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The nature of detuning in transition probabilities in atom field interaction has been investigated in the 
light of hydrogen atom problem. It has been shown that the detuning bears a striking similarity with the 
principal quantum number n in hydrogen atom. 
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INTRODUCTION 
 
Hydrogen atom problem is a well known and simple 
example of a quantum mechanical system. The solution 
of the hydrogen atom problem, which gives rise to principal 
quantum numbers and from which we get the energy 

level diagrams are the basis of all atomic structures (Jenkins 
and White, 1981). The present investigation is related to 
the nature of time evolution of the transition probabilities 
of the interacting two level atoms with a coherent 

resonant radiation field (Sargent et al., 1974). We have 
shown that the detuning controlled transition probabilities 
exhibit a striking similarity with that of the principal 
quantum number controlled atomic energy level spacing.  
 
 
HYDROGEN ATOM  
    
In the absence of external forces the classical energy of 
an electron bound by its negative charge to the positively 
charged nucleus is given by: 

2 2

2

p e

m r
 H                                        (1) 

 
Where p, m, e and r have their usual meanings. 

The time development of the wave function is 
determined by the Schrodinger equation. 
 

( , ) ( , ) ( , )i r t H r p r t              (2) 

 

The Hamiltonian is usually given by classical energy, in 
which the measurable quantities such as position and 
momentum are replaced by appropriate operators. The 

stationary solutions ( , )
n

r t of the Schrodinger equation 

are those for which the time dependence can be 
separated from the space dependence, that, is for which 
 

 ( , ) ( ) exp
n n n
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Figure 1. Energy level diagram for hydrogen atom. Horizontal 

lines indicate energy levels given by Equation (10).  

 
 
 

Here 
n

 is a circular frequency. Substituting Equation (3) 

into (2) we find the time-dependent equation 
 

     ,
n n n

H r p u r u r             (4) 

 
This is an eigen value equation for the 

Hamiltonian  ,r p  with eigen functions  n
u r and 

eigen value
n

 . The eigen value Equation (4) must be 

solved for hydrogen atom and then we have   
  

   
2 2 2

2

e
u r u r

m r


 
  

 
           (5) 

 

Here it is advantageous to express 
2 in spherical 

coordinates,  , and  , because of the spherical symmetry 

of the potential energy

2e

r

 
 
 

. The Equation (4) can be 

separated into three equations, each containing a single 
spherical coordinate. The solutions of the equations 
correspond to discrete energies, as for the bound 
problems and have the values 
 

     , , ,
nlm nl lm

u r R r Y               (6) 

 

Here the  nl
R r

 
are the Laguerre polynomials multiplied 

by the exponential factor  0 0
exp r / na ,a 0.53A   is 

the Bohr radius, and  ,
lm

Y    are spherical harmonics. 

In particular first few  , ,
nlm

u r   are as follows: 

     
1/2

3

100 0 0
, , exp /u r a r a  


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    (8) 
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1/2
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The corresponding energies are given by 
 

2

2

0
2

nlm n

e

a n
                          (10) 

 
Which are discrete, Figure 1 shows the energy level 
diagram for hydrogen atom worked out with the help of 
Equation (10). 
 
 
INDUCED RESONANT TRANSITIONS 
 
Let us now consider our important problem of induced 
resonant transitions. Specifically consider the hydrogen 
atom initially in the ground state u100. At time t=0 we apply 
an oscillating electric field (Sargent et al., 1974). 
 

  0
ˆ cosE t xE t            (11) 

 
Where      
 

 2 1
/E E              (12) 

 
Here   is in radian/sec (not Hertz). The oscillating electric 
field is nearly resonant with the transitions from n =1 to n 
=2. From Figure 2 one can infer that  the  states  unlm  with
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Figure 2. Diagram depicting two energy levels a and b 

of the unperturbed Hamiltonian. 

 
 
 

 n2 are way off resonance with the field incident and 
therefore can be neglected. Hence we can describe the 
atom by two level wave function given by: 
 

         , exp exp
a a a b b b

r t C u r i t C u r i t      (13) 

 
And take the eigen functions 
 

210

100

a

b

u u

u u




 

 

The coefficients in Equation (13) satisfy the normalization 
condition 
 

2 2

1
a b

C C                                                (14) 

 

The equations of motion for 
a b

C andC are given by 

 

    0
1

exp exp
2

a b

E
C i i t i t C                (15) 

 

    0
1

exp exp
2

b a

E
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   (16) 

 
Where the frequency 
 

a b
                             (17)

  
 
As shown in Figure 2. 

Let us now suppose that the system is in the ground 

state at time t=0, that is,    0 0 0 1,  
a b

C and C  the 

equation of motion become 
 

0
b

C                                                  (18) 

 
and 

      0
1

0 exp exp
2

             a

E
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This yield 
 

   
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exp 1 exp 11

2

n
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   (20) 

 
For optical frequencies the denominator   is very 

large  1  and therefore the second term in R.H.S. 

is neglected with respect to the first since at resonance 
  .This is called Rotating Wave Approximation 

(RWA). Thus neglecting the perturbing matrix element is 
given by: 
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     (21) 

 

Therefore the equations of motion for 
a

C and 
b

C under 

rotating wave approximation become 
 

 0
1

exp
2

a b

E
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                                 (22) 

 

 0
1

exp
2

b a

E
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                     (23) 

 
thus 
 

 
   

0
1 1

exp 2 sin
2 2 2

a

i t tE
C t i

   
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
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     (24) 

 
Thus the probability (Allen and Eberly, 1975) of finding 
the atom in the upper state is given by  
 

     
 

 

2 2
2

0
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a a a

tE
C t C t C t

t
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       (25) 
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Figure 3.The probability of a transition to an upper level under the 

influence of an applied electric field. 

 
 
 
This is known as stimulated absorption. We could have 

chosen    0 1 0 0,   
a b

C and C which shows that the 

atom is initially in the upper state and calculate the 
probability of stimulated emission. We find in this also the 
same formula as given by Equation (25). The probability 
is plotted in Figure 3. 
 
 
NATURE OF DETUNING 
 

From what has been discussed in the earlier sections it is 
now appropriate to describe the nature of detuning, 

     .Here ω is the atomic line center frequency 

and   is the laser oscillation frequency in radian/sec. As 
  increases (or decreases) from the atomic line center 
frequency ω, the atomic system goes away from 
resonance. In Figure 3 we have depicted the transition 
probabilities versus time at different values of detuning. 
The salient feature of this figure is that if we draw 
horizontal lines joining the maxima of the transition 
probabilities for detunings corresponding to integral 

values of    we obtain a series of horizontal lines with 

relative separations, the reverse of which shows striking 
similarity with the Energy level diagram of the Hydrogen 
atom. 

Figure 4a indicates the horizontal lines thus generated 
in a reverse way. Figure 4b shows the corresponding 
energy levels for hydrogen atom as illustrated in Figure 1. 
The energy level separation of hydrogen atom goes on 
decreasing as principal quantum number n increases up 
to ionization limit. This is also observed in Figure 4a, 
where it is seen that as detuning increases the relative 
separation decreases. At higher  values  of  detuning  the 

separation of the horizontal lines become extremely 
small, this is quite similar to the energy levels of 
hydrogen atom near ionization limit. It is reasonable to 
explore the physical consequences of the similarity as 
describe above. The energy level diagram in hydrogen 
atom is drawn according to energy in Rydberg (Ry). 
Likewise the horizontal lines in Figure 4a are arranged 
according to frequency (in Mz). We must note here that 

the transition probability    
2 2

a b
C t or C t   was worked 

out on the basis of a two body problem or a two level 
atom. At time t = 0 we applied an electric field which is 
resonant (or nearly resonant) with the transition from n = 
1 to n = 2. Our work is based on the idea that the 
detuning has a range of values corresponding to 1, 2, 
3….etc (in Mz). It is a matter of common experience that 
the spectral lines (cm

-1
) corresponding to a particular 

series (say Balmer series) is precisely obtained by 
manipulating the principal quantum number n. Thus the 
transition probabilities at different values of detuning are 
the manifestation of an atomic structure in general. This 
observation is expected to draw light in laser physics 
particularly in atom field interaction. In this connection it is 
appropriate to recall the statements by Jenkins and White 
(1981) who indicates the importance of the horizontal 
lines as energy levels. According to them the importance 
of this type of diagram is two fold: (1) regardless of the 
atomic model presented, whether it is an orbital model or 
any other yet to be proposed in the future, like a quantum 
mechanical wave model, it represents with high degree of 
precession the stationary energy states of atom; and (2) it 
represents the well established law of conservation of 
energy as applied through Bohr’s third postulate. We thus 
reasonably   conclude   that   our   work   concerning   the
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Figure 4. (a) Relative separations of the horizontal lines generated by joining the maxima of 

the transition probabilities at different detuning (b) Energy levels of hydrogen atom showing 

relative separations of the principal quantum numbers. 

 
 
 
horizontal lines drawn by joining the maxima of the 

transition probabilities at different values of detuning (- 
= 1, 2, 3, ….) only justifies the energy level diagram 
scheme being introduced more than hundred years ago. 
 
 
CONCLUSION 
 
In the present work it has been shown that the so called 

detuning ((-) bear a striking similarity with the principal 
quantum number “n” and hydrogen atom. We reasonably 
conclude that in the present work concerning the 
horizontal lines joining the maxima of transition 

probabilities at different values of detuning ((- = 1,2,3..) 
only justifies the energy level diagram scheme being 
introduced more than hundred years ago.   
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