (30) the solutions of the 
system (48) can be written in the forms:  
 

(i) If    1 0
   and   2 0

   we get the hyperbolic and 
rational solutions 
 

0
7 1 2 1 0

2
202 1

7 1 02 2

2

ln
( ) [1 2 tanh( )exp( ), 0

2

ln
( ) [1 tanh( )] , 0

( ) 2

u i if

v C if
k

 
   

  
  




    



      
 

(81)                  

 

0
8 1 2 1 0

2
202 1

8 1 02 2

2

ln( )
( ) [1 2 coth( )exp( ), 0

2

ln( )
( ) [1 coth( )] , 0

( ) 2

u i if

v C if
k

 
   

  
  




    




      
 

 (82)            

 

9 1 2

2
22 1

9 2 2

2

( ) [1 2]exp( ),

( ) [1 2)] ,
( )

u i

v C
k

  

 
 



  



  


                   (83)       

                      

(ii) If    1 0
   and   2 0

   

In this case we can show that ( )X   is complex. Since  

( ) ( )X      , then ( )   is complex.  This contradicts 

(49) where ( )   should be real. Thus this case is 

rejected. 
 

(iii) If    1 0
   and   2 0

   we get the rational 
solutions 
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10

2
0

2

2 1
10

2 2 22
0

1
( ) exp( )

[ ]
2

( )

( )[ ]
2

u i

v C

k

 

 

 


  


 

 


  
 

 
                             (84) 
      
Comparing our results with the results in (Thornhill and 
Haar, 1978; Dendy, 1990; Ebadi et al., 2010; Shang et 
al., 2008) it can be seen that our results are new. 
  
                                                                              
PHYSICAL EXPLANATIONS OF SOME OF OBTAINED 
SOLUTIONS 
 
Here, we will present some graphs of our results to 
visualize the underlying mechanism of the original 
equations. Using the mathematical software Maple 15, 
we plot some of these obtained solutions which are 
shown in Figures 1 and 2. 
 
 

The nonlinear fractional Zoomeron  
 
The obtained solutions incorporate three types of explicit 
solutions namely, the hyperbolic, trigonometric and 
rational function solutions. From these explicit results, it 
easy to say that the solutions (31) are kink, singular and 
rational solutions respectively. While the solutions (32) 
are periodic solution and Equation (33) are the rational 
solutions. For more convenience the graphical 

representations of 1( , )u x t and 4 ( , )u x t  of Equation (11) 

are shown in Figure 1. 
 
 
The nonlinear fractional Klein-Gordan-Zakharov 
system of Equations (48) 
 
The obtained solutions (63) are kink solutions, the 
solutions (64) are the singular, the solution (65) are 
rational. While the solutions (66) and (67) are periodic 
and the solutions (68) are rational. The graphical 
solutions (63) and (66) are shown in Figure 2.   
 
 

CONCLUSIONS 
 

The first integral method is applied successfully for 
finding the exact solutions of the nonlinear fractional 
Zoomeron equation and the nonlinear fractional Klein- 
Gordon- Zakharov system of equations. The performance 
of this method is reliable and effective and gives more 
solutions. Thus, we deduce that the proposed method 
can be extended to solve many systems of other areas 
such that physics, biology and chemistry. With the aid of 
the  maple,  we  have  assured   the  correctness   of   the 
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Figure 1. The plot of the solutions 1( )u  and  4 ( )u   of the nonlinear fractional Zoomeron equation. 

 
 
 

 

 

                                                                                            

  
 
Figure 2. The plots of some of solutions of nonlinear fractional Klein-Gordon-Zakharov equations.   



 
 
 
 
obtained solutions by putting them back to the original 
equations. 
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