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This paper investigates some properties of Takagi-Sugeno (T-S) fuzzy Hopfield neural networks. First, 
we prove that there exists a unique solution of the T-S fuzzy Hopfield neural network. Second, we 
determine a condition for input-to-state stability (ISS) of the T-S fuzzy Hopfield neural network. These 
results will be useful to analyze dynamic behavior of fuzzy neural networks. 
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INTRODUCTION 
 
In this paper we investigate some properties of the 
following Takagi-Sugeno (T-S) fuzzy Hopfield neural 
network: 
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Abbreviations: T-S, Takagi-Sugeno; ISS, input-to-state 
stability. 
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 is the fuzzy set 
that is characterized by membership function, r  is the 

number of the IF-THEN rules, and s  is the number of the 
premise variables. Using a singleton fuzzifier, product 
fuzzy inference, and weighted average defuzzifier, the 
system (1) is inferred as follows:  
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 is the membership 

function of the system with respect to the fuzzy rule i . ih  
can be regarded as the normalized weight of each IF-

THEN rule and it satisfies 
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Basically, the Takagi-Sugeno (T-S) fuzzy models are 
based on using a set of fuzzy rules to describe nonlinear 
systems in terms of a set of local linear models that are 
smoothly connected by fuzzy membership functions 
(Takagi and Sugeno, 1985).The T-S fuzzy models can be 
used to represent some complex nonlinear systems by 
having a set of neural networks as its consequent parts. 
Some stability problems for T-S fuzzy neural networks 
have been investigated (Huang et al., 2005; Ali and 
Balasubramaniam, 2009; Li et al., 2009a, b; Ahn, 2010, 
2011a, 2011b; Balasubramaniam and Chandran, 2011). 
In this paper, we present  some  properties  of  T-S  fuzzy  



 
 
 
 
Hopfield neural networks. We show that the T-S fuzzy 
Hopfield neural network has a unique solution. In 
addition, a new input-to-state stability (ISS) condition is 
derived for this neural network. The presented analysis 
opens a path for application of fuzzy neural networks to 
nonlinear control.  
 
 
EXISTENCE AND UNIQUENESS OF SOLUTION 
 
In this section, we show the existence and uniqueness of 
the solution of the T-S fuzzy Hopfield neural network (2) 
in the following theorem:  
 
Theorem 1. The T-S fuzzy Hopfield neural network (2) 

with the initial state 
(0)x

 has a unique solution.  
 

Proof. For all 
n

Rtz ∈)(1  and 
n

Rtz ∈)(2 , we have:  
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relation (3) becomes:  
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Since: 
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)),(( ttxf
 is a global Lipschitz function. According to 

Theorem 3.2 in (Khalil, 2002), the T-S fuzzy Hopfield 
neural network (2) has a unique solution. This completes 
the proof.             
 
 
ISS CONDITION 
 
We introduce the following definitions:  
 

Definition 1. A function 00
: ≥≥ → RRγ

 is a Κ  function if 

it is continuous, strictly increasing and 
0=(0)γ

. It is a 

∞Κ
 function if it is a Κ  function and also 
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 as
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Definition 2. A function 000
: ≥≥≥ →× RRRβ

 is a KL 

function if, for each fixed 0≥t , the function 
),( t⋅β

 is a 

Κ  function, and for each fixed 0≥s , the function 
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 is decreasing and 
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The notion of ISS can be described as follows:  
 

Definition 3. The system
))(),((=)( tutxftx&

, where 
mn RtuRtx ∈∈ )(,)(

, is said to be input-to-state stable if 

there exist a Κ  function 
)(⋅γ

 and a LΚ  function 
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, 

such that, for each input 
)(tu

 and each initial state 
(0)x

, 
it holds that (Sontag, 1990; Jiang et al., 1994; 
Christofides and Teel, 1996; Sontag, 1998; Angeli and 
Nesic, 2001): 
 

                                 (5)  
 

for each 0≥t . Now we derive an ISS condition of the T-
S fuzzy Hopfield neural network (2) in the following 
theorem: 
 

Theorem 2.  The T-S fuzzy Hopfield neural network (2) is 
input-to-state stable if; 
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where P  satisfies the Lyapunov equation: 
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0>=
T

PP . Its time derivative along the trajectory of (2) 
is given as: 
 

               (7) 
 
By Young's inequality (Arnold, 1989), we have: 
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 Substituting (8) and (9) into (7), we finally obtain:  
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Defining:  
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Lyapunov function (Sontag and Wang, 1995) if 
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 and 

)(⋅θ
 are class ∞Κ

 functions. As defined, 
)(⋅θ

 satisfies 
this condition. Hence, for the system (2) to be ISS, it is 

required that , which 
implies: 
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for 
ri 1,...,=

. This completes the proof.             
 
 

 
 
 
 
CONCLUSION 
 
In this paper, we prove the uniqueness of the solution of 
T-S fuzzy Hopfield neural networks. Furthermore, we 
establish a condition for the weight of the connection 
matrix of T-S fuzzy Hopfield neural networks, in order to 
guarantee ISS. It is expected that these results can be 
extended to a general class of neural networks. 
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