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In this study we investigate the different temperature electronic energy band structure responses of 
silicon, germanium and gallium arsenide at various applied hydrostatic pressures within a range that 
does not exceed their structural phase transition pressure. The pressure coefficients for each material 
have been determined. An atomistic insight was presented into the question of how much of the 
electronic band structure deformation, due to hydrostatic pressure, originates from the valence or the 
conduction bands. It was observed that the rate of increase in energy of the conduction band minimum 
with an increase in pressure is greater than that of the valence band maximum for Ge and GaAs, while it 
is less than that of the valence band maximum for silicon. The origin of this negative value of the first 
order pressure coefficient of silicon was explained in terms of p and d conduction band orbitals 
coupling at the Xc high symmetry point of the Brillouin zone, hence exhibiting quantum level repulsion 
between them, thus forcing the conduction band edge downwards in energy relative to the maximum of 

the valence band at c. The hydrostatic volume deformation potential, ag is found to be constant for Ge 
and GaAs. Our results agree with the “empirical rules of pressure coefficients” for inter-band electronic 

transitions of types v →  c in gallium arsenide, v → Lc in germanium and v → Xc in silicon.   
 
Key words: Hydrostatic deformation potential; pressure coefficients; inter-band electronic transitions; orbital 
coupling; quantum level repulsion. 

 
 
INTRODUCTION 
 
The optical and electronic properties of semiconductors 
are fundamentally dependent on their electronic band 
structures. Modification of the electronic band structure of 
semiconductors using external pressure leads to 
optoelectronic properties that can be tuned for various 
applications such as quantum dot lasers,  bioengineering, 

high-density memory, etc. (Ouyang et al., 2009). The 
most commonly used semiconductors in device 
fabrication are silicon, germanium, and gallium arsenide. 
The implementation of high-pressure electronic 
technology in Si, Ge, and GaAs- based devices requires 
a  thorough  understanding  of  the pressure responses of 
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the energy band structures of the constituent 
semiconductor materials. Device integrity requires this 
understanding to foresee and avoid problems that may 
be encountered during the operation of the devices. 
Fabricators can then provide accurate specifications for 
the use of the devices. Silicon and germanium have the 
tetrahedral coordinated diamond crystal structure with 
each atom being at the center of a tetrahedron having 
four neighboring atoms (coordination number) at each 
corner of the tetrahedron. Their lattice parameters are 
0.543 and 0.566 nm respectively (Streetman, 1990; 
Virginia-Semiconductor, 2002). Gallium arsenide is a III–
V semiconductor with the zinc-blende structure having 
four nearest neighbor bonds to each atom separated by 
the tetrahedral angle of 109.47º (Feenstra and Stroscio, 
1993). These four covalent bonds are provided by eight 
outer shell electrons, five of which are from As atoms and 
the other three from the Ga atoms. Unlike in silicon and 
germanium crystals where the bonds are centered at the 
midpoint between the ion cores, in GaAs the bonds are 
centered slightly closer to the As atoms (Feenstra and 
Stroscio, 1993). The lattice parameter for GaAs is 0.565 
nm (Feenstra and Stroscio, 1993).  

The value of the energy band gap for Si at 0 K and 300 
K is 1.17 and 1.12 eV respectively (Levinshtein et al., 
2001). It is an indirect band gap semiconductor 
(Levinshtein et al., 2001); therefore, an inter-band 
electronic transition can only conserve momentum with 
the absorption or creation of a quantum particle such as a 
phonon. For Ge, the band gap values at Ge at 0 K and 
300 K is 0.74 and 0.70 eV respectively (Levinshtein et al., 
2001). It is also an indirect band gap semiconductor, but 
the difference between its indirect and closest direct band 
gap is only 0.14 eV (Levinshtein et al., 2001). The band 
gap values for GaAs at 0 K and 300 K is 1.52 and 1.42 
eV respectively (Bhojani et al., 2016). Unlike Si and Ge, 
GaAs is a direct band gap semiconductor (Bhojani et al., 
2016).  

All matter should ultimately transition into a metallic 
phase at sufficiently high pressure due to the electron 
delocalization induced by electron orbitals being forced to 
overlap. Thermodynamically, the most energetically 
stable structural phase has the lowest value of the Gibbs 
free energy G, 
 

TSPVEG −+=                       (1) 
 

for a system of volume, V with an entropy, S at 
temperature, T and P is the pressure. A pressure induced 
phase transformation takes place when an increase in 
pressure causes a different structural phase of the 
system to have a lower Gibbs free energy, hence making 
it more energetically favorable. When silicon and 
germanium are compressed, they undergo a similar 
sequence of structural transitions because of their 
chemical similarity. Upon compression to above 70 kbar, 
Ge   undergoes   a  sluggish  transition  into  a  tetragonal  

 
 
 
 
being complete at 120 kbar (Holzapfel, 1984; 
Habanyama et al., 2022; Habanyama and Samukonga, 
2021). 

Studies have shown that a similar transition in Si 
occurs in the pressure range 90 to 160 kbar (Holzapfel, 
1984). Yu et al. (2006), found that the phase transition 
pressure for GaAs was around 163 kbar, using first 
principle calculations. In the current study we investigate 
the energy band structure responses of Si, Ge and GaAs, 
to applied high pressure within a range that does not 
exceed the transition pressure at which the materials 
would undergo a lattice structural phase change. 

Paul (1998) introduced the so called, “empirical rules of 
pressure coefficients” which apply to semiconductors 
having crystal structures of the diamond and zinc-blende 
types. In a modified form, the rule states that for a fixed 
inter-band transition (excitation across the band gap), the 
pressure coefficient is almost constant for tetrahedral 
coordinated semiconductors and the dependence is 

mainly on the type of transition. For a transition type,  v 

→  c the pressure coefficient is around 10 meV/kbar, for 

a transition, v → Lc it is of the order of 5 meV/kbar and 

for a transition, v → Xc it is between -1 to -2 meV/kbar. 

Here, , L and X represent high symmetry points in the 
first Brillouin zone while the subscripts ‘v’ and ‘c’ stand for 
the top edge of the valance band and the bottom edge of 
the conduction band, respectively. The validity of this 
‘‘empirical rule’’ is tested in this work, for the materials 
studied. We also determine the comparative amount of 
the hydrostatic pressure induced deformation in the 
electronic band structure that originates from the valence 
or conduction bands. In heterostructures, quantum 
confinement of electrons and holes cannot be properly 
assessed without this information (Wei and Zunger, 
1999). 

Some quantum mechanical concepts have been used 
to explain our results, including known results from works 
executed using crystal symmetry based analysis. 
However, the quantum mechanical concepts of symmetry 
of Brillouin zones and the change of zonal structure have 
not been discussed in this work; these concepts are 
competently discussed by Bir and Pikus (1974). 
 
 
Computational methods 
 

Our computation is based on total energy minimization using a 
plane-wave basis in the density functional theory (DFT) formalism 
(Kohn and Sham, 1965; Hohenberg and Kohn, 1964), which was 
applied self-consistently to the valence electrons. Crystal structures 
and pseudopotentials of the constituent elements were the only 
inputs in our calculations. Structural optimization procedures and 
the determination of electronic properties were simulated using the 
Quantum Espresso software (Giannozzi et al., 2009). The 
interaction between electrons and the ion cores were calculated 
using the Andrea Dal Corso-type ultra-soft pseudo-potentials 
(USPP) for Si, Ge, Ga and As, which have the valence electronic 
configurations, 3s²3p², 3d¹⁰4s²4p², 3d104s24p1 and 3d¹⁰4s²4p³, 
respectively. The  correlation between electrons and their exchange  
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interaction were modelled using the Generalized Gradient 

Approximation (GGA-PBE) (Perdew et al., 1996). A 161616 
Monkhorst Pack (Monkhorst and Pack, 1976) k-point mesh 
sampling was used in the Brillouin zone with a 70 Ry plane-wave 
cut-off energy. The convergence of the self-consistent field (SCF) 
threshold was within 10-3 eV/atom.  

We initially made the assumption that the crystal structures were 
being studied at absolute zero of temperature. The pressure in this 
ground state can be determined by varying, 
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the volume of the unit-cell and computing the rate of change of the 
internal energy, following Murnaghan’s equation of state 
(Murnaghan, 1944), 
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is used to convert the pressure dependence to a relative change in 
the lattice constant a, where B0 is the bulk modulus while a0 is the 
equilibrium lattice constant at zero hydrostatic pressure. It was then 
proceed to determine how the band gap energy, Eg varies with 
increasing pressure. This is done by first looking at how the band 
gap energy varies with the logarithm of the unit-cell volume, V. A 
common definition of the hydrostatic volume deformation potential, 
ag is (Bouhafs et al., 2000; Dridi et al., 2002). 
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This is in fact a relative deformation potential between the 
conduction and valance bands but the absolute deformation 
potential at an energy state Ei is, 
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It is the dependence on pressure of the energy gap that is usually 
measured experimentally as opposed to the values of the 
deformation potential ag. However, the hydrostatic pressure 
coefficient, dEg/dP is related to ag by (Bouhafs et al., 2000; Dridi et 
al., 2002), 
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Where B is the bulk modulus. Since the hydrostatic pressure 

coefficient,  = dEg/dP (in eV/kbar) is a first-order derivative, we 
can extend this definition to a second-order hydrostatic pressure 

coefficient,  = d2Eg/dP2 (eV/kbar2) such that the band gap energy, 
Eg(0) with no applied hydrostatic pressure is related to that at any 
pressure, Eg(P) through the quadratic pressure function (Bouhafs et 
al., 2000; Dridi et al., 2002), 
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Finally, we look at the variation of the band gap energy with respect 
to both pressure and temperature changes. The relationship was 
then used (Rodríguez, et al., 2009)) 
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Where T is the temperature, while k (eV/K) and c (K) are 
temperature coefficients. We can include temperature dependence 
at T = 0 K in Equation (7) as follows, 
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Where, Eg(0,0) is the energy band gap in eV at P = 0 kbar and T = 
0 K. We combine Equations (8) and (9) to get, 
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It is well known that the band gaps with no pressure applied at 
absolute zero of temperature, that is Eg(0,0), of the semiconductors 
Si, Ge and GaAs are underestimated by the Generalized Gradient 
Approximation. This error was corrected in our calculation by 
introducing a constant off-set in each DFT calculation, similar to the 
addition of a Hubbard U factor in the GGA+U method (Dudarev et 
al., 2008; Liechtenstein et al., 1995). It should be pointed out that 
the addition of a constant factor to the initial band gap energy, 

Eg(0,0) does not affect the values of the energy derivatives,  = 

dEg/dP and  = d2 Eg/dP2. Our presented approach does not study 
the symmetry of Brillouin zones. Symmetry methods in similar work 
were used by by Bir and Pikus (1974). 

 
 
RESULTS 

 
Lattice structures of silicon, germanium and gallium 
arsenide were simulated, and the visualization of various 
aspects of the structure was done using the Xcrysden 
software package (Kokalj, 2003), as shown for GaAs in 
Figure 1. Electronic band structures were simulated for 
silicon, germanium and gallium arsenide at various 
hydrostatic pressures below their respective structural 
phase transition pressures. Figures 2a and b show the 
band structures simulated for Si and Ge. 

It is seen in Figure 2a that the indirect band gap of Si is 
along the path between the high-symmetry points Γ and 
Χ of the Brillouin zone. The valence band maximum is at 
Γ and although the conduction band minimum is not 
exactly at X, the inter-band (band gap) transition is along 
the k-path from Γ to X. We will therefore classify silicon 
as having an inter-band electronic transition of the type, 

v → Xc. Figure 2b shows the valence-band maximum at 

Γ and the conduction band minimum at L signifying a v 
→ Lc inter-band transition type across the indirect band 
gap of Ge. Figures 3a and b show the band structures 
simulated for GaAs at pressures of 0.01 and 105.02 kbar 
respectively. 

Figure 3a shows that the valence-band maximum and 
conduction band minimum both occurs at Γ, which is 

indicative of a v →  c inter-band transition type. It is 
observed  in  Figure  3b  that the valence-band maximum  
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Figure 1. Simulation of the zinc blende crystal structure of GaAs. 
 
 
 

 
 

Figure 2. a. Indirect electronic band structure for Si in the vicinity of the energy gap; b. 
Indirect Ge band gap structure throughout the first Brillouin zone. 

 

 

(a) 

 

 
(b) 
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Figure 3. a. Direct electronic band structure for GaAs throughout the first Brillouin zone at 0.01 kbar; b. GaAs band 
structure at 105.02 kbar. 

 
 
 

remains at the center of the Brillouin zone, that is, the Γ 
point, and maintains its curvature as pressure increases. 
However, as the pressure increases, the bottom of the 
conduction band, at the Γ point, significantly opens out in 
curvature and its minimum shifts slightly towards the X 
symmetry point, therefore making the band gap slightly 

indirect. We will, however, consider GaAs as having a v 

→  c inter-band electronic transition type. Figures 4a, b 
and c show the relationship between the hydrostatic 
pressure and the lattice parameters as expressed by 
Equations 2 and 3 for Si, Ge and GaAs respectively. 

The band gap energies for all the three semiconductors 
were plotted against the pressure and a quadratic fit to 
Equation (9) was drawn through the data points in order 

to obtain the values of, Eg(0,0),   and  . Figures 5a, b 
and c show these respective plots for Si, Ge and GaAs 

The values was obtained, Eg(0,0) = 1.170 eV,  =   -

0.0018191 eV/kbar and  = 1.1263×10-6 eV/kbar2 from 
the quadratic fit to Equation (8) for silicon. The results for 

germanium are, Eg(0,0) = 0.742 eV,  =   0.013724 

eV/kbar and  = -2.4445×10-5 eV/kbar2, while those for 

gallium arsenide are, Eg(0,0) = 1.519 eV,  =   0.011944 

eV/kbar and  = -2.0745×10-5 eV/kbar2. 
A C++ program was written and used to calculate the 

variation of the band gap energy with respect to both 
pressure and temperature changes using Equation 10.  
This was done for silicon using the temperature 
coefficients k = 4.73×10-4 eV/K (Levinshtein et al., 2001) 
and c = 636.0 K (Levinshtein et al., 2001). The 
temperature coefficients used for germanium were, k = 
4.8×10-4 eV/K (Levinshtein et al., 2001) and  c  =  235.0 K 

(Levinshtein et al., 2001), while those for gallium 
arsenide. were, k = 5.405×10-4 eV/K (Bhojani et al., 2016) 
and c = 204.0 K (Bhojani et al., 2016). The results for Si, 
Ge and GaAs are plotted in Figures 6a, b and c 
respectively. 
 
 

DISCUSSION  
 

The authors result show that silicon and germanium 
remain as indirect band gap semiconductor at both low 
and high applied hydrostatic pressures below their 

structural phase transition pressures, with v → Xc  and 

v → Lc inter-band electronic transition types respectively, 
as seen in Figures 2a and b. Figures 3a and b show that 

GaAs has a direct band gap with a v →  c inter-band 
transition type at low pressure but as the pressure 
increases, the minimum of the conduction band at the Γ 
point, shifts slightly towards the X symmetry point, 
therefore making the band gap indirect. This reflects a 
weakening of the directional character of the Ga-As inter-
atomic bonds held by the sp3 hybridized orbitals as the 
pressure increases. Tetrahedral coordinated 
semiconductors in the zinc blende and diamond 
structures are characteristic of covalent inter-atomic 
bonding of sp3 hybridized orbitals.  Orbitals that have the 
same energy form shells in which the value of the 
principle quantum number, 𝑛, which takes the positive 
integer values, n = 1, 2, 3, e.t.c., is the same. The value 
of the angular momentum quantum number, 𝑙 defines the 

subshells. The values of 𝑛 and 𝑙 are related by, l = 0, 1, 
2… n-1  and  subshells  are given the letters 𝑠, 𝑝, 𝑑, 𝑓, etc,  

 

(a)                                                                   (b) 
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Figure 4. Graphs of the hydrostatic pressure as a function of the lattice parameters for (a) silicon, (b) 
germanium and (c) gallium arsenide. 

 
 
 
respectively. The electronic configurations of Si, Ge, Ga 
and As are, [Ne]3s²3p², [Ar]3d¹⁰4s²4p², [Ar]3d104s24p1 

and [Ar]3d¹⁰4s²4p³ respectively, where [Ne] and [Ar] are 
the configurations of neon and argon respectively. These 
three semiconductors all have s and p outer shell or 
valance electrons which lead to the diamond structure-
type, sp3 hybridized. The diamond structure-type of 
covalent bonding can be explained, using Figure 7a 
which shows two paired electrons of opposite spins in 
both the 1s and 2s states of free carbon atoms. On the 
other hand, the 2p electrons in the 2px and 2py states are 
not paired.  

During the formation of a diamond crystal, a 2s electron 
is excited to the 2pz state, meaning that the 2s, 2px, 2py 
and 2pz states  then  have  one  unpaired  electron  each. 

These states with the same shell energy (n = 2) undergo 
hybridization, meaning that they form four similar hybrid 
or mixed sp3 orbitals as shown in Figure 7b. The four 
tetrahedral coordinated covalent bonds between 
neighboring atoms in the diamond crystal are formed by 
these hybrid orbitals.  Figure 5 shows that the bandgap 
energy reduces with an increase in pressure for Si 
whereas for Ge and GaAs it increases with pressure. In 
order to explain these results, an illustration was made in 
Figure 8, where we image isolated silicon atoms coming 
together to form a crystal. The atoms have an electronic 
configuration [Ne] 3s²3p² in the ground state. The outer 
shell electrons are in the n = 3 shell. This shell contains s 
(l = 1), p (l = 2) and d (l = 2) subshells. The d levels are 
not  indicated in the electronic configuration because they 
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Figures 5. a. Plot of the silicon band gap energy against pressure with a quadratic fit drawn through the data 
points; b. Germanium band gap energy plot against pressure; c. Plot of the gallium arsenide band gap energy 
against pressure.    

 
 
 
are not occupied by any electrons in the ground state of a 
free silicon atom but they are present in the n = 3 shell 
and have a large pressure induced effect on the 
electronic band structure of silicon. 

If the number of silicon atoms is N, then there are 4N 
electrons in the original isolated atomic n = 3 shell, with 
2N in the 3s states and 2N in the 3p states. Figure 8 
shows that as the interatomic distance is decreased, the 
discrete 3p and 3s levels broaden out into bands and 
eventually they merge into a single band of mixed 3s-3p 
energy levels at the ‘cross over point’, containing 8N 
states. As the atomic spacing becomes closer to the 
equilibrium interatomic separation, r0 of a silicon crystal, 
this band divides into two giving rise to the conduction 
and valence bands, with an energy gap, Eg separating 
them. This band splitting also separated the 8N electronic 

states such that 4N of them go up to the conduction band 
while the other 4N remain in the lower the valence band. 
The 2N electrons which were in the 3s subshell and the 
2N electrons which were in the 3p subshells undergo sp3 
hybridization and all end up in the 4N states of the 
valence band; the 4N states in the conduction band 
remain empty. 

The d states which were in the same n = 3 shell as the 
s and p states of the free atoms are still present above 
the s and p states in the conduction band of the silicon 
crystal. In tetrahedral coordinated crystals like silicon, the 
p orbitals and d orbitals have similar representations at 
certain high symmetry points in the Brillouin zone, such 
as the X points. These similarly represented orbitals can 
therefore couple and repel each other with a quantum 
mechanism   similar   to   that   expressed   by   the  Pauli  
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Figures 6. Variation of the band gap energy with temperature at different pressures using Equation (10) for, (a) silicon, 
(b) germanium and (c) gallium arsenide. 

 
 
 

 
 

Figures 7. (a) Two paired electrons of opposite spins in the 1s and 
2s states. The 2p electrons in the 2px and 2py states are not paired. 
(b) The 2s, 2px, 2py and 2pz states have one unpaired electron each 
and undergo hybridization to form four similar sp3 hybrid orbitals. 
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Figure 8. Isolated silicon atomic 3s and 3p states forming energy bands as 
a function of interatomic separation, in crystal formation. 

 
 
 

exclusion principle; this is the p-d coupling effect (Wei 
and Zunger, 1999; Lee et al., 1985). 

This p-d coupling increases with decreasing bond 
length between the atoms, which is what happens as the 
hydrostatic pressure is increased. In Si, where the p-d 
repulsion effect is large, the negative value of the 
pressure coefficient is as a result of the quantum level 
repulsion of the lowest states in the conduction band at 
the X symmetry point of the Brillouin zone by the 
unoccupied 3d states with the same principle quantum 
number.  

The fact that the bandgap energy does not reduce with 
an increase in pressure for Ge and GaAs indicates that 
the p-d coupling effect is not strong in Ge and GaAs. To 
explain why the bandgap energy actually increases with 
pressure in Ge and GaAs, if we drew diagrams like the 
one in Figure 8 for the bands arising from the free atomic 
states of Ge and GaAs as a function of interatomic 
distance, they would be similar to the ones for Si. As can 
be seen in Figure 8, the position of r0 is such that any 
reduction in the atomic spacing due to increased 
pressure would shift r0 to the left, hence increasing the 
separation between the valence and conduction bands, 
the origin of this effect is detailed in Figure 9, in terms of 
the relative energy shifts of the band edges with 
increased pressure.  

The comparative amount of the hydrostatic pressure-
induced deformation in the electronic band structure 
originating from the valence or conduction bands was 
determined. To accomplish this, Figures 9a, b, and c are 
presented with plots of the valence band maximum and 
the conduction band minimum as a function of atomic 
separation for Si, Ge, and GaAs, respectively. 

It can  be  seen  from  Figure  9  that  in  all  cases  the 

valence band maximum energy increases with the 
reduction in the lattice separation, that is, it increases 
with pressure. It is also seen that the same applies to the 
conduction band minimum. However, the rate of increase 
(negative slope) in energy of the conduction band 
minimum with reduction in atomic separation (increase in 
pressure) is greater than that of the valence band 
maximum for Ge and GaAs, while it is less than that of 
the valence band maximum for silicon due to p-d 
coupling. An interesting question posed in the literature 
by Wei and Zunger (1999) is whether the band gap Eg 
depends linearly with pressure or with ln(V), where V is 
the unit cell volume. This is in view of the implications of 
Equations 4 and 6 through the bulk modulus, which is 
known to increase as volume decreases. Figure 10 
shows our calculated values of the band gap energy in 
relation to ln(V) for Si, Ge and GaAs. 

It was observed from Figure 10 that the band gap 
energy, Eg is, to a good approximation, a linear function 
of ln(V), for Ge and GaAs but not for Si. According to 
Equation 4, this implies that the hydrostatic volume 
deformation potential, ag, is constant for Ge and GaAs. 
On the other hand, Figure 5 shows that Eg is, to a good 
approximation, a linear function of pressure for Si but not 
for Ge and GaAs. Our results are consistent with those 
reported by Wei and Zunger (1999), who carried out 
some related work on GaAs. They concluded further that 
for GaAs, dEg/dp decreases as the pressure increases, 
while 2dEg/dln(V) slightly increases with a decrease in 
volume.  

Figures 6a, b, and c show that the band gap energy 
reduces with an increase in temperature at all values of 
the pressure for all three semiconductors. This is 
expected since the energy  of  electrons  in  a  material  is  
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Figure 9. Plots of the of the valence band maximum and the conduction band minimum as a function of the atomic 
separation for, (a) Si, (b) Ge and (c) GaAs. 

 
 
 

bound to rise with temperature, hence reducing the 
amount of extra energy required for inter-band transitions. 
The extra energy required to cross the band gap 
threshold represents the reduced band gap energy. The 
limitations of our method mainly arise from the non-
incorporation of the symmetry of Brillouin zones in our 
analysis. Our method does not allow for the consideration 
of certain symmetry properties and changes of zonal 
structure. Such applications have been demonstrated by 
Sun et al. (2010). 

 
 
Conclusion 
 
The   electronic    energy    band    structures   of   silicon,  

germanium and gallium arsenide have been studied 
under high pressure and different temperatures. The 
pressure coefficients have been determined in their 

respective order as:  =  -0.0018191 eV/kbar and  = 

1.1263×10-6 eV/kbar2;  = 0.013724 eV/kbar  and  = -

2.4445×10-5 eV/kbar2;  =   0.011944 eV/kbar and  = -
2.0745×10-5 eV/kbar2. An atomistic insight was presented 
into the question of how much of the band gap 
deformation, due to hydrostatic pressure, originates from 
the valence or the conduction band. The rate of increase 
in energy of the conduction band minimum with an 
increase in pressure is greater than that of the valence 
band maximum for Ge and GaAs, while it is less than that 
of the maximum of the valence band for silicon. The 
negative value of the first-order pressure coefficient  in  Si  
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Figure 10. Calculated values of the band gap energy in relation to ln(V) for, (a) Si, (b) Ge and (c) GaAs. 

 
 
 
is unique among the Group IV elements (Hameed and   
AL-Sheikh, 2011). We explain this as being due to the 
presence of d states which are in the same shell as the s 
and p valence electron states of the silicon atom and are 
present above the s and p states in the conduction band 
of the crystal. The p and d orbitals have similar 
representation at the X high symmetry points in the 
Brillouin zone, and they therefore couple and exhibit 
quantum level repulsion between each other. The d 
levels hence repel the conduction band at Xc, forcing it 

downwards in energy relative to the maximum of the 
valence band at Γv, and this p-d coupling increases with 

hydrostatic pressure. The hydrostatic volume deformation 
potential, ag, is found to be constant for Ge and GaAs. 

Our results show that the bandgap energy reduces with 
an increase in temperature at all values of the pressure 
for all three semiconductors. These results are in good 
agreement with those reported in the literature (Hameed 
and AL-Sheikh, 2011).  One  of  Paul’s  (1998)  “empirical 

rules of pressure coefficients” states that for an inter-

band transition of the type,  v →  c as is the case in 
GaAs, the pressure coefficient is around 10 meV/kbar, 
Our result for GaAs is 11.944 meV/kbar, which agrees 
with the rule. Another of the empirical rules states that for 

a transition of type, v → Lc as is the case in Ge, the 
pressure coefficient is around 5 meV/kbar. Our result for 
Ge is 13.724 meV/kbar, which is within an acceptable 10 
meV/kbar order of magnitude above the generalised 5 

meV/kbar predicted for all, v → Lc transitions. A third 

empirical rule states that for a transition, v → Xc, as is 
the case in Si, the pressure coefficient is between -1 or -2 
meV/kbar. Our result for Si is -1.8191 eV/kbar which 
agrees perfectly.    
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