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In this study, a two-dimensional unsteady mixed convection flow of an incompressible visco-elastic 
fluid over a porous thermal forming thin film stretching sheet with internal heat generation has been 

studied. Two novel items 

2

2

(1 at)
G g [ ]A

b

−
= β x and 

1ax(1 ct)
k

−ν
φ = − −  are presented for free convection 

in porous space important parameters and an internal heat generation phenomena, respectively. The 
similarity transformation and an implicit finite-difference method have been used to analyze the present 
problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall 

unknown values of f''(0) and 
' (0)θ  for calculating the heat transfer of the similar boundary-layer flow 

are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the visco-

elastic parameter (α), the porous parameter ( φ ), the space-dependent parameter (A) and temperature-

dependent parameter (B) for heat source/sink and the free convection parameter (G). The effects of 
these parameters have also been discussed. The results show that it will produce greater heat transfer 
effect with a larger Pr, G and α, but S, A and B will reduce heat transfer effect. 
 
Key words: Visco-elastic, thin film flow, porous medium, finite-difference method, heat transfer, unsteady 
stretching sheet, mixed convection, internal heat generation. 

 
 
INTRODUCTION 
 
The study of visco-elastic fluids has become of increasing 
importance in the last few years. Qualitative analyses of 
these studies have significant bearing on several 
industrial applications such as polymer sheet extrusion 
from a dye, drawing of plastic films, etc. The 
manufacturing process at high temperature needs cooling 
of the thermal forming thin film stretching sheet. The 
flows, maybe, need visco-elastic fluids to produce a good 
effect to reduce the temperature from the thin sheet. And 
also, the fluids have processed many types of effects 
(that is, magnetic force, buoyancy and mass diffusion) 
into the problem, and have become a hybrid system that 
need to be analyzed by many different ways. It is a well-
known fact in the studies of non-Newtonian fluid flows 
(Hartnett, 1992). Rajagopal et al. (1983) studied a 
Falkner-Skan flow field of a second-grade visco-elastic 
fluid. Massoudi and Ramezan (1989) studied a wedge 

flow with suction and injection along walls of a wedge by 
the similarity method and finite-difference calculations. An 
excellent review of boundary layers in non-linear fluids 
was recently written (Rajagopal, 1995). These are related 
studies to the present investigation about second-grade 
fluids. All the aforementioned are dealing with forced 
convection problems. Vajravelu and Soewono (1994) had 
solved the fourth order non-linear systems arising in 
combined free and forced convection flow of a second 
order fluid, over a stretching sheet. The stretching sheet 
flow of a non-Newtonian fluid is also one of the important 
flow fields in real world; Raptis (1989) had studied heat 
transfer of a visco-elastic fluid. Recently, Sanjayanand et 
al. (2006), Cortell (2007) and Seddeek (2007) had 
studied the heat and mass transfer problems about the 
visco-elastic boundary layer flow over a stretching sheet 
with magnetic effect. On  the  other  hand,  researches  in
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Figure 1. A sketch of the physical model for unsteady visco-elastic fluid flow 

with mixed convection effect over a thin film porous boundary layer stretching 
sheet with internal heat generation. 

 
 
 
connection with visco-elastic fluid or second grade non-
Newtonian fluids, but they are not the mixed convection 
flow (Sujit, 2006). 

Sakiadis (1961) was the first to study the boundary 
layer flow generated by a continuous stretching surface 
moving with a constant velocity. Several authors 
(Vajravelu and Roper, 1999; Vajravelu, 2001; Liu, 2004; 
Sajid and Hayat, 2008) investigated the heat transfer 
problem in a stretching sheet with a linear or non-linear 
surface velocity and a uniform or different surface 
temperature condition. Abo–Eldahab and Aziz (2004) 
extended the problem to involve a space-dependent 
exponentially decaying with internal heat generation or 
absorption. Abel et al. (2007) and Bataller (2007) 
presented the effects of non-uniform heat source on 
visco-elastic fluid flow and heat transfer over a stretching 
sheet. Moreover, many authors (Mukhopadhyay et al., 
2005; Vajravelu and Roper, 2005; Pantokratoras, 2008; 
Vajravelu and Roper, 2008; Mukhopadhyay and Layek, 
2008) extended to consider the effects of variable fluid 
properties or specific dimensionless parameters on the 
flow over a stretching sheet. In all these aforementioned 
studies, the flow and temperature fields have been 
considered to be at a steady state. Some authors 
(Andersson et al., 2000; Dandapat et al., 2003; Ali and 
Magyari, 2007; Dandapat et al., 2007) studied the 
problem for unsteady stretching surface condition by 
using a similar method to transform governing time-
dependent boundary layer equations into a set of non-
linear ordinary differential equations. Most recently, Noor 
et al. (2009) had studied the MHD 
(magnetohydrodynamic) flow and heat transfer in a thin 
liquid film on an unsteady stretching sheet problem. Kai-
Long and Hsu (2009a, 2009b) studied the related 
conjugate heat transfer problems, but not toward the 
unsteady problems. Most recently Kumaran et al. (2011) 
and Abel et al. (2009) had studied the unsteady 

problems, a mathematical model was presented for a free 
convection boundary layer flow of a continuously moving 
vertical porous plate in a chemically reactive medium in a 
transverse magnetic field (Ibrahim and Makinde, 2010). 
Abdullah et al. (2009) studied the enhancement of natural 
convection heat transfer from a horizontal rectangular fin 
embedded with rectangular perforations of aspect ratio of 
two using finite element methods. Makinde (2009) 
studied the hydromagnetic boundary layer flow with heat 
and mass transfer over a vertical plate in magnetic field 
and a convective heat exchange at the surface with the 
surrounding. 

The aforementioned provides the motivation for the 
present analysis to study the flow and heat transfer in an 
incompressible porous visco-elastic fluid caused by 
mixed convection effect on a thermal forming thin film 
stretching sheet with internal heat generation. It is a point 
of view in examining the influence of flow and heat 
transfer characteristics for forced and free convection 
effect phenomena. The buoyancy force, couple with the 
internal heat generation is important in the present 
problem due to the difference among the previous 
studies. A similar derivation technique has been used 
and the resulting non-linear similar equations were solved 
by using the finite-difference method.  
 
 
PROBLEM FORMULATION 
 
Let us consider the unsteady, incompressible, two-
dimensional visco-elastic fluid flow of a thin liquid porous 
film of uniform thickness h (t) over the horizontal thermal 
forming stretching sheet with heat generation by mixed 
convection. The fluid motion within the thin film is due to 
stretching of the elastic sheet. The geometry of the 
problem is shown in Figure 1. 

The   fluid   flow   is   modeled   as   an   unsteady,   two  
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dimensional, incompressible visco-elastic laminar porous 
flow on a horizontal thin elastic thermal forming sheet that 
issues from a narrow slot at the origin and is a continuous 

thin film stretching with a velocity su bx / (1 at)= −  

(Andersson et al., 2000) (where a and b are positive 
constant and t<1/a) in the positive x-direction. An 
incompressible, homogeneous, non-Newtonian and 
second-grade fluid having a constitutive equation based 
on the postulate of gradually fading memory suggested 
by Rivlin and Ericksen (1955) is being used for the 
present flow. The model equation is expressed as 
follows:  
 

T=-PI+µA
1
+ 1α

2
A + 2α A 2

1
                                         (1) 

 
where T is the stress tensor, p is the pressure, I is the 

unit tensor, µ  is the dynamic viscosity, 1α  and 2α  are 

first and second normal stress coefficients that are 
related to the material modulus and for the present 
second-grade fluid or named visco-elastic fluid flow. 
 

,0≥µ  ,01 >α  021 =α+α                                      (2) 

 

The kinematic tensors 
1

A  and 
2

A  are defined as: 

 
T

1
A V ( V )= ∇ + ∇                                                       (3) 

 

T1
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d t
= + ∇ + ∇

                             (4) 

 
where V is velocity and d/dt is the material time 
derivative. The well-known Boussinesq approximation is 
used to represent the buoyancy mixed term. Where u, v 
are the velocity components in the x and y directions, the 
unsteady boundary-layer equations for this flow, heat 
transfer, in usual notations, are expressed as: 
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The correspondence boundary conditions are as follows: 
 

s
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where su  and wT  are the velocity and temperature of the 

stretching sheet at the surface y = 0, respectively. T is the 
temperature, g is the magnitude of the gravity, υ  is the 

kinematic viscosity, 1α
α = −

ρ
 is the visco-elastic 

parameter, β is the coefficient of thermal expansion, T∞  

is the temperature of the ambient fluid, ρ  is the density, 

p
c  is the specific heat at constant pressure and k is the 

conductivity, respectively. Where the items g (T T )ϖβ − , 

u
k

ν
 and s

w

ku
q ( )[A(T T )e B(T T )]

x

−η
∞ ∞= − + −

ν
 are 

the free convection, porous medium and an internal heat 
generation term, respectively. They are the important 
items present in this study, and the physical phenomenon 
is shown in Figure 1. The flow is induced due to 
stretching at y = 0 which moves in the x-direction with the 
velocity as: 
 

s

bx
u

1 at
=

−
,                                                                 (10) 

 
in which a and b are positive constants with dimension 

1(time)−
. It can be noted from Equation 10 that the 

effective stretching rate b /(1 at)− increases with time 

since a > 0. The surface temperature
w

T of the sheet is 

given as: 

 
2

3/ 2

w 0 ref

bx
T T T (1 at ) ,

2

− 
= − − ν 

                               (11) 

 

where 
0

T  and 
ref

T are the temperature at the slit and 

reference temperature, respectively. Expression of 
Equation 11 reflects that the sheet temperature 

decreases from 
0

T  at the slot in proportion to 
2

x  and 

temperature reduction increases with an increase 

in (1 at)− . But it should be noticed that Equations 10 and 

11, which are responsible for the whole analysis, are 

valid only for time t 1/ a< . The following dimensionless 

parameters are introduced. 
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and the stream function (x, y)ψ  through 
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the continuity Equation 1 is identically satisfied, and 
dimensionless problems of flow and temperature are 
given as: 
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And then associated with boundary conditions become: 
 

f (0) 1,′ =  f (0) 0,=  (0) 1θ =                                     (17) 

 

f (h) 0,′ =  f (h) 0,′′ =  (h) 0θ =                                 (18) 

 

Here S a / b=  is the unsteadiness parameter, A is the 

space-dependent parameter, B is temperature-dependent 

parameter and

2

2

(1 at)
G g [ ]Ax

b

−
= β is the dimensionless 

free convection parameters and
1ax(1 ct)

k

−ν
φ = − − , 

respectively. Here primes indicate the differentiation with 

respect to η . The skin-friction coefficient 
f

C  and the 

Nusselt number Nu are defined as: 
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where 
x

Re  is the local Reynold number and 
f

C  is the 

skin-friction coefficient. 
 
 
NUMERICAL ANALYSIS  
 
In the present problem, the set of similar equations from 
Equations   15   to  18  are  solved  by  a  finite  difference  
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method. These ordinary differential equations are 
discretized by a second-order accurate central difference 
method (Cebeci and Bradshaw, 1984) and a computer 
program has been developed to solve these equations. 
Some authors (Vajravelu, 1994; Vajravelu, 2001; 
Vajravelu and Rollins, 2004; Kai-Long, 2010a, 2010b, 
2011a, 2011b) are also using analytical and numerical 
solutions to solve the related problems. So, some 
numerical technique methods will be applied to the same 
area in the future. The finite difference formulas are 
divided to forward finite-difference for the boundary layer 

inner edge 0η = , backward finite-difference formula for 

the boundary layer outer edge η = ∞  and centered finite-

difference formula for the internal points as follow: 
 
1. Forward finite-difference formulas for first derivative to 
fourth derivative 
 

i 1 i
i

f (x ) f (x )
f '(x )

h

+ −
=  

i 2 i 1 i
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i 3 i 2 i 1 i
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+ + +− + −
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i 4 i 3 i 2 i 1 i
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h

+ + + +− + − +
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2. Backward finite-difference formulas for first derivative 
to fourth derivative 
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3. Centered finite-difference formulas for first derivative to 
fourth derivative 
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Table 1. A comparison of -θ'(0) for an unsteady quiescent fluid flow (S =0, A=0, Ф=0, α=0, G=0). 
 

B Pr -θ'(0) (Abel et al., 2007) Present solution Errors 

-1 1 1.710937 1.710935 0.00002 

-2 2 2.486000 2.485991 0.00009 

-3 3 3.082179 3.082152 0.00027 

-4 4 3.585194 3.585137 0.00057 

-5 5 4.028535 4.028511 0.00024 
 
 
 
Table 2. Mixed convection for an unsteady visco-elastic porous fluid flow over a thermal forming thin 
film stretching sheet with internal heat generation (A=1, B=-1, Ф=0, η=7). 
 

α Pr S G f”(0) θ'(0) 

0.1  1 0.1 0.01 -31.2252 -0.9756 

0.2  2 0.2 0.02 -9.2130 -1.0932 

0.3  3 0.3 0.03 -5.0737 -1.2639 

0.4  4 0.4 0.04  -3.5736 -1.3269 

0.5  5 0.5 0.05 -2.8398 -1.2990 

 

 

 

i 2 i 1 i i 1 i 2
i 4

f (x ) 4f (x ) 6f (x ) 4f (x ) f (x )
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h
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In this study, a program was written to compute finite 
difference approximations of derivatives for equal spaced 
discrete data. The code employed centered differences of 

O (
2

h ) for the interior points and forward and backward 
differences of O (h) for the first and last points, 
respectively (Chapra and Canale, 1990). To ensure the 
convergence of the numerical solution to exact solution, 
the step sizes ∆η have been optimized and the results 
presented here are independent of the step sizes at least 
up to the fourth decimal place. The convergence criteria 
based on the relative difference between the current and 
previous iteration values of the velocity and temperature 
gradients at wall are employed. When the difference 

reaches less than 
6

10
−

 for the flow fields, the solution is 

assumed to have converged and the iterative process is 
terminated. The sequence of the aforementioned 
equations was expressed in difference form using central 
difference scheme in η-direction. In each iteration step, 
the equations were then reduced to a system of linear 
algebraic equations.  
 
 
RESULTS AND DISCUSSION 
 
The objective of the present analysis is to study the heat 
transfer of a visco-elastic porous fluid cooled or heated 
by a high or low various parameters. An extension of 
previous works has then been performed to investigate 
the heat transfer of a visco-elastic porous fluid over a 
thermal forming thin stretching sheet with mixed 

convection effect, which are included. The model for 
visco-elastic porous fluid has been used in the 
momentum equations. Effects of dimensionless 
parameters, the unsteadiness parameter (S), the porous 
parameter (φ ), the Prandtl number (Pr), the visco-elastic 

parameter (α), the space-dependent parameter (A) and 
temperature-dependent parameter (B) for heat 
source/sink and the free convection parameter (G) are 
mainly of interest in the study. Flow and temperature 
fields of the visco-elastic porous fluid flow have been 
analyzed by utilizing the boundary layer concept to obtain 
a set of coupled momentum equations and energy 
equations. A similarity transformation has been used to 
convert the non-linear, coupled partial differential 
equations to a set of non-linear, coupled ordinary 
differential equations. A generalized derivation is used to 
analyze an unsteady flow that has been studied. An 
accurate finite difference method was used to obtain 

solutions of these equations. Comparing - '
(0)θ to results 

of Vajravelu and Roper (1999) for an unsteady quiescent 

fluid flow (S =0, A=0, 0φ = , α=0, G=0) showed a good 

agreement and these values are listed in Table 1. Table 2 
shows a mixed convection and unsteady visco-elastic 
fluid flow field results (A=1, B=1, η=7) for different α, Pr, 
S and with different free convection parameters G. 

Figure 2 shows dimensionless velocity gradient 'f  
versus η as G=0.01, S=0.1, A=0.1, B=0.1, α=0.5, 1.0=φ  

and S = 0.2, 0.5, 1, 3, 10. It represents the fluid flow 
phenomenon toward the flow field. The numerical 
calculation results are satisfied by the boundary layer 
conditions at the figure. The momentum was interacting 
with each other and the figure curves are all having a 
strong  variation  with  η  along   the   boundary   layer  for
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