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As the majority of faults are found in a few of its modules so there is a need to investigate the modules 
that are affected severely as compared to other modules and proper maintenance need to be done in 
time especially for the critical applications. In this present work, hybrid fuzzy-Genetic Algorithm and 
Particle Swarm Optimization trained Neural Network techniques are empirically evaluated and earlier 
published results of the Mamdani Based Fuzzy Inference System and Neuro-Fuzzy Based techniques 
are also discussed for the comparative analysis in order to predict level of impact of faults in NASA’s 
public domain defect dataset coded in Perl programming language. The results are recorded in terms 
of accuracy, mean absolute error (MAE) and root mean squared error (RMSE). The results of Neuro-
Fuzzy model are also convincing but Fuzzy-GA based hybrid model provide relatively better prediction 
accuracy as compared to other models and hence, it is proposed for the maintenance severity 
prediction of the software systems.  
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INTRODUCTION 
 
When a software system is developed, the majority of 
faults are found in a few of its modules. In most of the 
cases, 55% of faults exist within 20% of source code. It is, 
therefore, much of interest to find out fault-prone software 
modules at early stage of a project (Benlarbi et al., 1999). 
Using software complexity measures, the techniques 
build models, which classify components as likely to 
contain faults or not. Quality will be improved as more 
faults will be detected. Predicting the impact of the faults 
early in the software life cycle can be used to improve 
software process control and achieve high software 
reliability. Timely predictions of faults in software modules 
can be used to direct cost-effective quality enhancement 
efforts to modules that are likely to have a high number of 
faults. Prediction models based on software metrics can 
estimate number of faults in software modules.  

Prediction of severity of faults:  
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(1) Supports software quality engineering through 
improved scheduling and project control. 
(2) Can be a key step towards steering the software 
testing and improving the effectiveness of the whole 
process. 
(3) Enables effective discovery and identification of 
defects. 
(4) Enables the verification and validation activities 
focused on critical software components. 
(5) Used to improve software process control and achieve 
high software reliability. 
(6) Can be used to direct cost-effective quality 
enhancement efforts to modules.  
 
In the literature (Benlarbi et al., 1999; Lanubile et al., 
1995; Fenton et al., 1999; Denaro, 2000; Deodhar, 2002; 
Bellini, 2005) made prediction of fault prone modules in 
software development process and mostly used the 
metric based approach with machine learning techniques 
to model the fault prediction in the software modules. 
Khoshgoftaar et al. (2001) used zero-inflated Poisson 
regression  to  predict  the   fault-proneness   of   software  



 

  

 
 
 
 
systems with a large number of zero response variables. 
Munson et al. (1990) and Khoshgoftaar et al. (1990) also 
investigated the application of multivariate analysis to 
regression and showed that reducing the number of 
“independent” factors (attribute set) does not significantly 
affect the Accuracy of software quality prediction. Menzies 
et al. (2003) compared decision trees, naïve Bayes and 1-
rule classifier on the NASA software defect data. Eman et 
al. (2001) compared different case-based reasoning clas-
sifiers and concluded that there is no added advantage in 
varying the combination of parameters (including varying 
nearest neighbor and using different weight functions) of 
the classifier to make the prediction Accuracy better.
 Many modeling techniques have been developed and 
applied for software quality prediction (Hudepohl et al., 
1996; Khoshgoftaar et al., 1996; Khoshgoftaar et al., 
2002; Seliya et al., 2005). The software quality may be 
analyzed with limited fault proneness data (Munson et al., 
1992). 

In (Sandhu et al., 2007), the author has used various 
machine learning techniques for an intelligent system for 
the software maintenance prediction and proposed the 
logistic model trees (LMT) and Complimentary Naïve 
Bayes (CNB) algorithms on the basis of Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE) and 
Accuracy percentage. 

Soft-Computing algorithms have proven to be of great 
practical value in a variety of application domains. Not 
surprisingly, the field of software engineering turns out to 
be a fertile ground where many software development 
and maintenance tasks could be formulated as learning 
problems and approached in terms of learning algorithms. 
The Soft Computing (SC) paradigm also known as 
Computational Intelligence differs from conventional com-
puting in that, techniques belonging to it can be tolerant of 
imprecise, incomplete or corrupt input data. Some of 
them can solve problems without requiring the solution 
steps or reasoning process to be explicitly stated. Some 
soft computing systems develop the capability to solve 
problems through repeated observation and adaptation. 
Some arrive at a solution through a process similar to 
evolution in nature.  

In more than one ways, the human mind is the role 
model for soft computing techniques - for example, the 
ability to solve problems expressed in vague terms, or 
solving problems without making use of explicit solution 
steps. Arriving at a solution through an evolutionary 
process is commonplace in nature. 

The predominant SC methodologies found in current 
intelligent systems are:  
 
(1) Artificial Neural Networks (ANN). 
(2) Fuzzy Systems. 
(3) Genetic Algorithms (GA). 
 
Particle Swarm Optimization (PSO) shares many simi-
larities with evolutionary computation techniques  such  as  
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genetic algorithms (GA). The system is initialized with a 
population of random solutions and searches for optima 
by updating generations. However, unlike GA, PSO has 
no evolution operators such as crossover and mutation. 
In PSO, the potential solutions, called particles, fly 
through the problem space by following the current 
optimum particles. 

This paper is the extension of the earlier work (Ardil et 
al., 2009) in which various machine learning algorithms 
including Fuzzy and Neuro-Fuzzy based techniques are 
experimented for the prediction of level of impact of faults 
in the software modules. In this present work, hybrid 
fuzzy-GA and PSO trained neural network techniques are 
evaluated and results of the Fuzzy and Neuro-Fuzzy 
based techniques are also discussed for the comparative 
analysis in order to predict level of impact of faults in the 
software modules. 

In this paper, section two describes the methodology 
part of work done, which shows the steps used in order to 
reach the objectives and carry out the results. In the sec-
tion three, results of the implementation are discussed. In 
the last section, on the basis of the discussion various 
conclusions are drawn and the future scope for the 
present work is discussed. 
 
 
Fuzzy inference systems 
 
A fuzzy inference system (FIS) is a way of mapping an 
input space to an output space using fuzzy logic. A FIS 
tries to formalize the reasoning process of human lan-
guage by means of fuzzy logic (that is, by building fuzzy 
IF-THEN rules).  

On wide categorization, following are the basic types of 
fuzzy inference systems: 
 
(1) Mamdani fuzzy inference system. 
(2) Takagi-sugeno fuzzy inference system. 
(3)Adaptive neuro-fuzzy inference system (ANFIS). 
 
 
Mamdani fuzzy inference system 
 
Mamdani's fuzzy inference method is the most commonly 
seen fuzzy methodology. Mamdani's method was among 
the first control systems built using fuzzy set theory. It was 
proposed in 1975 by Mamdani et al. (1975) as an attempt 
to control a steam engine and boiler combination by 
synthesizing a set of linguistic control rules obtained from 
experienced human operators. Mamdani's effort was 
based on Lotfi Zadeh's 1973 paper on fuzzy algorithms 
for complex systems and decision processes (Zadeh, 
1973). Although the inference process described in the 
next few sections differs somewhat from the methods 
described in the original paper, the basic idea is much the 
same. 

Mamdani-type inference  expects  the  output  member- 
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ship functions to be fuzzy sets. After the aggregation 
process, there is a fuzzy set for each output variable that 
needs defuzzification. It is possible and in many cases 
much more efficient, to use a single spike as the output 
membership functions rather than a distributed fuzzy set. 
This type of output is sometimes known as a singleton 
output membership function and it can be thought of as a 
pre-defuzzified fuzzy set. It enhances the efficiency of the 
defuzzification process because it greatly simplifies the 
computation required by the more general Mamdani 
method, which finds the centroid of a two-dimensional 
function. Rather than integrating across the two-
dimensional function to find the centroid, we use the 
weighted average of a few data points. Sugeno-type 
systems support this type of model. In general, Sugeno-
type systems can be used to model any inference system 
in which the output membership functions are either linear 
or constant. 

According to Abraham (2005) NF computing is a 
popular framework for solving complex problems. If one 
has knowledge expressed in linguistic rules, one can build 
a fuzzy inference system (FIS) and if one has data, or can 
learn from a simulation (training) then one can use 
artificial neural networks (ANNs). For building a FIS, one 
has to specify the fuzzy sets, fuzzy operators and the 
knowledge base. Similarly, for constructing an ANN for an 
application the user needs to specify the architecture and 
learning algorithm. An analysis reveals that the 
drawbacks pertaining to these approaches seem comple-
mentary and therefore, it is natural to consider building an 
integrated system combining the concepts. While the 
learning capability is an advantage from the viewpoint of 
FIS, the formation of linguistic rule base will be advantage 
from the viewpoint of ANN.  

In the simplest way, a cooperative model can be 
considered as a preprocessor wherein ANN learning 
mechanism determines the FIS membership functions or 
fuzzy rules from the training data. Once the FIS 
parameters are determined, ANN goes to the background 
(Jang et al., 1995). The rule based is usually determined 
by a clustering approach (self organizing maps) or fuzzy 
clustering algorithms. Membership functions (MF) are 
usually approximated by neural network from the training 
data. 

In a concurrent model, ANN assists the FIS con-
tinuously to determine the required parameters especially 
if the input variables of the controller cannot be measured 
directly. In some cases the FIS outputs might not be 
directly applicable to the process. In that case ANN can 
act as a postprocessor of FIS outputs (Abraham, 2005). 

In fused NF architecture, ANN learning algorithms are 
used to determine the parameters of FIS. Fused NF 
systems share data structures and knowledge represen-
tations. A common way to apply a learning algorithm to a 
fuzzy system is to represent it in a special ANN like 
architecture. However, the conventional ANN learning 
algorithms (gradient descent)  cannot  be  applied  directly 

 
 
 
 

 
 
Figure 1. Mamdani fuzzy inference system structure 
(Abraham, 2005). 

 
 
 
to such a system as the functions used in the inference 
process are usually non differentiable. This problem can 
be tackled by using differentiable functions in the infe-
rence system or by not using the standard neural learning 
algorithm. Some of the major woks in this area are 
GARIC (Bherenji et al., 1992), FALCON (Lin et al., 1991), 
ANFIS (Jang, 1992), NEFCON, FUN (Sulzberger et al., 
1993), SONFIN (Feng 1998), FINEST, EFuNN (Kasabov 
et al., 1999), dmEFuNN (Kasabov et al., 1999), evolu-
tionary design of Neuro-Fuzzy systems and many others. 

Architecture of Mamdani fuzzy inference system is 
illustrated in Figure 1. The detailed function of each layer 
is as follows: 
 
Layer-1 (Input layer): No computation is done in this 
layer. Each node in this layer, which corresponds to one 
input variable, only transmits input values to the next layer 
directly. The link weight in layer 1 is unity. 
 
Layer-2 (Fuzzification layer): Each node in this layer 
corresponds to one linguistic label (excellent, good, etc.) 
to one of the input variables in layer 1. In other words, the 
output link represents the membership value, which 
specifies the degree to which an input value belongs to a 
fuzzy set, is calculated in layer 2. A clustering algorithm 
will decide the initial number and type of membership 
functions to be allocated to each of the input variable. The 
final shapes of the MFs will be fine tuned during network 
learning. 
 
Layer-3 (Rule antecedent layer): A node in this layer 
represents the antecedent part of a rule. Usually a T-
norm operator is used in this node. The output of a layer 3  



 

  

 
 
 
 
node represents the ring strength of the corresponding 
fuzzy rule. 
 
Layer-4 (Rule consequent layer): This node basically 
has two tasks. To combine the incoming rule antecedents 
and determine the degree to which they belong to the 
output linguistic label (high, medium, low, etc.). The 
number of nodes in this layer will be equal to the number 
of rules. 
 
Layer-5 (Combination and defuzzification layer): This 
node does the combination of all the rules consequents 
using a T-conorm operator and finally computes the crisp. 
 
 
Takagi-Sugeno fuzzy inference system 
 
Abraham (2005) discussed Takagi-Sugeno fuzzy 
inference systems make use of a mixture of back 
propagation to learn the membership functions and least 
mean square estimation to determine the coefficients of 
the linear combinations in the rule's conclusions and that 
makes it Takagi-Sugeno neuro-fuzzy system. A step in 
the learning procedure got two parts: In the first part, the 
input patterns are propagated and the optimal conclusion 
parameters are estimated by an iterative least mean 
square procedure, while the antecedent parameters 
(membership functions) are assumed to be fixed for the 
current cycle through the training set. In the second part, 
the patterns are propagated again and in this epoch, back 
propagation is used to modify the antecedent parameters, 
while the conclusion parameters remain fixed (Jang et al., 
2004). This procedure is then iterated. Architecture of 
Takagi-Sugeno neuro-fuzzy system is illustrated in Figure 
2.  

The detailed functioning (Abraham, 2005) of each layer 
is as follows: 
 
Layers 1, 2 and 3: These layers functions the same way 
as Mamdani FIS. 
 
Layer 4 (Rule strength normalization): Every node in 
this layer calculates the ratio of the ith rule's firing strength 
to the sum of all rules firing strength. 
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Layer-5 (Rule consequent layer): Every node i in this 
layer is with a node function 
 

2( )i i i i i i if p x q x rω ω= + +                                        (2) 
 
Where; �i is the output of layer 4 and {fi; qi; ri} is the 
parameter set. A well established way is to determine the 
consequent parameters using the least means squares 
algorithm.  
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Figure 2. Tagaki-Sugeno neuro-fuzzy system structure (Ardil 
et al., 2009). 

 
 
 

 
 
Figure 3. Architecture of ANFIS implementing Tsukamoto fuzzy 
inference system (Jang, 1992). 
 
 
Layer-6 (Rule inference layer): The single node in this 
layer computes the overall output as the summation of all 
incoming signals Overall output = Xi 
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Adaptive network based fuzzy inference system 
(ANFIS) 
 
ANFIS proposed by Jang (1992), is perhaps the first 
integrated hybrid neuro-fuzzy model and the architecture 
is very similar to Figure 2, a modified version of ANFIS 
which is shown in Figure 3 is capable of implementing the 
Tsukamoto fuzzy inference system as depicted in Figure 
4. Hence, ANFIS have non-linear antecedent parameters 
and linear consequent parameters. These consequent 
and antecedent parameters are learned using hybrid 
learning algorithm. More specifically, in the  forward  pass 
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Figure 4. Tsukamoto fuzzy reasoning (Jang, 1992). 

 
 
 
of the hybrid learning algorithm, functional signals go 
forward till layer 4 and consequent parameters are 
identified by the least square estimates. In the backward 
pass, the error rates propagate backward and the 
premise parameters are updated by the gradient descent.  
In the Tsukamoto FIS, the overall output is the weighted 
average of each rules crisp output induced by the rules 
firing strength (the product or minimum of the degrees of 
match with the premise part) and output membership 
functions. The output membership functions used in this 
scheme must be monotonically non-decreasing. The first 
hidden layer is for fuzzification of the input variables and 
T-norm operators are deployed in the second hidden 
layer to compute the rule antecedent part. The third 
hidden layer normalizes the rule strengths followed by the 
fourth hidden layer where the consequent parameters of 
the rule are determined. Output layer computes the 
overall input as the summation of all in coming signals. In 
ANFIS, the adaptation (learning) process is only 
concerned with parameter level adaptation with in fixed 
structures. The structure of ANFIS ensures that each 
linguistic term is represented by only one fuzzy set.  

In most fuzzy systems, fuzzy rules were obtained from 
the human expert. However, every expert does not want 
to share his knowledge and there is no standard method 
that exists to utilize expert knowledge. As a result, ANNs 
were incorporated into fuzzy systems to be able to 
acquire knowledge automatically by learning algorithms. 
The learning capability of the NNs was used for automatic 
fuzzy if-then rules generation (Czogala et al., 2000).  
 
 
PROPOSE METHODOLOGY 
 
Find the structural code and design attributes  
 
The first step is to find the structural code and design attributes of 
software systems that is, software metrics. The real-time defect 
data sets are taken from the NASA’s MDP (Metric Data Program) 
data repository. The dataset is related to the safety critical software 
systems being developed by NASA.  

Select the suitable metric values as representation of 
statement  
 
The suitable metrics like product module metrics out of these data 
sets are considered. The term product is used referring to module 
level data.  
 
 
Analyze and refine metric values  
 
In the next step, the metrics are analyzed and refined and then 
used for modeling of software fault severity in software systems. 
 
 
Empirical evaluation of different machine learning algorithms  
 
In this step, the aim is to find the best algorithm for classification of 
software components into different levels of impact of fault. In order 
to model the polished dataset of the previous step, Hybrid Fuzzy-
GA and PSO-trained neural network techniques are explored along 
with the earlier experimented fuzzy and neuro-fuzzy techniques as 
discussed in (Sandhu et al., 2007).  
 
 
Fuzzy and neuro-fuzzy techniques 
 
According to (Jang et al., 1995), a fuzzy system can be considered 
to be a parameterized nonlinear map, called f, which can be 
expressed as (4): 
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Where; yl is a place of output singleton if Mamdani reasoning is 
applied or a constant if Sugeno reasoning is applied. The 
membership function µAi

l(xi) corresponds to the input x = [x1, x2, 
x3,… xm] of the rule l. The “and” connective in the premise is carried 
out by a product and defuzzification by the center-of-gravity 
method. Consider a Sugeno type of fuzzy system having the rule 
base: 



 

  

 
 
 
 
Rule1: If x is A1 and y is B1, then f1 = p1x + q1y + 1 
Rule2: If x is A2 and y is B2, then f2 = p2x+ q2y + r2 
Let the membership functions of fuzzy sets Ai, Bi, I = 1,2, be , µAi , 
µBi . 
Evaluating the rule premises results in wi = µAi(x) * µBi (y) where i = 
1,2 for the rule rules stated above. 
Evaluating the implication and the rule consequences gives (5). 
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Then f can be written as (7). 
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The steps for designing of adaptive neuro-fuzzy system are already 
discussed in section II of the paper. 
 
 
PSO trained neural network system 
 
The following are the steps for the hybrid PSO-neural network 
based modeling system: 
 
(1) Designing of neural network and perform training: In this step 
the following three sub steps are there: 
 
(a) Calculate the minimum and maximum values in the attribute of 
input and setting the various parameters of feed-forward back-
propagation network by like: 
 
(i) Size of the feed-forward back-propagation neural network.  
(ii) Type of transfer function of each layer to be used. 
(iii) Type of back-propagation network training function. 
(iv) Back-propagation weight/bias learning function. 
 
(b)Generate the neural network. 
(c) Perform the training of the neural network with PSO technique 
discussed after the testing phase using the training dataset. 
(2) Testing phase: In this step the PSO trained neural network is 
evaluated against the testing data on the different criteria is 
discussed in the next steps. 

PSO is initialized with a group of random particles (solutions) and 
then searches for optima by updating generations. In every 
iteration, each particle is updated by the following two "best" values. 
The first one is the best solution (fitness) it has achieved so far. 
(The fitness value is also stored.) This value is called pbest. 
Another "best" value that is tracked by the particle swarm optimizer 
is the best value, obtained so far by any particle in the population. 
This best value is a global best and called gbest. When a particle 
takes part of the population as its topological neighbors, the best 
value is a local best and is called lbest (Web URL: 
http://www.swarmintelligence.org/tutorials.php). 

After finding the two best values, the particle updates its velocity 
and positions with following equations (8) and (9). 
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v [ ] = v[ ] + c1 * rand( ) * (pbest[ ] - present[ ]) + c2 * rand( ) * (gbest[  
] - present[ ])                                                                                 (8) 
 
present[ ] = persent[ ] + v[ ]                                                           (9) 
 
where; v[ ] is the particle velocity, persent[ ] is the current particle 
(solution), pbest[ ] and gbest[ ] are defined as stated before, rand ( ) 
is a random number between (0,1) ans c1, c2 are learning factors 
usually c1 = c2 = 2.  

As mentioned in (Web URL: 
http://www.swarmintelligence.org/tutorials.php), the pseudo code of 
the procedure is as follows:  
 
For each particle  
Initialize particle 
 
END 
 
Do 
For each particle  
Calculate fitness value. 
If the fitness value is better than the best fitness value (pBest) in 
history. set current value as the new pBest. 
 
 End 
 
Choose the particle with the best fitness value of all the particles as 
the gBest. 
For each particle,  
Calculate particle velocity according equation (8). 
Update particle position according equation (9). 
 
End  
 
While maximum iterations or minimum error criteria is not attained. 
 
Particles' velocities on each dimension are clamped to a maximum 
velocity Vmax. If the sum of accelerations would cause the velocity 
on that dimension to exceed Vmax, which is a parameter specified by 
the user, then the velocity on that dimension is limited to Vmax. 
 
 
Hybrid fuzzy-GA based approach 
 
Genetic algorithms are a part of evolutionary computing, which is a 
rapidly growing area of artificial intelligence. As you can guess, 
genetic algorithms are inspired by Darwin's theory of evolution. 
Simply said, problems are solved by an evolutionary process 
resulting in a best (fittest) solution (survivor) - in other words, the 
solution is evolved. 

Rosenberg introduced evolutionary computing in the 1960s in 
his work "Evolution strategies" (Evolutions strategies in original). 
Other researchers then developed his idea. Genetic algorithms 
(GAs) were invented by John Holland and his students and 
colleagues. These lead to Holland's book" Adaption in Natural and 
Artificial Systems" published in 1975. In 1992, John Koza used 
genetic algorithms to evolve programs to perform certain tasks. 
He called his method "genetic programming" (GP). 
The steps of the hybrid fuzzy-GA algorithm are: 
 
(1) Read the input as the metric values. 
(2) Find the nearest match with example data using Euclidean 
Distance. 
(3) Calculate the output of the fuzzy inference system 
corresponding to the Input set.  
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Figure 5. Graphical representation of details of the type of modules in 
the dataset. 

 
 
 
 (4) Treat FIS value and the nearest match value as chromosome 
and convert the values into binary after multiplying the values with 
100. 
(5) Perform the single point cross over at randomly generated point 
in the selected parents. 
 (6) Get the offsprings from the previous step and generate the 
output by dividing the offspring with 100.  
(7) Repeat the process up to 100 generations or the error reduces 
to certain minimum level.  
(8) The model generated is evaluated against the testing data on 
the different criteria is discussed in the next steps. 
 
 
Comparison criteria  
 
The comparisons of machine learning algorithms are made on the 
basis of the least value of MAE and RMSE values. Accuracy value 
of the prediction model is also used for the comparison. The best 
algorithm is picked up after the 10 fold cross validation results and 
tested for the testing dataset. The Accuracy of the model is 
compared with the results of Mamdani based FIS and neuro-fuzzy 
based systems. The details of the MAE and RMSE are: 
 
 
Mean absolute error: Mean absolute error, MAE is the average of 
the difference between predicted and actual value in all test cases; 
it is the average prediction error (Bherenji et al., 1992). The formula 
for calculating MAE is given in equation shown below: 
 

n
cacaca nn

−++−+− ...
2211

                                                (10) 

 
Assuming that the actual output is a, expected output is c. 
 
 
Root mean-squared error: RMSE is frequently used measure of 
differences between values predicted by a model or estimator and 
the values actually observed from the thing being modeled or 
estimated (Challagulla et al., 2005). It is just the square root of the 
mean square error as shown in equation given below: 
 

 ( ) ( ) ( )
n

nn cacaca −−− +++
222

...2211                                (11)                    

Conclusions drawn  
 
The conclusions are made on the basis of the 
comparison made in the previous section. 
 
 
RESULTS AND DISCUSSION 
 
The real-time defect data set used is taken from the 
NASA’s MDP (Metric Data Program) data repository, the 
details of that dataset contains 60 modules of Perl 
Programming language with different values of software 
fault severity labeled as 1, 2, 3, 4 and 5. The fault severity 
level-1 means the fault is having highest severity level 
and that need urgent attention to be removed as it falls in 
the category of major faults. The fault severity level-2 
means the fault is having high severity level and that need 
less urgent attention as compared to level-1 faults. The 
fault severity level-3 means the fault is having medium 
severity level and that require less attention as compared 
to level-2 faults. The fault severity level-4 means the fault 
is less severe and that need low attention to be removed. 
The faults of this level belongs to category of minor faults 
and fault severity level-5 means the fault is least severe 
means having negligible effect of the performance of 
system and belongs to the category of the purely minor 
faults or no faults category. Graphical details of the type 
of modules in the dataset are shown in Figure 5. The 
details of the modules present in the dataset are shown in 
Table 1. 

The first step is to find the structural code and design 
attributes of software systems that is, software metrics. 
As most of the values of the other metrics are zero or 
metrics are redundant in nature. So, selected five metrics 
representing input attributes are: 
 
- Branch_Count. 
- Cyclometric_Complexity.  
- Design_Complexity. 
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Table 1. Details of the type of modules in the dataset. 
 

Label Count 
1 3 
2 23 
3 31 
4 0 
5 3 

 
 
 

 
 
Figure 6. Mamdani based FIS inference system. 
 
 
 
- Essential_Complexity. 
- Number_Of_Lines. 
 
When analyzing performance of all the WEKA project 
(Web URL WEKA: www.cs.waikato.ac.nz/~ml/weka/) 
algorithms, Logistic Model Trees (LMT) and simple 
logistic algorithms have outperformed all the other 
algorithms used in the comparative study with Accuracy, 
MAE and RMSE values as 65, 0.2145 and 0.3285 respec-
tively when the 10 fold cross validation is performed. 

When LMT and simple logistic algorithms are tested for 
the fifteen exemplar inputs 86.66% accuracy is obtained. 
In the Mamdani based fuzzy inference system model 
(Mamdani et al, 1975) five metrics are considered as 
input attributes and one attribute named as “software 
maintenance severity level” is used as output attribute as 
shown in Figure 6. 

Each input and output attribute is represented with 
fifteen fuzzy sets and the membership function value of 
the each attribute is shown in Figure 7. In Figure 8, fifteen 
rules used for the inference of the Mamdani based FIS 
are shown. 

During the testing phase of the Mamdani based fuzzy 
inference system (Mamdani et al., 1975), fifteen inputs 
are used and it shows 0.2183, 0.3066 and 80% as MAE, 
RMSE and Accuracy values respectively. 

As performance of adaptive neuro-fuzzy inference 
system is found to be the best out of all the hybrid NF 
systems  (Abraham,  2001)  and  the  extra  complexity  in  

structure and computation of Mamdami based adaptive 
NF inference system with max-min composition does not 
necessarily imply better learning capability or approxima-
tion power (Jang et al., 2004). Hence, in MATLAB 7.4, the 
Sugeno based adaptive neuro-fuzzy inference system is 
used for modeling of software maintenance severity. The 
ideal inference system for the evaluation of software 
components should be less complex and more precision. 
The inference system, which is already trained, will get 
the metric values from the earlier stages and estimate the 
software maintenance severity value of the software 
components or modules.  

The following is the information regarding the structure 
of the adaptive neuro-fuzzy based inference system and 
pictorially represented in Figure 9:  
 
-  Number of nodes: 32. 
- Number of linear parameters: 12. 
- Number of nonlinear parameters: 20. 
- Total number of parameters: 32. 
- Number of training data pairs: 60. 
- Number of checking data pairs: 0. 
- Number of fuzzy rules: 2. 
 
The graphical representation of the input exemplars for 
the NF system is shown in Figure 10. 

The NF system is trained using a hybrid learning 
algorithm using both least squares method and back-
propagation. In the forward  pass,  the  consequent  para- 
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Figure 7. Membership functions of the input and output attributes. 

 
 
 

 
 
Figure 8. Fifteen rules of the Mamdani based FIS. 
 
 
 

 
 
Figure 9. Structure of adaptive neuro-fuzzy inference system. 
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Figure 10. Training data for the neuro-fuzzy system. 

 
 
 
meters are identified using least squares and in the back-
ward pass the premise parameters are identified using 
back-propagation. The trained NF system is then tested 
for the fifteen inputs and it shows 0.1571, 0.2140 and 
93.3333 as MAE, RMSE and Accuracy values 
respectively. 
 
 
PSO-neural network results 
 
In the implementation of the PSO trained neural network 
particle swarm optimization toolbox for matlab (Birge, 
2003) is used. Size of the feed-forward back-propagation 
neural network is set as [5 5 1] means there are 5 
neurons in the input layer, 5 neurons in the hidden layer 
and one neuron in the output layer of the network. The 
linear transfer function is the type of transfer function 
used for the last layer and hyperbolic tangent sigmoid 
transfer function is used for the rest of layer of the 
designed neutral network. Gradient descent with 
momentum weight and bias learning function is used as 
backpropagation weight/bias learning function. 

TRAINPSO type of back-propagation network training 
function is used as TRAINPSO is a network training 
function that updates weight and bias values according to 
particle swarm optimization. The following are the 
additional parameters values used: 
 
(1) Maximum iterations: 2000; 
(2) Population size: 25; 
(3) Acceleration constants (for type = 0): [2,2]; 
(4) Inertia weights (for type = 0): [0.9,0.4];  
(5) Minimum error gradient: 1e-9;  
(6) Iterations at error grad value before exit: floor 
(0.2*trainParam.maxit); 
(7) Error goal: 0;  
(8) Type of PSO: Trelea. 
 
After the training, the architecture of feed forward neural 
network is shown in Figure 11 where the Bright Green line 
shows more positive weight, bright red line shows more 
negative weight and dashed white line shows zero  weight  

 
 
Figure 11. Architecture of feed forward neural network. 

 
 
 
that is, no connection between the neurons. In the testing 
phase MAE, RMSE and Accuracy values of the system 
are 0.5278, 0.6112 and 66.6667 respectively as shown in 
Table 2. The plot of Global best value (Gbest) versus 
Iterations is shown in figure 12. As Gbest value is tracked 
by the particle swarm optimizer is the best value, obtained 
so far by any particle in the population. The Gbest value 
obtained is 0.63639.  

The fuzzy-GA hybrid system is also implemented in 
Matlab 7.4. During the testing of the developed system, 
0.1220, 0.1587 and 100 are calculated as MAE, RMSE 
and Accuracy values for the testing  dataset as  shown  in  
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Table 2. Results of the proposed systems for the fault severity prediction. 
 

Prediction model Performance 
Criteria Mamdani based fuzzy inference 

system 
Neuro-fuzzy 

system 
PSO trained neural 

network 
Fuzzy-GA 

system 
MAE 0.2183 0.1571 0.5278 0.1220 
RMSE 0.3066 0.2140 0.6112 0.1587 
Accuracy 80 93.3333 66.6667 100 

 
 
 

 
 
Figure 12. Graph between gbest value and Iteration 
index. 

 
 
 
Table 2. 
 
 
Conclusion and future direction 
 
On comparing various WEKA’s machine learning algo-
rithms as mentioned in (Ardil et al., 2009), it is observed 
that logistic model trees and simple logistic algorithms are 
better techniques in prediction of fault severity level for 
NASA’s public domain defect dataset coded in Perl 
programming language. Both the algorithms use same 
classification algorithm that is, logistic classifier and have 
shown least mean absolute error and root mean square 
error values: 0.2145 and 0.3285 among other algorithms 
listed in WEKA’s project.  During the testing phase, LMT 
and simple logistic algorithm has shown 86.66% 
Accuracy.  

When experimented with Mamdani based fuzzy 
inference system (Mamdani et al., 1975), the testing 
phase results are comparatively equivalent as that of the 
logistic model trees and simple logistic algorithm with 
0.2183, 0.3066 and 80% as mean absolute error, root 
mean square error and accuracy values. 

The performance of feed forward neural network trained 
with particle swarm optimization algorithm is not promising 

as the testing phase MAE, RMSE and Accuracy values of 
the developed system are 0.5278, 0.6112 and 66.6667% 
respectively. The bad performance of this technique could 
be due to the incapability of the PSO to train the neural 
network designed. The prediction Accuracy percentage is 
the lowest among Mamdani based fuzzy inference 
system, logistic model trees and simple logistic algorithms 
Accuracy values. 

Fuzzy –GA hybrid algorithm is proved to be best as 
compared to the other algorithms considered in this work 
with 0.1220, 0.1587 and 100 as MAE, RMSE and 
Accuracy values respectively for the testing dataset. In 
such data search application the design and developed 
fuzzy GA code has shown its superiority because it 
includes the advantages of fuzzy as well as genetic 
algorithms. Fuzzy provides a robust inference mechanism 
with no learning and adaptability while on the other hand, 
the genetic algorithms provide an efficient data modi-
fication in the wake of optimization objectives of given 
application. Neuro -fuzzy algorithm is definitely superior to 
fuzzy algorithm as it inherits adaptability and learning. The 
performance of neuro -fuzzy algorithm is somewhat 
satisfactory and better than fuzzy system. From the 
simulation and the result obtained, it has been shown that 
the percentage average error is least in the case of fuzzy-
GA algorithms and maximum in the case of PSO trained 
neural network algorithms. Neuro-fuzzy algorithm has 
yielded accuracy lying between the accuracy levels as in 
the case of fuzzy and fuzzy-GA algorithms.  

It is therefore, the best algorithm for classification of the 
software components into different level of severity of 
impact of the fault is found to be fuzzy-GA based tech-
nique. The algorithm can be used to develop model that 
can be used for identifying modules that are heavily 
affected by the faults and those modules can be 
debugged timely. Hence, for non linear and complex 
engineering applications involving control, inference and 
analysis by and large fuzzy-GA is an efficient technique. 
The future work can be extended in following directions: 
 
i)The performance of the PSO based technique can 
further be investigated by increasing the number of 
hidden layers and changing the population size. 
ii)This work can be extended to other programming 
language datasets.  
iii) More algorithms can  be  evaluated  and  then  we  can  



 

  

 
 
 
 
find the best algorithm. 
iv) Further investigation can be done and the impact of 
attributes on the fault tolerance can be found. 
v) Other dimensions of quality of software can be 
considered for mapping the relation of attributes and fault 
tolerance. 
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