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The current trend in manufacturing technology is considered by two main items automation and 
flexibility. Flexible manufacturing system (FMS) is one of the most identified systems that include both 
automation and flexibility criteria. It comprises three principle elements: computer controlled machine 
tools, an automated material handling system and a computer control system. One of the automated 
materials handling equipment in FMS is automated guided vehicles (AGVs). Integrated scheduling of 
AGVs and machines is an essential factor contributing to the efficiency of the manufacturing system in 
FMS environment. Previously, genetic algorithm (GA) is considered as a heuristic method to solve AGV 
scheduling problem. GA may not be able to achieve the global optimum due to premature convergence 
because of control’s lack on its operators parameters. Fuzzy logic controller (FLC) is proposed to 
control the behavior of GA during solving the scheduling problem of AGVs. This paper presents a job-
based GA that is based on job sequencing. Through the optimization, the FLC is used to control the GA 
operators (crossover and mutation rate) simultaneous to solve the AGV scheduling problem. 
 
Key words: Flexible manufacturing system, automated guided vehicle, simultaneous scheduling, genetic 
algorithm, fuzzy logic controller, optimization. 

 
 
INTRODUCTION 
 
Flexible manufacturing system (FMS) is an integrated 
computer-controlled complex arrangement of automated 
material handling devices and numerically controlled 
machine tools that can simultaneously process medium-
sized volumes of a variety of part types (Stecke, 1983). A 
set of some numerical controlled machine centers, 
load/unload station and automated storage/retrieval 
system (AS/RS) which connecting through an automated 
guided vehicle (AGV) system are major constituent of 
FMS. The most advantages of FMS through the flexibility 
are dealing with machines and tool breakdowns, changes 
in schedule, product mix and alternative routes (Raj et al., 
2007). 

AGVs are among various advanced material handling 
techniques that are finding increasing applications in 
today's computer integrated manufacturing (CIM) settings. 
 
 
 
*Corresponding author. E-mail: m.badakhshian@gmail.com. 

AGVs are battery-powered driverless vehicles and 
capable of transporting a variety of part types from point 
to point that is controlled and addressed by computer and 
move along wire guide paths (flowpath), or by magnetic 
or optic guidance. They can be interfaced to various other 
production storage equipment and controlled through an 
intelligent computer control system. This flexibility and 
compatibility make AGVs a feasible alternative to 
traditional material handling methods especially in flexible 
manufacturing environments. According to Ganesharajah 
et al. (1998), the first large-scale manufacturing 
application of an AGV system occurred in 1974 at a 
Volvo plant in Sweden and the largest application in 
North America is at the truck assembly plant of General 
Motors (GM) in Canada, where 1,012 AGVs transport 
truck engines, bodies and chassis across the 2.7 million 
square feet plant. 

Several researchers have emphasized the importance 
of the material handling system for the efficiency of the 
overall system.  Attempts  to  improve  the  AGVs’  design 
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process are reported in literature. Transportation systems 
in FMSs, in general, have sufficient excess capacity to 
allow machines and vehicles to be scheduled quite 
independently. Neglecting transportation times at the 
tactical planning level, as well as lack of appropriate 
coordination between a schedule for operations and 
machines and a timetable for vehicle movement, can 
have severe consequences. An area of equal importance 
is that of making scheduling of AGVs an integral part of 
the overall scheduling activity. Obviously, an increase in 
the performance of the FMS would be expected because 
of the coordination of the machine and the material 
handling system during the machine-scheduling phase. 

The purpose of this paper is to present a meta-heuristic 
hierarchical method for optimization of AGV scheduling in 
FMS environment. The FMS environment is the same as 
introduced by Reddy and Rao (2006). It includes a 
load/unload (L/U) station, number of machine that has 
known sufficient input/output buffer space that is provided 
at each machine, and number of AGVs that are available 
at L/U station which carry a single unit load at the time 
and move along shortest path. A genetic algorithm (GA) 
application that is controlled by fuzzy logic controller 
(FLC) and used for the AGV scheduling problem will be 
presented. The objective is the minimization of makespan 
denoted by Cmax. The makespan is defined as the time 
interval between the pickup of the first part from the L/U 
station to the finishing time of the last operation.  
 
 
LITERATURE REVIEW 
 
Recent decades researchers have addressed the AGV 
design and control in FMS environment. Ganesharajah et 
al. (1998) reviewed some of the most important example 
of applying the AGVs. They showed that AGVs are 
applicable in a wide diversity of service and 
manufacturing systems. FMS performance can be 
increased by better synchronization and scheduling of 
production machines and material handling equipment. 
Scheduling is defined by allocating the confined 
resources to tasks overtime and is a determination 
process that is relative to operations, time, cost and other 
company objectives (Reddy and Rao, 2006). Scheduling 
of machines and other resources such as vehicles, 
personnel, tools etc., has been done with a certain 
objective to be either minimized or maximized. Egbelu 
and Tanchoco (1984) introduced the first simulation-
based experimental studies that address the scheduling 
of AGVs. Nevertheless, their system is not an FMS, as 
such, machine scheduling is not directly considered. 
Sabuncuoglu and Hommertzheim (1992) developed a 
simulation model to test different scheduling rules. Their 
results indicate that scheduling AGVs is as important as 
scheduling machines. They propose a dynamic 
dispatching algorithm for scheduling machines and AGVs 
in an FMS. The scheduling process task is to ascertain  

 
 
 
 
the start/end times for the individual operations to 
optimize a specified performance measure. The 
minimization of makespan objective is the most 
frequently used because it is directly related to the 
efficient utilization of resources (Ganesharajaha et al., 
1998). 

Ganesharajah et al. (1998) merged various lines of 
research related to AGVs and considered problem arising 
in flow path design, fleet sizing, job and vehicle 
scheduling, dispatching and conflict free routing. Chen 
and Ho (2001) described multi-objective evolutionary 
optimization of FMS including machines, computers, 
robots and AGVs. Jawahar et al. (1998) proposed an 
AGV scheduling integrated with production in FMS by 
their heuristic algorithm. They considered an FMS that is 
required to process various types of job loaded at 
discrete points of time at different processing stations. 
Le-Anh and Koster (2006) comprehensively presented a 
review on design and control of AGVs. They addressed 
mostly key related to guide-path design, determining 
vehicle requirement, vehicle scheduling and other related 
options to AGV. Corréa et al. (2007) proposed a hybrid 
constraint programming approach and mixed integer 
programming approach for scheduling and routing of 
AGVs. They used constraint programming for scheduling 
and mixed integer programming for routing sub problems. 

Recent years utilizing heuristic methods for AGV 
scheduling are noteworthy by authors that the most 
illustrious is GA. Ulusoy et al. (1997) addressed a GA 
approach to the simultaneous scheduling machine and 
AGVs. Abdelmaguid et al. (2004) developed hybrid 
GA/heuristic approach to the simultaneous scheduling of 
machines and AGVs.  Jerald et al. (2006) presented 
adaptive GA for simultaneous scheduling of parts and 
AGVs in an FMS environment. Reddy and Rao (2006) 
designed a hybrid multi-objective GA for simultaneous 
scheduling of machine and AGVs in FMS. Subbaiah et al. 
(2009) addressed the problem of simultaneous 
scheduling of machines and two identical AGVs in an 
FMS to minimize makespan and mean tardiness. For 
solving this problem, they proposed a sheep flock 
heredity algorithm. Babu et al. (2009) proposed a 
differential evolution algorithm for scheduling of machines 
and AGVs. This study focuses on the optimization of 
scheduling of AGV integrated machines in FMS 
environment by using FLC-based GA. 
 
 
CONFIGURATION AND OPERATION ENVIRONMENT 
OF FMS 
 
Considering the aforementioned factors, the following 
assumptions were used to formulate the scheduling 
problem in FMS. The FMS environment assumed for this 
problem is the multi-machine FMS type, which ensures 
that the route and vehicle requirement or fleet sizing is 
fixed and distinct.  However,  the  types  and  numbers  of
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Figure 1. Sample FMS layout. 

 
 
 
machines are known. There is sufficient input/output 
buffer space at each machine. AGVs transfer materials, 
pallets and fixtures between workstations and L/U 
stations. An L/U station serves as a distribution center for 
parts not yet processed and as a collection center for 
parts finished. There is sufficient input/output buffer 
space at the L/U station. 

The AGV system needs a large number of factors to be 
considered in their designing and controlling problems. 
As the main concern of the current research is on the 
scheduling problem of the AGVs, some of the main 
factors are assume that made it facile for the author to 
focus on his research. The main assumptions of the 
simultaneous scheduling of machines and AGVs 
problems are: 
 
1) No manufacturing or transportation operation can be 
preempted. 
2) The machines can process one part at a time.  
3) Each pallet and thus the AGVs can carry only one part 
at a time and at most, parts are allowed in the system 
simultaneously. 
5) Transportation times of loaded and unloaded (empty) 
vehicles are equal. 
6) The scheduling is made of assignment periods, which 
may have unequal time durations. 
 
During each period, the assignment of operations to 
machines and vehicles to routes (pair of machines) is 
considered fixed. It is assume that during the scheduling, 
each machine must  complete  the  assigned  operations, 

and the vehicles must complete the associated 
transportation tasks determined at the machine 
loading/part routing level. At the beginning, all the 
vehicles wait in the central depot, where the central 
depot, loading and unloading stations are located at one 
place. Furthermore, number of jobs and number of 
operations belonging to each job is known. The number 
of AGVs is given and the transportation times of AGVs 
are known and real-time issues such as traffic control, 
congestion, machine failure or downtime, scraps, rework 
and vehicle dispatches for battery charger are ignored 
here and left as issues to be considered during real-time 
control. A typical layout of the proposed FMS 
environment by Reddy and Rao (2006) is shown in 
Figure 1. There are six machine centers, an L/U station 
and two AGVs handle of the material between six 
machine centers and L/U station. Furthermore, Table 1 
shows the sample job set details, time of processing and 
the operations sequencing per every job in this FMS 
environment. 
 
 
FLC BASED GA FOR AGV SCHEDULING 
OPTIMIZATION 
 
John Holland and his students (1975) as artificial 
adaptive systems that simulate natural evolution 
developed GAs. As GA is able to search very large 
spaces effectively and efficiently, it is increasingly use to 
attack inherently intractable problems called NP-hard 
problems.  A   large   portion    of    machine    scheduling
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Table 1. Job set details. 
 

Job No. M PT M PT M PT M PT M PT M PT 

1 3 1 1 3 2 6 4 7 6 3 5 6 

2 2 8 3 5 5 10 6 10 1 10 4 4 

3 3 5 4 4 6 8 1 9 2 1 5 7 

4 2 5 1 5 3 5 4 3 5 8 6 9 

5 3 9 2 3 5 5 6 4 1 3 4 1 

6 2 3 4 3 6 9 1 10 5 4 3 1 
 

Six jobs each with 6 operations are to be processed on 6 machines Job along with 
the machine number (M) and processing time (PT) are given alternatively. 
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Figure 2. The essential modules for FGA method in AGV scheduling. 

 
 
 
problems belongs to the class of NP-hard problems. 
Thus, optimizing routines suggesting for such problems 
explode rather quickly with increasing problem size. GA 
operates on a population of potential solutions applying 
the principle of survival of the fittest to produce better and 
better approximations to a solution. GA search and find 
local optima through problem solving process to obtain 
the global optimum. When the GA cannot achieve the 
global optimum and sticks in local optima, premature 
convergence may occur (Herrera et al., 1999). 

FLCs are known for their applicability on controllable 
systems with complicated mathematical model. The 
human expertise and knowledge would be useful to 
increase the capabilities of GA. This expertise generally 
is vague, incomplete or ill-structured. FLC-based GA 
proposes to use an FLC whose inputs are any 
combination of GA performance measures or current 
control parameters and whose outputs are GA control 
parameters (de Brito et al., 2006). FL and GA integration 
have been accomplished by two different approaches; 
the application of GA in optimization and search  problem 

related fuzzy systems, and the use of fuzzy tools or fuzzy 
logic-based techniques for modeling different GA 
components or adapting GA control parameters, 
respectively, with the goal of improving performance. 
Generally, this type of integration is called fuzzy GA 
(FGA) (Herrera et al., 1999). Figure 2 shows the main 
modules of proposed methodology and their relationship. 
 
 

AGVs scheduling algorithm 
 

Jobs are scheduled based on the operation sequence derived by 
the GA. Initially, AGVs carry jobs from the load/unload station to the 
respective workstations where the first operations are scheduled. 
AGVs perform two types of trips, a loaded trip where it carries a 
load and a deadheading trip where the vehicle moves to pick up a 
load. Deadheading trip can start immediately after the delivery and 
vehicle demand at different workstations are considered and the 
subsequent assignments are made. If both AGVs are available, the 
task should be assigned to the earliest available vehicle. If no 
vehicle is available, compute the earliest available times of the 
AGVs and make the assignment. If the vehicle is idle and no job is 
ready, identify the operation that is going to be completed early and 
move the vehicle to pick up that job. This type of vehicle scheduling
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Figure 3. Simultaneous AGV and machine scheduling flow-chart (Reddy and Rao, 2006). 

 
 
 
methodology helps in reducing the waiting times and thus, helps in 
improving the resource utilization and the throughput. 

First schedule the operations according to the chromosome 
sequence, and then find which AGV will reach the L/U station or the 
machine with demand point early. Move the AGV from the current 
point to request point for its next assignment. Wait for the AGV until 
the job is ready if there is no job ready. Move the job to the machine 
at which the next operation is scheduled. If the machine is busy, 
AGV drops the job at the machine buffer; job will be loaded after the 
machine becomes free. Load the job on the machine if the machine 
was free. Check if all the operation is completed and the scheduling 
is finished; otherwise find which AGV will reach L/U station or the 
machine with demand point early. The following steps need to be 
done during the simultaneous scheduling of machines and AGVs: 
 
1) Schedule the operations according to the sequenced string. 
2) Find which AGV reaches the L/U station or the machine with 
demand point earlier. 
3) Move the AGV from the current point to request point for  its  next 

assignment. 
4) Wait the AGV until the job is ready if there is no job ready. 
5) Move the job to the machine at which the next operation is 
scheduled. 
6) If the machine is busy, AGV drops the job at the machine buffer; 
job will be loaded after the machine becomes free. 
7) Load the job on the machine if the machine was free. 
8) Check if all the operation is completed. 
 
Figure 3 shows the prescribed scheduling flow-chart. 
 
 
Job-based GA 
 
The most important items in job-based GA are initial population, 
crossover operator and mutation operators. These operators should 
check and ignore the chromosomes that do not observe the 
operation sequencing in every job during the operation. Table 2 
shows details on the proposed job sequence of the FMS example.
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Table 2. Representation of Jobs in GA. 
 

No. of job No. of operation Machines Representation 

1 1 2 3 4 5 6 M3 M1 M2 M4 M6 M5 1 2 3 4 5 6 

2 1 2 3 4 5 6 M2 M3 M5 M6 M1 M4 7 8 9 10 11 12 

3 1 2 3 4 5 6 M3 M4 M6 M1 M2 M5 13 14 15 16 17 18 

4 1 2 3 4 5 6 M2 M1 M3 M4 M5 M6 19 20 21 22 23 24 

5 1 2 3 4 5 6 M3 M2 M5 M6 M1 M4 25 26 27 28 29 30 

6 1 2 3 4 5 6 M2 M4 M6 M1 M5 M3 31 32 33 34 35 36 

 
 
 

Accepted chromosome 
13,1,7,19,8,9,25,26,14,15,27,16,28,2,3,31,20,10,4,21,17,11,5,22,29,30,23,32,33,34,18,6,24,35,12,36 

 
Denied chromosome 
13,1,7,19,8,9,25,26,14,15,27,16,28,2,3,31,20,10,4,21,18,11,5,22,29,30,23,32,33,34,17,6,24,35,12,36 

 
 

 

Figure 4. Denied and accepted chromosomes. 

 
 
 
Permutation representing method is implemented in current 
research, for example, operation number four of second job 
operated on sixth machine is represented as 10 in chromosome 
string.  

In initial population, the chromosomes are composed considering 
the sequence of operation in each job. Hence, the chromosomes, 
which do not observe the sequence of operations, should be 
ignored. For example, operation six of third job cannot appeare 
prior to operation five of third job. The accepted and denied 
chromosome in operation sequencing of third job is shown in Figure 
4. The number seventeen that presents the operation five of third 
job cannot appear after number eighteen that present the operation 
six of third job. The initial population of proposed GA is constructed 
through checking the sequence of operation during the generating 
of initial population, which means make the genes in the 
chromosome one by one by observing the sequence of the 
operation in jabs. The first position in chromosome should be 1, 7, 
13, 19, 25 or 31 randomly. If number seven occupies the first 
position, then second position can be filled up among 1, 8, 13, 19, 
25 or 31. The remaining positions of the chromosome should be 
filled using the same method.  

Makespan or the production completion time of all jobs (produced 
integrated and simultaneously) is one of the items that evaluate the 
FMS performance. In the proposed GA, the makespan is evaluated 
in each generation as fitness function. The makespan value for 
each chromosome, Ci for i =1 to n, where n is the number of jobs 
for the time period of scheduling horizon should be calculated. For 
each operation of the job, two main periods are considered; the 
traveling times and operation processing time. To calculate Ci, the 
transportation and processing time of all the operations of the job 
need to be calculated. The calculation of each job completion time 
is calculated where Ti,j is the transportation time required for the 
operations of the job and Pi,j denotes the processing time of the 
operation on the corresponding machine. Summation of the 
aforementioned time provides the Ci for ith job. The greatest value 
among the Ci , i = 1 to n, denoted the makespan. 

 
Operation completion time =  = Tij + Pij 

jth operation ith job (traveling time + operation processing time) 

Job completion time Ci =  

Makespan = Max (C1; C2; C3; . . .  Cn) 

 
The crossover is introduced as the main operator of the GA, which 
is in charge of exploitation of the search space. Two parents are 
selected through crossover operator and some of the genes of each 
parent mixed with the other parent to create two new offspring. Job-
based crossover is used which never offends the precedence 
constraints. A job is selected randomly and the operations of the 
selected job are directly copied in the respective positions of their 
offspring. As they are directly copied, the positions are not changed 
during the crossover process and thus, the offsprings generated will 
maintain the precedence relation. The job-based crossover, which 
is proposed by Reddy and Rao (2006) is explained. Job-based 
crossover operation algorithm are as follows: 

 
1) Randomly select one job from the given job set. 
2) Mark the operations of the selected jobs on the parent strings. 
3) Copy the operations of the selected jobs of parent 1 onto the 
matching positions of offspring 2. 
4) Copy the operations of the selected jobs of parent 2 onto the 
matching positions of offspring 1. 
5) Fill the unfulfilled positions of the offspring 2 by the operations of 
the unselected jobs from left to right according to their order of 
appearance in parent 2.  
6) Fill the unfulfilled positions of the offspring 1 by the operations of 
the unselected jobs from left to right according to their order of 
appearance in parent 1 (Reddy and Rao, 2006). 

 
Figure 5 shows an example for job-based crossover during the 
scheduling by GA in an FMS environment by three machines and 
two AGVs, which hold the three jobs. 

The mutation is an important operator for the GA procedure, 
which explores the search space and mainly prevents the 
premature convergence. In most of the reviewed literature in the 
area of the order-based GA, usually a general swap mutation 
operator is used, and if the results of the mutation operator offend 
the required order of the genes, a repair function is used  to  correct
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Figure 5. Job based crossover. 

 
 
 

 
 

Figure 6.  Job-based mutation. 

 
 
 
the order of the genes. In this research, a new mutation operator is 
designed which observe the precedence of the operations in its 
procedure. “Job-based mutation” which is introduced by the author 
never offends the precedence constraints. The number of required 
mutations is determined by the mutation rate. Through, the 
proposed mutation operator, two operations of two jobs are 
selected for replacing mutually but must check considering 
operation sequencing in these two jobs. At first, randomly select 
two operators from one of the given chromosome that they are in 
different job. Secondly, change the position of two operators if in 
new position is between before and after operators otherwise the 
mutation does not occur. Job-based mutation operation algorithm 
are as follows: 
 
1) Randomly select two job from the given job set. 
2) Randomly select an operation from the first selected job (Mu1). 
3) Randomly select an operation from another selected job (Mu2). 
4) Check the position of G (Mu1-1) that is should be before the 
position of Mu2. 
5) Check the position of G (Mu1+1) that is should be after the 
position of Mu2. 
6) Check the position of G (Mu2-1) that it should be before the 
position of Mu1. 
7) Check the position of G (Mu2+1) that it should be after the 
position of Mu1. 

8) Put the Mu1 in the position of Mu2 in new chromosome. 
9) Put the Mu2 in the position of Mu1 in new chromosome. 
10) Fill the unfulfilled positions in chromosome by the other genes, 
which they are remaining.  

Figure 6 shows the job-based mutation during the scheduling by 
GA. 
 
 
FLC for GA 
 
The choice of parameters for GAs, such as crossover and mutation 
rates is a rather hard task, due to the enormous possibilities of 
variations in the modeling of the problem and fitness function. 
Traditional GAs base themselves upon the generation of several 
random factors in the creation of the crossover and mutation. 
Therefore, two executions with the same initial parameters of 
execution can produce significantly different results.  

The prime objective of using FLCs for GAs is to determine the 
important parameters of GAs. These parameters can be used 
during various generations of the GA, for a better performance of 
GA. The FLC receives the indices of GA periodically as its inputs 
and through its rule base decides about the GA parameters.  

Table 3 shows the details of the rules of the designed FLC 
module. As it is stated by Herrera and Lozano (2003) and Brito et 
al. (2006), in cases  that  the  GA  reached  an  acceptable  area  of
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Table 3. Proposed fuzzy rule base for the FGA method. 
 

Rule IF BV And FBV And MR And CR 

1  Good  Low  High  High 

2  Good  Average  High  Average 

3  Good  High  High  Low 

4  Average  Low  Average  High 

5  Average  Average  Average  Average 

6  Average  High  High  Average 

7  Poor  Low  Low  High 

8  Poor  Average  Average  High 

9  Poor  High  High  High 

 
 
 

 
 

Figure 7. Four of the best makespan values for the first test case (six machines and two AGVs). 

 
 
 
optimum values [in terms of best values (BV)], the controller 
generally should increase the mutation rate to provide a better 
coverage of the search space by increasing the exploring abilities of 
the GA. In most of these situations, the number of survived 
individuals should be increased; hence, the crossover rate is 
increased in such cases. Rules number one to three indicates this 
situation, which usually happens after a reasonable number of 
generations. 

The second set of the rules is defined for average values of the 
BV for the current population. In such occasions, usually the GA 
should increase its exploring abilities if the premature convergence 
is too probable in this situation. Generally, the mutation rate is 
increased slightly and the crossover rate should be changed due to 
the diversity indicators of the last generations, which are 
determined by the fuzzy BV (FBV) variable. “Poor” values for BV 
usually obtained in early iterations of the GA. In such cases, 
crossover rate should be kept high to exploit more of the search 
space. The mutation rate in this occasion follows the diversity 
indicator of the last generations. 
 
 
RESULTS 
 
In this paper, the problem of simultaneous  scheduling  of 

machines and identical AGVs in FMS was addressed by 
considering the minimization of the makespan objective. 
An FLC-based GA coding scheme is developed for the 
studied problem.  

From the testing of the proposed GA and the adopted 
operators, for first test case with six machine and two 
AGV, the best fitness or the optimal makespan by fuzzy 
operators (crossover, mutation) is achieved at 227 while 
it was between 280 to 295 before optimization. Figure 7 
shows the experimentation results obtained for the 
proposed AGV scheduling problem in which the FLC 
control and protect the GA to stick in local optima. This 
Figure 7 shows four of the best makespan values for the 
test case.  

The population size is set to 40, number of generations 
equals to 1000 and tournament selection scheme was 
used in both methods. Mean of BV of makespan time for 
10 times run, standard deviation and best makespan 
among all the results are shown in Table 4. 

Figure 8 shows the best sequencing for AGV 
scheduling. As shown in Figure 8,  number  seven  is  the
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Table 4. Best, overall mean and standard deviation for GA and FGA methods in 
first test case. 
 

Solution method Best makespan Mean of BV Standard deviation 

GA  241 246.1 5.37 

FGA 227 232.6 3.41 

 
 
 

 The last chromosome  

13, 31, 14, 32, 25, 33, 1, 2, 15, 7, 3, 16, 26, 4, 27, 5, 8, 34, 9, 10, 19, 35, 28, 20, 21, 22, 6, 11, 17, 23, 18, 29, 12, 24, 36, 30. 

 
 

 

Figure 8. The best sequencing for AGV scheduling for first test case. 
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Figure 9. Four of the best makespan values for the second test case (three machines and two 
AGVs). 

 
 
 
first gen in the last chromosome. It shows that the first 
AGV should bring the job number two to machine number 
two for operation number one. The operations are 
sequenced in one job. It was mentioned that operation 
four of job three came after operation three of job three in 
last chromosome. 

In second test case, there were three machines which 
were linked by ladder layout, and two AGVs those were 
moving between the machines and L/U station and 
handle material between them during the production. IN 
this experiment, the population size was set to 40 and 
number of generation was set to 100. Figure 9 shows 
four of the best makespan values for the second test 
case. 

Table 5 shows three various scheduling chromosomes 
which obtained the same result. These scheduling strings 

are obtained through various runs of the FGA. The 
optimized makespan for all these chromosomes is equal 
to 63. This is obvious that while the optimum scheduling 
string for the operations does not occur in a single 
location, various runs of the same FGA method, with the 
same characteristics would not provide the same results. 
 
 
DISCUSSION 
 
In this paper, the proposed methodology attempt to 
enhance the performance of GAs using FLCs in their 
application in the area of AGV scheduling in FMS. In 
simultaneous scheduling of machines and AGVs, a 
sequence of operations scheduled, due to their 
precedence  and   due   dates,    afterwards    the    AGVs
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Table 5. Different chromosomes with same makespan for second test case. 
 

Test case Chromosome Makespan 

First 7 8 4 1 5 2 9 6 3 63 

Second 7 4 8 1 5 2 9 6 3 63 

Third 7 8 1 4 5 2 9 6 3 63 
 
 
 

 
 

Figure 10. Comparison of various combinations of population sizes and number of generations. 
 
 
 

assigned to the operations in a way that total production 
and traveling time of the sequence of operations 
minimizes. The literatures proposed GA as a powerful 
tool for the optimization of the simultaneous scheduling of 
machines and AGVs in FMS environments. They 
proposed the algorithms for the scheduling and some of 
the main operators for the GA such as crossover and 
mutation operators. In the simultaneous scheduling of 
machines and AGVs, the performance of GA is enhanced 
by using a new application of FGA methodology. 
Moreover, the mutation operator for the GAs is modified, 
so the GA process for this kind of problem is much easier 
now. In reviewed literature, the researchers proposed to 
do a repair after each mutation process, while, the 
mutation operator is designed in a way that the mutation 
is executed if and only if it does not violate the 
precedence of the operations. The performance of the 
proposed method compared with the performance of the 
GAs in the same test cases. The results indicate that 
FLCs can enhance the performance of GA in this kind of 
scheduling problem. 

It is noteworthy that although this problem has stated in 
an FMS environment, it is also a valid problem in other 
environments, which used AGVs as their material 
handling system such as automated container terminals. 
For further researches, the authors propose to focus on 
other input variables for the FLCs such as the frequency 
of the similar chromosomes and mean value of the 
population. Study on the other parameters of GA which 
can be controlled by the FLCs, such  as  population  size, 

stop criterion and survive percentage is suggested. 
The performance of GA is highly affected by selection 

of its initial parameters. The FLC is proposed to control 
the mutation and crossover rates. The main advantage of 
using FLCs to control the key parameters of the GA is 
that, the main GA developer focuses on the development 
and improvement in the GA operators, instead of wasting 
efforts to select these key parameters. The FLCs can be 
developed and modified for any other application in the 
scheduling problems. The other researchers in the past 
literature did not provide unique approach to select the 
initial parameters for the GA. They proposed various 
combinations of the initial parameters based on their 
experience. 

To evaluate the performance of proposed method, two 
test cases are designed. Three main experiments have 
been designed for these test cases. In second test case 
as mentioned earlier, the little change in the sequence of 
the operations may results in a meaningful increase or 
decreases in obtained makespan of the sequence. On 
the other hand, many sequences can be found which has 
the same makespan. Both of these reasons may result in 
a difficult search process to find the optimal value of the 
scheduling problems. 

To select a proper combination of population size and 
number of required generations as the stop criterion of 
the GA, the second experiment has been designed for 
the second test case. In this experiment, the FGA method 
using tournament selection scheme was used to solve the 
scheduling problem. The results are shown in Figure 10.  



 
 
 
 
The problem is run for seven times, with seven various 
combinations of population size and number of 
generations. The combinations were selected based on 
the experiments of the author, and the reviewed literature 
in the same realm of knowledge. The results showed that 
increasing the size of population does not assure the 
modeler to obtain a better result, even by increasing the 
number of generations, which was examined through 
comparing the results of 200*200 and 200*300 for 
population size and number of generations, respectively. 
It was obvious that population size of 40 and number of 
generations of 1000 outperforms the other combinations. 
Decreasing the population size more than 40 does not 
guarantee to obtain a better result, as may be cleared by 
comparing the results for 30*2000 and 40*1000 as the 
population size and number of generations, respectively. 

The general results of these experiments show that the 
FGA cannot outperform the GA method with constant 
mutation and crossover rates, in small size problems, 
while it obtains a reasonable good solution of large scale 
problems. With reference to the standard deviation of the 
best makespan obtained in ten runs for all the test cases, 
the FGA may find the optimal values of makespan in 
most of its runs. It means that in the same number of 
runs of GA and FGA methods, FGA may find the optimal 
value with a higher probability than GA method. Totally, 
the probability of finding the optimal value under the FGA 
method is higher than GA method. 
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