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We consider a two-mode quantized field described in a coherent state interacting with a four-level atom. 
An effective Hamiltonian is obtained by adiabatically eliminating the intermediate two levels in a 
cascade process. The influence of the Stark shifts on the atomic inversion is examined, as well as on 
the second order auto-correlation function and on the cross-correlation between the field modes. The 
results of the calculations are illustrated numerically. 
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INTRODUCTION  
 
The interaction model between a two-level atom and a 
single quantized mode of a radiation field, within the rota-
ting wave approximation (RWA), is known as the Jaynes-
Cumming model (JCM) (Jaynes and Cumming, 1963). 
This interaction can be seen as the repeated absorption 
and emission by the atom of a single photon from the ra-
diation field. These photons are the agents that can tran-
sfer energy and momentum between the atom and the 
radiation field. By studying the JCM we gain more insight 
into the atom-radiation interaction in particular, and into 
quantum mechanics in general. The Jaynes-Cumming 
model has been the subject of theoretical studies (Sten-
holm 1973; Shore and Knight, 1993).and also of experi-
mental investigation (Rempe et al. 1987). 

Stimulated by the success of the JCM, many people 
have paid special attention to extending and generalizing 
the model in order to explore new quantum effects (Joshi, 
2000; Abdel-Aty et al., 2002; Joshi, 2004; Shore and Kni-
ght, 1993; Yoo and Eberly, 1985).Two exactly solvable 
generalizations of JCM have been proposed by Sukumar 
and Buck, (1981) one involving intensity dependent coup-
ling and the other involving multi-photon interaction bet-
ween field and atom.           

Because of the given information from the Rabi fre-
quencies which arise from such a coupling, this model 
presents periodic revivals, contrary to what happens in 
the ordinary Jaynes-Cumming model. Also, possible ge-
neralizations are a consideration of multi-mode and multi- 

photon instead of single mode and single photon (Abdalla 
et al., 1990, 1991; Abdel-Aty et al., 2002). The addition of 
Kerr-like medium and Stark shift have been performed in 
other studies (Fang and Liu, 1996; Ahmed et al., 2005; 
Ahmed, 2007). Extensive studies of a three-level atom 
with different configurations under RWA interacting with 
quantized fields inside an ideal cavity were carried out in 
detail by Yoo and Eberly, (1985). Later on several more 
studies on dynamical evolution and field statistical were 
reported on the similar type of models (Li and Peng, 
1986; Zhu, 1989; Li and Niu, 2004). These models could 
be experimentally tested by utilizing three-level atoms in 
various configurations in the micromaser systems. Based 
on the JCM and its various extensions, an interesting 
non-classical effects, such as the collapse and revival of 
Rabi oscillations, squeezing, electromagnetic-induced 
transparency, etc., have been extensively studied (Shore 
and Knight, 1993; Yoo and Eberly, 1985; Li and Peng, 
1986; Zhu, 1989; Li and Niu, 2004). 

A generalization of the JCM to study a four-level atom 
was presented in Zait, (2005). The author has investiga-
ted the dynamics of the quasi-probability distribution Q-
function of a four-level atom interacting with a single 
mode field in a cavity containing a Kerr-like medium. 
Moreover, he investigated the cavity field statistics thro-
ugh Mandel Q-parameter. In the present paper, we shall 
study the interaction between a four-level atom and two-
mode quantized field. We investigate a new type of  Stark 
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Figure 1. Four-level atom with non-equidistant, non-
degenerate levels. 

 
 
 
shift which differs from the one that appears in the study 
of three-level atomic system. In the next section we con-
sider the equations of motion in the Heisenberg picture 
for the system of two modes of the electromagnetic field 
interacting with a four-level atom. We derive the effective 
Hamiltonian of the system which includes the Stark shift. 
In addition, the evolution operator and the wave function 
are obtained in section 3. Section 4 is devoted to the nu-
merical investigations of the atomic inversion, the second 
order auto-correlation function and the cross-correlation 
function between the field modes. Finally, a conclusion is 
presented in section 5. 
 
 
The basic equations 
 
We consider a system of four-level atom with non-equi-
distant, non-degenerate levels 43,2,1 and  (Figure 

1) with energy levels � k, (k=1, 2, 3, 4) respectively, inte-
racting with two different modes of the electromagnetic 
field with frequencies � j , (j=1, 2).  

The Hamiltonian that describes the present system 
within the rotating wave approximation has the following 
form (with  �=1) 
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Where )( +

jj aa  is the annihilation (creation) operator for 

the jth  mode of the field and satisfy the Boson commuta-

tion relation [ ] ijji aa δ=+, . )4,3,2,1(; =kkλ are the cou-

pling constants and the atomic operators S l k satisfy the 
commutation relation Yoo and Eberly, (1985)   

 
 
 
 
[ ] ikljljiklkij SSSS δδ −=,  .  
 
In order to apply the adiabatic elimination method to eli-
minate the two levels 32 and  we need to induce 

the slowly varying operators (Puri and Bullough, 1988; 
Obada et al., 2006) 
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The Heisenberg equation of motion for any operator O is 
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Therefore, we have the following equations of motion for 
the atomic operators 
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Similarly for the two modes of the field we have the equa-
tions 
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Where the detuning parameter ∆   is defined as  
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In order to integrate equation (4), we perform the slowly 
varying amplitudes approximation for both the atomic am-
plitudes and for the field envelopes. So we replace ijQ (t) 

and Aj (t) inside the integral with their values at the upper 
limit of the integration and carrying out the exact integra-
tion on the remaining exponential factors from 0 to t (with 
initial condition ijQ  (0) = 0).Thus we get the following 

eqns. 
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By substituting eqns. (9) into (3) we get that is   
 

.3322 ConstSS =+                                                      (10)                                      
 

which means that the occupation of levels 32 and  is                                                                                      

constant during the interaction. With help of eqns. (9) we 
can, directly, obtain from eqns. (5-7) the following equa-
tions of motion 
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Where; 
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The equations (11-13) can be considered as the equa-
tions of the motion according to the following Hamiltonian  
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Since we have only two effective levels 41 and  in 

the above Hamiltonian, we will replace 24 by  just 

for convenience and Heff can be rewritten as    
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In equation (16), we note that, the 3rd and the 4th terms re-
present the Stark-shift (Puri and Bullough, 1988) of the 

levels 21 and  due to the field modes j=1, 2, 

respectively. Note the difference in the form in which it 
appears here compared to the single mode of the three 
level cases (Ahmed, 2007; Puri and Bullough, 1988). We 
note that the shifts are affected by the two modes with 
different weights depending on the original coupling con-
stants. 
 
 
The time evolution operator 
 
The Heisenberg equations of motion for the operators  
 

jjj aan +=  , j = 1,2  and   S11  are  
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Where; 

 )( 21122121 aaSSaaL −= ++λ                                              (18)                     
                                                                                      
We deduce that the following operators  
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are constants of the motion. Thus, the Hamiltonian (16) 
can be written as 
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and I  is the identity operator. 
We note that 
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represent the field-dependent Stark shift terms. The 
detuning parameter 
 � is given by 
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where eqn.(8) is used 
Also we note that 
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It is easy to show that the operators N and C commute 
with each other and hence with H. This means that N and 
C are constants of motion. 

The time evolution operators for our system is given by 
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With 
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Evaluating the time evolution operator enable us to 
discuss the dynamical behavior of the system. 



 

 
 
 
 
The wave function 
 
Let us consider that, at time t = 0, the effective two-level 
atom is in a coherent atomic state 
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Where 1  and 2  stands for the excited and ground 

states of the atom respectively, φ  is the relative phase 

of the two atomic levels. When 0→θ  the excited state 

is considered while when πθ →  then the wave func-
tion describes the atom in its ground state. Also we consi-
der the fields to be initially in the uncorrelated coherent 
states 2121 , αααα ⊗= . Then the initial state of the 

fields takes the following form        
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At time t=0 the wave function )0(ψ  is given by    

21 ,,)0( ααφθψ ⊗= , At the time t > 0 the wave 

function takes the form 
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For an atom in the excited state ( 0→θ  ) we have, by 
using eqns. (35-38), 
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Where; 
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Calculating the wave function enables us to investigate 
any phenomenon related to the atom and the field mod-
es.  
 
 
DISCUSSION OF ATOMIC AND FIELD DYNAMICS 
 
In this section, we investigate some aspects of our sy-
stem, namely, the atomic inversion, the second auto-cor-
relation function and the cross-correlation function bet-
ween the field modes.  
 
 
The atomic inversion 
 
The atomic population inversion is defined as the diffe-
rence between the probabilities of finding the atom in the 
excited state and in the ground state. When the atom 
starts in its excited state, the atomic inversion takes the 
form  
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We plot the atomic population inversion W (T) against the 
scaled time T=� t with the intensity of the initial coherent 

field equal to 4=jn , j=1,2 (Figure 2). First we ignore 

the terms ( 2
iδ in eq. (39)) which represent the Stark shift 

and the result is illustrated in Figure(2-a). It is apparent 
that the oscillations are around W(T)=0 and  become ire-

gular as T increases. The effect of the Stark shift ( jδ �0)  

on the atomic inversion appears clearly in Figure (2-b) 
where the  oscillations of the atomic inversion W(T) show 
the collapse and revival phenomenon. The base line of W 
(T) is shifted upward which means more energy is stored 
in the atomic system. 
 
 
The second order auto-correlation function 
 

The second order auto-correlation function for the mode j 
is defined by Paul, (1982). 
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Figure 2. The atomic inversion W (T) against the scaled time T=� t 

with initial average photon number 4=jn . (a) The Stark shifts 

are ignored. (b) the Stark shifts parameters are � i /	
= 0.995 (i =1, 
4) and � i /	
= 0.1 (i =2, 3). 
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this function essentially measures the joint probability for 
detecting two photons at the same time t. Note that if 

1)()2( =tg , the photons arrive at the detectors at ran-
dom and the probability distribution is Poissonian. A co-
herent state of the radiation from a single-mode laser is 
an example of this case. The bunching occurs when 

1)()2( >tg  and the distribution is super-Poissonian. This 

is also a classical effect (e.g., 2)()2( =tg  for thermal 

light). For the case in which 1)()2( <tg  the antibunching 
exists Carmichael, (1985) and the light field has a sub-
Poissonian distribution. This means that the probability of  
detecting an incident pair of photons is less than it would 
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Figure 3. The second order auto-correlation function g (2) (T) 
against the scaled time T=� t with initial average photon num-

ber 4=jn . (a) The Stark shifts are ignored. (b) The Stark 

shifts parameters are � i /	
= 0.995 (i =1, 4) and � i /	
= 0.1 (i 
=2, 3). 

 
 
be for a coherent field described by the Poissonian distri-
bution. The antibunched case is a quantum mechanical 
manifestation and has no counterpart in classical descri-
ption of radiation.  

For our system, we plot the second order auto-correla-
tion function )()2( Tg j against the scaled time T for 

2,1,4 == jn j . In the absence of Stark shifts (Fi-

gure3a), the function )()2( Tg j  shows irregular fluctua-

tions. It is almost sub-Poissonian )1)(.,.( )2( <tgei except 
at some few values of T, it be-comes greater than 1. Ta-
king the effect of the Stark shifts into account (Figure 3-
b), and however, the baseline of the fluctuation in 

)()2( Tg  is pushed up, and still shows sub-Poissonian 
distribution. The collapses and revivals phenomenon is 
still pronounced. 
 
 

The cross-correlation between the field modes  
 
The cross-correlation function between the two modes of 
the field is given by Paul, (1982). 
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Figure 4. The cross-correlation between the field modes of 
the field 
cross, (T) against the scaled time T=� t with initial ave-

rage photon number 4=jn . (a) The Stark shifts are igno-

red. (b) The Stark shifts parameters are � i /	
= 0.995 (i =1, 4) 
and � i /	
= 0.1 (i =2, 3). 

 
 
 

( ) ( ) jjjjcross nnt ∏−∏=∆ , (j=1, 2)                    (50) 

                                                                                   

( ) 2121 nnnntcross −=∆     
 
This represents the correlation between the intensities of           
the two modes of the field. If ( ) 0>∆ tcross  then the two 

modes are correlated. But if ( ) 0=∆ tcross  the modes are 

uncorrelated and for ( ) 0<∆ tcross  the field modes are 

called anti-correlated. In Figure 4 we plot ( )tcross∆  

against the scaled time T with 0.421 == nn . In Figure 
(4a) the Stark shifts are ignored and we see that most of 
the fluctuations are above zero. This means that the two 
modes of the field are correlated except at very short 
period of T where the two modes are anti-correlated. For 
non-zero the Stark shifts (Figure 4b) the modes are cor-
related for all time except at a very short time after the 
beginning of the interaction. It is noted that collapses and 
revivals phenomenon appears in this case also. 
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CONCLUSION 
 
In this paper, we have investigated the effect of the Stark 
shifts in a four-level atomic system interacting with two 
quantized modes of the field. We used the adiabatic eli-
mination method to get an effective two-level Hamilto-
nian. Our results show that the Stark shifts makes the 
collapse and revival phenomenon more pronounced in 
the atomic inversion. Both the base lines of the fluctua-
tions in the second order auto-correlation function or the 
cross correlation function are pushed up due to Stark 
shifts.  
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