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A block version of the orthogonal matching pursuit (OMP) algorithm, termed BOMP, can yield better 
reconstruction performance for block-sparse signals than conventional algorithms. However, the 
redundant dictionaries for block sparse signals are block coherent in the particle applications. In this 
paper, we consider a modified version of BOMP by introducing the concept of sensing dictionary. 
Exploiting the alternating projection (AP), we propose a method to design sensing dictionary for this 
modified BOMP. Simulation results show that the modified BOMP with sensing dictionary provides 
significant improvement for the recovery performance in the case of block coherent dictionary. 
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INTRODUCTION 
 
The problem of sparse reconstruction has received 
tremendous attention in recent years. The main goal of 
this problem is to find the unknown vector x  in the 
underdetermined inverse problem =y Φx , only a few 

non-zero entries in x  are assume. From sparse 
reconstruction’s point of view, the matrix Φ  is termed as 
redundant dictionary. In general, columns of the dictionary 
Φ  are normalized and termed as atoms. The most 
suitable algorithms for sparse reconstruction are basis 
pursuit (BP) (Chen et al., 1999) and orthogonal matching 
pursuit (OMP) (Pati et al., 1993). Recent results have 
shown that the recovery performance of these algorithms 
depend on the characteristics of redundant dictionaries. 
Sparse signals can be exactly reconstructed when the 
redundant dictionary is incoherent or equi-coherent and 
the vector x  is sparse enough (Donoho and Huo, 2001; 
Tropp, 2004). 

We consider a new class of sparse signals which  have 
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non-zero coefficients in clusters. Such signals are termed 
as block-sparse (Eldar and Mishali, 2009; Stojnic et al., 
2010; Eldar et al., 2010). This sparse model can be used 
to deal with the problem of sampling signals that lie in a 
union of subspaces (Eldar and Mishali, 2009; Stojnic et al., 
2010). Peotta and Vandergheynst (2007) proved that 
matching pursuit (MP) correctly identifies an atom at each 
step when the redundant dictionary can be represented 
as an incoherent union of coherent blocks (Peotta and 

Vandergheynst, 2007). Eldar proposed a mixed 2 1l l  

norm optimization for the block-sparse model by using the 
spectral structure of block-sparsity and proved that this 
mixed norm method is guaranteed to recover 
block-sparse signal if the redundant dictionary has small 
block-restricted isometry constants (Eldar and Mishali, 
2009). 

Recently, a block-version of OMP, called BOMP, was 
proposed and a sufficient condition for BOMP was 
developed (Eldar et al., 2010). However, BOMP can not 
guarantee to identify correct blocks if different blocks in 
redundant dictionary are highly coherent. 

In practical applications, the redundant dictionaries  for 



 
 
 
 
 
block-sparse signals, example, direction-of-arrival (DOA) 
estimation in the presence of mutual coupling, are block 
coherent, and BOMP may fail to reconstruct the sparse 
signal in this case. In this paper, we extend BOMP to this 
block coherent dictionary and propose a modified BOMP 
for sparse reconstruction by introducing sensing 
dictionary. A sufficient condition for this modified BOMP to 
exactly recover block-sparse signal was developed. The 
problem of designing sensing dictionary is cast as the 
subspace packing problem in Grassmannian manifolds. 

Based on alternating projection (AP) (Tropp et al., 2005; 
Dhillon et al., 2007), a method for constructing sensing 
dictionary for block dictionary was proposed in this paper. 
 
 
BLOCK-SPARSE MODEL AND BOMP 

 
The standard sparsity model treated in the conventional sense 
assumes that non-zero elements can appear anywhere in the vector 
x (Donoho and Huo, 2001; Tropp, 2004). As discussed in 
block-sparse model (Eldar and Mishali, 2009; Stojnic et al., 2010; 
Eldar et al., 2010), the non-zero entries of x  appear in blocks or 
clusters rather than being arbitrarily spread over the vector. We 

assume that the vector 
1pN×

∈x �  is a concatenation of N  

blocks and each block has p  elements. The vector x  is 

described as: 
 

[ [1]  [2]    [ ]]
T T T T

N= ⋅⋅⋅x x x x ，                       (1) 

 

where 
1

[ ]
p

i C
×

∈x  for 1,...,i N=  and T denotes transpose. 

The vector x  is called block -sparsek  if [ ]ix  has non-zero 

Euclidean norm for at most k  indices (Eldar et al., 2010). 

 

Accordingly, the redundant dictionary Φ  can be represented as a 

concatenation of N  matrices of size d p× . 

 

[ [1]  [2]   [ ]]N= ⋅⋅⋅Φ Φ Φ Φ ，                    (2) 

 

where [ ]
d p

i C
×∈Φ  for 1,...,i N=  are termed as blocks.  

 

The redundant dictionary Φ  is referred as block dictionary. Each 

matrices [ ]iΦ  can be view as a -dimensionalp  subspaces 

of
d

C . Let 
i

x  denotes the -thi  element of x  and 
i

φ  denotes 

the -thi  column of the dictionary Φ , in contrast to [ ]ix  and 

[ ]iΦ . 

A block version of OMP has been proposed for this block sparse 

case (Eldar et al., 2010). At -thk  step, BOMP selects the block 

that is the best match to the current residual according to: 
 

1 2
argmax [ ]  H

k k
i

i i
−

= Φ r ，                 (3) 

 

where H  denotes  conjugate  transpose,  
2

a   denotes  the  
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Euclidean norm of the vector 
2

H
=a a a  and 

1k −r  is the 

residual. BOMP can be summarized as: 

 

(1) Initialization: Let the residual 
0

=r y , the iteration counter 

1k =  and the index set 
0
Ε  be the empty set. 

(2) Sensing step: Find the block index 
k

i  by solving the 

optimization (3). Then, 
1

{ }
k k k

i−=Ε Ε U . 

(3) Update of the residual: 
†

( )
k kk kp

= −
Ε Ε

r I Φ Φ y , where 
kp

I  is 

the identity matrix of size Kp Kp× , 
kΕ

Φ  is a set of blocks 

1
[ [ ]    [ ]]

k k
i i= ⋅⋅⋅

Ε
Φ Φ Φ  and †  denotes the pseudo-inverse. 

(4) Increment: Set 1k k= + , and return to step (2) if k K≤ . 

 
A sufficient condition for BOMP to recover x  is that 

 
†

00
( ) 1

c
ρ <Φ Φ ，                    (4) 

 
where  

 

( ) max ( [ , ]) 
c

j
i

i jρ ρ= ∑A A ，                  (5) 

 

where ( )ρ A  denotes the spectral norm of matrix A  and returns 

the largest singular value of A , 
0

Φ  denote the matrix whose 

blocks correspond to the nonzero blocks of x , 0Φ  denotes the 

complementary of 
0

Φ  in Φ , and [ , ]i jA  is the ( , )-thi j  block 

of A . 

 
Eldar et al. (2010) define the block-coherence of the dictionary as: 

 

,

1
max ( [ ] [ ]) 

H

B
i j i

i j
p

µ ρ
≠

= Φ Φ ，                 (6) 

 
if 1p = , this block-sparse model reduces to the conventional 

sparse formulation and block-coherence is equal to the coherence 
µ , which is defined as: 

 

,
max .

H

i j
i j i

µ φ φ
≠

=                    (7) 

 
Eldar et al. (20100 proved that any block -sparseK  vector x  

can be recovered from =y Φx  using BOMP if: 

 
1 1

( ( 1) ) / 2,
B B

Kp p pµ υµ− −< + − −                   (8) 

 
where  

 

i
,

max max ,     ,    [ ],
H

i j j
l i j i

lυ φ φ φ φ
≠

= ∈ Φ                  (9) 

 
is termed as sub-coherence (Eldar et al., 2010). 
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THE MODIFIED BOMP 

 
A modified version of BOMP 

 
Recent results show that BOMP can recover a block-sparse signal if 

the block-coherence 
B

µ  is small enough. However, redundant 

dictionaries for practical signals are usually coherent between 
different blocks. Here, we modify BOMP for block coherent 
dictionary by using a sensing dictionary. The block-coherence 
affects the recovery performance at the sensing step significantly. 
Instead of sensing with the ordinary dictionary, our idea is to change 
this sensing step by using a different dictionary, which is called 
sensing dictionary. Schnass first introduced the concept of sensing 
dictionary and modified OMP for sparse reconstruction (Schnass 
and Vandergheynst, 2008). We extend the BOMP algorithm to the 
case with block coherent dictionary by using a sensing dictionary. 
The sensing dictionary we used has the same size as the ordinary 

dictionary, that is, d Np×
∈Ψ � . Therefore, the modified BOMP 

selects a block at sensing step according to: 
 

1
2

arg max [ ]  .
H

k k
i

i i −= Ψ r                    (10) 

 
In order to extend the recovery condition (8) to a generalized case, 

we define the cross block-coherence between Ψ  and Φ  as: 
 

,

1
max ( [ ] [ ]).

H

B
i j i

i j
p

µ ρ
≠

= Ψ Φ%                    (11) 

 

Similarly, the cross sub-coherence between Ψ  and Φ   is 
defined as: 
 

i
,

maxmax ,    [ ],    [ ].
H

i j j
l i j i

l lυ ψ φ ψ φ
≠

= ∈ ∈Ψ Φ%             (12) 

 
The cross sub-coherence considers similarities between atoms from 

Ψ  and Φ . While the cross block-coherence measures coherence 

between blocks from Ψ  and Φ . 
 
 
Exact recovery condition 

 
We develop the exact recovery condition for the modified BOMP for 
block-sparse reconstruction with block coherent dictionary. Similar 

to the definition of 
0

Φ , the sub-dictionary 
0

Ψ  includes the blocks 

corresponding to the nonzero blocks of x  and 0Ψ  denotes the 

complementary of 
0

Ψ . 

At first, we introduce some definitions and basic results that will 

be used in the following discussion. The general mixed 
2

/
q

l l  

norm of a vector x  is defined as: 

 

2,
,

q q
=x z                        (13) 

 
where  

 

2 2 2
 [ [1]   [2]     [ ] ] .

T
N= ⋅⋅⋅z x x x                       (14) 

 
The mixed matrix norm is given by 

 
 
 
 

2,

2,

2,

max .
q

q

q
≠

=
x 0

Ax
A

x
                      (15) 

 

Lemma 1 (Eldar et al., 2010): Let A  be a matrix with size 

Mp Np× , Denote [ , ]i jA  by the ( , )-thi j  p p×  block of A . 

Then: 
 

2,
max ( [ , ]) ( ).

r
i

j

i jρ ρ
∞

≤ ∑A A A�                        (16) 

 

In particular, ( ) ( )
H

r c
ρ ρ=A A . 

 

Lemma 2 (Eldar et al., 2010): The matrix norm ( )
c

ρ A  defined as 

(5) satisfies the following properties: 
 

Non-negative: ( ) 0
c

ρ ≥A  

Positive: ( ) 0
c

ρ =A  if and only if 0=A  

Homogeneous: ( ) ( )
c c

ρ α α ρ=A A  for all α ∈ � . 

Triangle inequality: ( ) ( ) ( )
c c c

ρ ρ ρ+ ≤ +A B A B . 

Submultiplicative: ( ) ( ) ( )
c c c

ρ ρ ρ≤AB A B . 

 

Lemma 3 (Eldar et al., 2010): Suppose that ( ) 1
c

ρ <A . Then 

 

1

0

( ) ( )
k

k

∞
−

=

+ = −∑I A A . 

 

Theorem 1: Let y  is a block K-sparse signal in Φ , that is, 

=y Φx , where x  has K  non-zero blocks. The modified BOMP 

using sensing dictionary Ψ  can recover the block sparse vector 
x  if: 

 

1
00 0 0

(( ) ) 1.H H

c
ρ − <Ψ Φ Φ Ψ                      (17) 

 

Proof: We show that if 
1
 

k −r  is the linear combination of atoms in 

0
Φ , that is, 

1 0
 =

k −r Φ h , then the modified BOMP will select correct 

block at next step. BOMP using a sensing dictionary Ψ  can select 
a correct block if: 
 

0 1
2,

0 1 2,

1.

H

k

H

k

−
∞

− ∞

<

Ψ r

Ψ r
                         (18) 

 

Substituting 
1 0
 =

k −r Φ h  into (18) and assuming 
0 0

H =Ψ Φ h t , we 

can get 

 

1
0 0 01 0 0 0 0

2, 2, 2,

0 1 0 0 2,2, 2,

( )

= .

H H H
H

k

H H

k

−

−
∞ ∞ ∞

− ∞∞ ∞

=

Ψ r Ψ Φ h Ψ Φ Ψ Φ t

tΨ r Ψ Φ h
      (19) 

 
With Lemma 1, we have: 



 
 
 
 
 

0 1
2, 1 1

0 00 0 0 0 0 0

0 1 2,

( ( ) ) (( ) ).

H

k
H

H H H

r cH

k

ρ ρ
−

∞ − −

− ∞

≤ =

Ψ r

Ψ Φ Ψ Φ Ψ Φ Φ Ψ
Ψ r

 (20) 

 

Note that the residual 
0

r  belongs to the range expanded by 
0

Φ  

due to 
0

=r y . Therefore, the modified OMP can select correct 

block at each step if (17) holds. 
This theorem extends (4) to a generalized case, in which the 

blocks in Φ  can be coherent. Considering the optimal blocks 
0

Φ  

is unknown in advance, we develop a recovery condition using 
B

µ%  

and υ% . 
 

Theorem 2: Let 
B

µ%  be the cross block-coherence and υ%  the 

sub-coherence between Ψ  and Φ . If:  
 

1 1
( ( 1) ) 2,

B B
Kp P Pµ υµ− −< + − − %% %                     (21) 

 

condition (18) is satisfied. 
 

Proof: Using Lemma 2, we have: 
 

1 1
0 00 0 0 0 0 0

(( ) ) (( ) ) ( ).
H H H H

c c c
ρ ρ ρ− −≤Ψ Φ Φ Ψ Ψ Φ Φ Ψ         (22) 

 

Based on the definition of ( )
c

ρ A  and 
B

µ% , the last term in (22) 

can be bound as 
 

0
0

00
( ) max ( [ ] [ ]) ,

H H

c B
j

i

i j Kpρ ρ µ
∉Λ

∈Λ

= ≤∑Φ Ψ Φ Ψ %              (23) 

 

where 
0

Λ  denotes the index set of blocks in 
0

Φ . Let  

 

0 0

H= −A Ψ Φ I ,  

 

Using Lemma 3, if ( ) 1
c

ρ <A ,  

 

1 1

0 0

0

( ) ( ) ( ) .
H k

k

∞
− −

=

= + = −∑Ψ Φ I A A                      (24) 

 

Then, we can get: 
 

1

0 0 0 0

0

0 0

0

0 0

(( ) ) ( ( ( )) )

( ( ))

1

1 ( )

H H k

c c

k

H k

c

k

H

c

ρ ρ

ρ

ρ

∞
−

=

∞

=

= − −

≤ −

=
− −

∑

∑

Ψ Φ Ψ Φ I

Ψ Φ I

Ψ Φ I

                 (25) 

 

On the other hand, we have: 
 

0 0 0 0

0 0 0 0

( ) max ( [ ] [ ] )

max ( [ ] [ ] ) max ( [ ] [ ])

( 1) ( 1) .

H H

c
j

i

H H

j j
i j

B

i j

j j i j

p p K

ρ ρ

ρ ρ

υ µ

≠

− = −

≤ − +

≤ − + −

∑

∑

Ψ Φ I Ψ Φ I

Ψ Φ I Ψ Φ

% %

   (26) 
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Combining (25) with (26) leads to: 

 

1

0 0

1
(( ) ) .

1 ( 1) ( 1)

H

c

B
p p K

ρ
υ µ

−
≤

− − − −
Ψ Φ

% %
               (27) 

 
From (22), (23) and (27), we can obtain: 

 

1
00 0 0(( ) ) 1.

1 ( 1) ( 1)

H H B

c

B

Kp

p p K

µ
ρ

υ µ

− ≤ <
− − − −

Ψ Φ Φ Ψ
%

% %
     (28) 

 
Therefore, condition (18) is satisfied if (21) holds. 

 
Peotta and Vandergheynst (2007) derived the exact recovery 
condition for MP with block incoherent dictionary in the conventional 
sparse case. Schnass and Vandergheynst (2008) developed the 
sufficient condition for greed algorithm for sparse reconstruction in 
the case of coherent dictionary. 

In a recent literature, Eldar et al. (2010) proved the exact recovery 
condition for BOMP for block-sparse reconstruction. The theorems 
above extend these research results to a generalized case with 

block coherent dictionary. If 1p = , (17) and (21) reduce to the 

results in Schnass and Vandergheynst (2008). The inequalities (17) 
and (21) becomes (4) and (8) in Eldar et al. (2010) when the sensing 

dictionary is selected as =Ψ Φ  for block incoherent dictionary. 
Through constructing an appropriate sensing dictionary with 

B B
µ µ<%  for block coherent dictionary, the recovery condition (21) 

is looser than (8). 

 
 
ALGORITHM FOR CONSTRUCTING SENSING DICTIONARY 

 
The blocks [ ]iΨ  and [ ]iΦ  can be view as p -dimensional 

subspaces of
d

C . Therefore, the ordinary dictionary Φ  and 

sensing dictionary Ψ  are the collection of N  K -dimensional 
subspaces. Constructing a sensing dictionary can be cast as the 
subspace packing problem. We use the chordal distance to describe 

the distance between two -dimensionalp  subspaces. 

The chordal distance between [ ]iΨ  and [ ]jΦ  is given by 

Dhillon et al. (2007). 

 

2
2 2 1/2

1( [ ], [ ]) sin ( ) ... sin ( ) [ [ ] [ ] ] ,
def

H

chord p F
dist i j p i jθ θ= + + = −Ψ Φ Ψ Φ    (29) 

 

where  ( 1,.., )
i

i pθ =  denote p  principal angles formed by 

[ ]iΨ  and [ ]jΦ . 

 
In fact, constructing a sensing dictionary is to find a matrix Ψ  such 

that the Gram type matrix 
H=G Ψ Φ  have the following 

properties: 

 
(i) G  is Hermitian. 

(ii) Each diagonal block [ , ]i iG  of G  is an identify matrix. 

(iii) Off-diagonal block [ , ]i jG : [ , ]
F

i j µ≤G  for each i j≠ , 

where µ  is a positive constant discussed as follows. 
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A good sensing dictionary should guarantee that the cross 

block-coherence 
B

µ%  is small enough. This problem is equal to 

Minimize the chordal distance between [ ]iΨ  and [ ]jΦ  

 

2
1/2

min ( [ ], [ ]) min[ [ ] [ ] ] .
H

chord Fi j i j
dist i j p i j

≠ ≠
= −Ψ Φ Ψ Φ       (30) 

 
The sensing dictionary satisfies:  
 

2
1/2

min[ [ ] [ ] ] ,
H

Fi j
p i j η

≠
− ≥Ψ Φ                   (31) 

 

where η  is a given parameter. Rearranging the inequality (31), we 

have: 
 

max [ ] [ ] ,
H

Fi j
i j µ

≠
≤Ψ Φ                  (32) 

 

where 
2pµ η= − . Every collection of N  -dimensionalp  

subspaces of 
d

�  satisfies the inequality (Dhillon et al., 2007) 
 

0min ( [ ], [ ]) ,
chord

i j
dist i j η

≠
≤A A                  (33) 

 
where  
 

0

( )
.

( 1)

KN d K

d N
η

−
=

−
                (34) 

 

Therefore, the parameter η  can be selected as 
0

η εη= , where 

(0,1]ε ∈ . 

 

The problem of constructing a sensing dictionary can be formulated 
as a matrix nearness problem. That is, a good sensing dictionary 

Ψ  should satisfy that 
H

Ψ Φ  is closest to a structural constraint 
Hermitian matrix. Here, we construct sensing dictionary as the 
solution to the optimization. 
 

*

*

argmin   s.t. 

{ : , [ , ]  and [ , ]   },

d Np F

Np Np

p F
i i i j for i jµ

×∈

×

−

∈ = = ≤ ≠

Ψ

H ΨΦ

H χ H H H I H

�

� �

,

   (35) 

 

where [ , ]i jH  denotes ( ), thi j  p p×  block, and 
F

⋅  denotes 

the Frobenius norm. Applying alternating projection (AP) algorithm, 
we obtain a sensing dictionary to (35) by alternately solving two 
basic matrices nearness problems. 
 

(1) Given matrix Ψ% , we can obtain the Gram type matrix  

 
H=G Ψ Φ% % . Find a matrix H%  that solves min

Fχ∈
−

H
H G% .  

 

(2) Given Hermitian matrix H% , find a matrix Ψ%  that solves 
 

min
d Np

H

F×∈

−
Ψ

Ψ Φ H
�

% . 

 
 
 
 
By alternately finding structural constraint Hermitian matrix and 
sensing dictionary, this algorithm can construct a sensing dictionary 
conveniently. 

For the matrices nearness problem (1), the constraint set χ  is 

convex. The unique matrix H%  in χ  nearest to G%  has diagonal 

blocks equal to the identify and off-diagonal blocks that satisfy 
(Dhillon et al., 2007). 
 

[ , ]               [ , ]
[ , ] .

[ , ] / [ , ]    

F

F

i j i j
i j

i j i j otherwise

µ

µ

 ≤
= 


G G
H

G G

% %
%

% %
              (36) 

 
For the matrices nearness Problem (2), we have: 
 

min min

min [ ] [ ] .

d Np d Np

d Np

H H

F F

H

F
j

j j

× ×

×

∈ ∈

∈

− = −

= −∑
Ψ Ψ

Ψ

Ψ Φ H H Φ Ψ

H Φ Ψ

� �

�

% %

%
         (37) 

 

Solving the optimization 
[ ]

min [ ] [ ]
d p

H

Fj

j j
×∈

−
Ψ

H Φ Ψ
�

% , we can get:  

 
1

[ ] ( ) [ ].
H

j j
−=Ψ ΦΦ ΦH%                       (38) 

 
 
SIMULATION RESULTS 
 
To illustrate the performance of the modified BOMP, we 
consider the direction-of-arrival (DOA) estimation in the 
presence of mutual coupling since the redundant 
dictionary composed of steering vector are highly 
coherent. By exploiting the particular construction of the 
matrix of mutual coupling, this parameters estimation 
problem can be cast as block-sparse model. Assume K  

far-field narrowband signals ( )( 1,..., )
k

s t k K=  impinge on 

an -elementM  uniform linear array from the directions 

 ( 1,..., )
k

k Kθ = . In order to illustrate the exact 

reconstruction performance for block-sparse signal, we 
consider the DOA estimation in noise-free case. The 

discrete time samples of the signals ( )ty  received at 

array sensors can be written as:  
 

( ) ( ) ( ),t t=y QA θ s                  (39) 

 

where 
1

( ) [ ( ),..., ( )]T

M
t t t=y y y , M M

C
×∈Q  is the mutual 

coupling matrix (MCM) of ULA, 
1

( ) [ ( ),..., ( )]
K

A Aθ θ=A θ  is 

the array manifold matrix composed of steering vectors 

( ) ( 1,..., )
k

A k Kθ = , 
1

( ) [ ( ),..., ( )]
T

K
t s t s t=s  is the vector 

composed of the complex amplitude of K signals. Given 

the observed data ( )ty , the goal of DOA estimation is to 

find the unknown angles  ( 1,..., )
k

k Kθ = . 

Considering that the MCM Q  for ULA has the especial 

structure of banded complex symmetric Toeplitz, we  can
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Figure 1. The BOMP for two spatial signals. 

 
 
 
obtain: 
 

( ) ( ( )) ,
k k

A Aθ θ=Q U c                  (40) 

 

where 
0 1 1

[ , , , ]
T

p
c c c −=c L , p  is the number of non-zero 

coefficient in Q , ( ( ))
M p

k
A Cθ ×∈U  is given by the sum of 

the two following M P× matrices: 
 

1

1

[ ( )] , 1
[ ( ( ))]  ,

0,         

k i j

k ij

A i j N
A

otherwise

θ
θ + −

+ ≤ +
= 


U            (41) 

 

1

2

[ ( )] , 2
[ ( ( ))]  ,

0,              

k i j

k ij

A i j
A

otherwise

θ
θ − + ≥ ≥

= 


U              (42) 

 

With (40), (39) can be represented as: 
 

( ) ( ) ( ) ( ( ) ),
K

t t t= ⊗ = ⊗y U I c s U s c                (43) 

 

where 1 2[ ( ( ))  ( ( ))  ( ( ))]KA A Aθ θ θ= ⋅⋅⋅U U U U  and ⊗  

denotes Kronecker product.  
 

Let ( 1,..., )
n

n Nθ = , in general, N M� , be the sampling 

grids of all directions of interest. We can construct a 

redundant dictionary 
M Np

C
×∈U  composed of matrices 

( ( )) ( 1,..., )
n

A n Nθ =U , that is: 

 

1 2
[ ( ( ))  ( ( ))   ( ( ))].

N
A A Aθ θ θ= ⋅ ⋅ ⋅U U U U                (44) 

For a single snapshot, this problem of DOA estimation is 
to find the unknown vector s  by solving: 

 
.=y U s                   (45) 

 

The block [ ]ks , which is corresponding to ( ( ))
k

A θU , is 

non-zero if source comes from 
k

θ  for some k  and 

zeros otherwise. Therefore, DOA estimation in the 
presence of mutual coupling is cast as the problem of 
block-sparse reconstruction. 

In our experiments, we consider two narrowband 
far-field signal sources impinge on 15-elements ULA from 

9DOA1= °  and 18DOA2 = ° , respectively. The complex 

amplitudes of signals are produced randomly. The array 
sensors are separated by half a wavelength. We take 
three non-zero coefficients of mutual coupling into 

account. Let 
0

1c = , 
1

0.6 0.4c j= +  and 
2

0.1 0.2c j= − . 

The potential directions ( 1,..., )
n

n Nθ =  are obtained from 

the interval [0 ,60 ]
o o  with uniform grid 1θ∆ =

o , i.e. 

61N = .  The number of iteration for designing sensing 

dictionary is 30 and the parameter µ  is calculated as 

2pµ η= − , where η  is selected as 
0

0.6η η= . 

Simulation results are obtained over 100 independent 
Monte-Carlo trails to compare the recovery performance 
of the modified BOMP to that of BOMP. (Figure 1) 
presents angles estimated via BOMP for the two signals. 
It is shown in this figure that  BOMP  can  not  identify
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Figure 2.The modified BOMP for two spatial signals. 

 
 
 
non zero blocks in s  since the redundant dictionary U  

for DOA estimation is block coherent. (Figure 2) shows 
DOA estimation via modified BOMP. Applying sensing 
dictionary constructed by AP algorithm, the modified 
BOMP can identify correct blocks at large probability. 
Because the complex amplitude is produced randomly, 
the amplitudes of signals is too small in some trails and 
the proposed algorithm fails in this case.  
 
 
Conclusions 
 
In this paper, we extend BOMP to a generalized case 
through constructing sensing dictionary. A recovery 
condition is derived for this modified BOMP by introducing 
the cross block-coherence measure. The modified BOMP 
using sensing dictionary show superior performance for 
block-sparse construction, especially in the case of block 
coherent dictionaries. Based on the AP method, we 
develop an algorithm to design sensing dictionary for the 
redundant dictionary with block structure. 
 
 
ACKNOWLEDGMENT 
 
This work is supported in part by the NSF under grant 
60772146, 863 Program under grant 2008AA12Z306, the 
Key Project of Chinese Ministry of Education under grant 

109139. The second author is specially supported in part 
by CSC under grant No. 2009607029 as well as the 
outstanding doctor candidate training fund of UESTC. He 
is also supported in part by Tohoku University Global 
COE program. 
 
 
REFERENCES 
 
Chen SS, Donoho DL, Saunders MA (1999). Atomic decomposition by 

basis pursuit. SIAM J. Sci. Comput., 20(1): 33-61. 
Pati YC, Rezaiifar R, Krishnaprasad PS (1993). Orthogonal matching 

pursuit: Recursive function approximation with applications to wavelet 
decomposition. Proc. 27th Annu. Asilomar Conf. Signals, Systems, 
and Computers, Pacific Grove, CA., 1: 40-44. 

Donoho DL, Huo X (2001). Uncertainty principles and ideal atomic 
decompositions. IEEE Trans. Inf. Theory, 47(7): 2845-2862. 

Tropp J (2004). Greed is good: Algorithmic results for sparse 
approximation. IEEE Trans. Inf. Theory, 50(10): 2231-2242. 

Eldar YC, Mishali M (2009). Robust recovery of signals from a structured 
union of subspaces. IEEE Trans. Inf. Theory, 55(11): 5302-5316. 

Eldar YC, Mishali M (2009). Block-sparsity and sampling over a union of 
subspaces. In Proc. 16

th
 Int, Conf. Digital Signal Process., 7: 1-8. 

Stojnic M, Parvaresh F, Hassibi B (2010). On the reconstruction of 
block-sparse signals with an optimal number of measurements. IEEE 
Trans. Signal Process., 57(8): 3075-3085. 

Eldar YC, Kuppinger P, Bolcskei H, Block-Sparse signals: Uncertainty 
relations and efficient recovery. IEEE Trans. Signal Process., 58(6): 
3042-3054. 

Peotta L, Vandergheynst P (2007). Matching pursuit with block 
incoherent dictionaries. IEEE Trans. Signal Process., 55(9): 
4549-4557. 

Tropp JA, Dhillon  IS, Heath  RW,  Strohmer  T  (2005).  Designing 



 
 
 
 
 

structured tight frames via an alternating projection method. IEEE 
Trans. Inf. Theory, 51(1): 188 - 209. 

Dhillon IS, Heath RW, Strohmer T, Tropp JA (2007). Constructing 
packing in Grassmannian manifolds via alternating projection. 
Published electronically at http://citeseerx.ist.psu.edu/. 

 
 

 
 

Huang et al.        999 
 
 
 
Schnass K, Vandergheynst P (2008). Dictionary Preconditioning for 

Greedy Algorithms. IEEE Trans. Signal Process., 56(5): 1994 - 2002. 
 
 
 
 
 
 
 

 
 
 

 


