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This paper investigates some properties of Takagi-Sugeno (T-S) fuzzy Hopfield neural networks. First,
we prove that there exists a unique solution of the T-S fuzzy Hopfield neural network. Second, we
determine a condition for input-to-state stability (ISS) of the T-S fuzzy Hopfield neural network. These
results will be useful to analyze dynamic behavior of fuzzy neural networks.
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INTRODUCTION

In this paper we investigate some properties of the
following Takagi-Sugeno (T-S) fuzzy Hopfield neural
network:

Fuzzy rule i:

IF wisp, and ... o, is 4, THEN

x(t) = Ax(t)+W.o(x(2)) + J (1), 1)

x(t) =[x,@)...x, ()] € R"

where is the state vector,

A =diag{-a,,....,—a;, }€ R™" (a,, >0,k=1,..,n) s
nxXn

the self-feedback matrix, W eR is the connection

weight matrix,

P(x(1)) =[4,(x(1)) ... §,(x()]" : R" > R" s the

nonlinear function vector satisfying the global Lipschitz
L, >0 J@)eR" is

(j=1,...,s)

condition with Lipschitz constant

an external input vector, "/ is the

premise

*Corresponding author. E-mail: hironaka@snut.ac.kr. Tel: +82-
2-970-9011.

Abbreviations:
stability.

T-S, Takagi-Sugeno; ISS, input-to-state

variable, #i (=1....r j=L....8) g the fuzzy set
that is characterized by membership function, 7 is the
number of the IF-THEN rules, and $ is the number of the
premise variables. Using a singleton fuzzifier, product
fuzzy inference, and weighted average defuzzifier, the
system (1) is inferred as follows:

(0= Y @LAX) +We) + T O
@

where a)=[a)1,..,,a)s],

woR =011 @=1...7) is the membership

function of the system with respect to the fuzzy rule i h
can be regarded as the normalized weight of each IF-

THEN rule and it satisfies (@)= 0 X (@) =1
Basically, the Takagi-Sugeno (T-S) fuzzy models are
based on using a set of fuzzy rules to describe nonlinear
systems in terms of a set of local linear models that are
smoothly connected by fuzzy membership functions
(Takagi and Sugeno, 1985).The T-S fuzzy models can be
used to represent some complex nonlinear systems by
having a set of neural networks as its consequent parts.
Some stability problems for T-S fuzzy neural networks
have been investigated (Huang et al., 2005; Ali and
Balasubramaniam, 2009; Li et al., 2009a, b; Ahn, 2010,
2011a, 2011b; Balasubramaniam and Chandran, 2011).
In this paper, we present some properties of T-S fuzzy

h@=w(@/) w(@



Hopfield neural networks. We show that the T-S fuzzy
Hopfield neural network has a unique solution. In
addition, a new input-to-state stability (ISS) condition is
derived for this neural network. The presented analysis
opens a path for application of fuzzy neural networks to
nonlinear control.

EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we show the existence and uniqueness of
the solution of the T-S fuzzy Hopfield neural network (2)
in the following theorem:

Theorem 1. The T-S fuzzy Hopfield neural network (2)

with the initial state x(0) has a unique solution.

(t)e R" (t)e R"

Proof. For all <1 and <2 , we have:

r

Y hifw) iz (t) + Wiz

i=1

+J]Z

1)+ Wid(z(t) +J(t)

— d(za(t))]]

<Y Ihatw)llAilllzn(6) = 22+ Y i) NIWill6(ea
i=1 i=1

It is clear that:

OShi(a))Sl, i=1,..,r.
Thus, we have:
Eh MAsz () + Wig(z1 () + J(2)] - Z 1)+ Wid(za(t)) + (1)
i=1
éZHAJH\zl<r>—z2<r>\|+Z\\H@\M:mt)—za(t‘)H
i=1 =1
= {Z 4+ Ls ) He}hlm - zft)|.
=1 i=1 (3)
Let f(X(t),t)=Zi:,h,-(w)[A,-X(t)+W,¢(X(t))+J(t)]_ Then, the
relation (3) becomes:
IN(s1(8)'s) = gl < {Z|HH+Y ZHM H}H 1(s) =39l
(4)
Since:

SonAdl + Lo > ||W:||} = 0,
=1 =1
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fx(®),0) is a global Lipschitz function. According to
Theorem 3.2 in (Khalil, 2002), the T-S fuzzy Hopfield
neural network (2) has a unique solution. This completes
the proof.

ISS CONDITION

We introduce the following definitions:

V:R,—R

Definition 1. A function 20 js g K function if

it is continuous, strictly increasing and y(0)= 0. It is a

K. tunction ifitis a K function and also 75) = as
§—>00

Definition 2. A function 7 Rs0XRso = Reo ig 4 KL

function if, for each fixed £ 20 the function BC.1) is a
K function, and for each fixed § 20, the function
B(s.) is decreasing and Bs,) =0 as [ =™,

The notion of ISS can be described as follows:

Definition 3. The systemx(t):f(x(t)’”(t)), where

x(H)e R u(ne R , is said to be input-to-state stable if

there exist a K function 49 and a KL function 'B("'),

such that, for each input u(?) and each initial state x(0) ,
it holds that (Sontag, 1990; Jiang et al., 1994;
Christofides and Teel, 1996; Sontag, 1998; Angeli and
Nesic, 2001):

=)l < B(llw(0)]].£) +~ ( sup HH(M-JH) )
O<p<t (5)

for each 120 Now we derive an ISS condition of the T-
S fuzzy Hopfield neural network (2) in the following
theorem:

Theorem 2. The T-S fuzzy Hopfield neural network (2) is
input-to-state stable if;

o 1 [w=2P] % )
W3]l < —/ . IPI<L,  siso0, P=P'>o,
L\ Pl 2

(6)

where P satisfies the Lyapunov equation:

ATP+PA ==yl . i=1,.,r

for

V(t) = x" (t)Px(1) ,

Proof. We consider the function
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T
P =P >0 _|istime derivative along the trajectory of (2)
is given as:

V(t) = Zh,(m{ — vl (t)x(t) + 22T () PWid(x(t)) + i.r"‘(t]P‘m)}.
=]

(7)
By Young's inequality (Arnold, 1989), we have:
227 (t)PWig(a(t)) < 27 (t)Pz(t) + (PWid(x(t)))T P~ (PWid(x(t)))
< IPIlie(I? + IPIWil o ()]
<Pl + LENPIIWE ] l() 1 8)
and
20T (t)PI(t) < zT (t)Px(t) + (PJ(t))L PL(PJ(t))
< IPIl=@N* + IPI-T ()1 ©)
Substituting (8) and (9) into (7), we finally obtain:
V(t) = Zh:(w){ = (v = 201PI - ZZIPIIW:IP) llz(e)* + HPIHU(HHZ}
=1
== hile) (% = 2P = LEIPNIWEIP) =) + 11PN TP
= (10)

Defining:

a(r) =Y hi(w) (% = 2P| = LIPIWi]*) 72,
i=1

o(r) = | P,

o V) < —allz@OIN+HUTOD V) 0 s,

Lyapunov function (Sontag and Wang, 1995) if a() and

o() are class K. functions. As defined, o) satisfies
this condition. Hence, for the system (2) to be ISS, it is

= 2| Pl — LEIIP|||Wi?) > 0

required  that (~ which

implies:

v — 2|\ P

(W] < :
"= "=z

P <E‘
1Pl <

for L= Lol This completes the proof.

CONCLUSION

In this paper, we prove the uniqueness of the solution of
T-S fuzzy Hopfield neural networks. Furthermore, we
establish a condition for the weight of the connection
matrix of T-S fuzzy Hopfield neural networks, in order to
guarantee ISS. It is expected that these results can be
extended to a general class of neural networks.
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