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This paper demonstrates the use of potential functions of molecular modeling in mass-spring systems. 
In mass-spring systems, force acting on each mass point is determined by the spring length between 
linked mass-points. In molecular modeling, forces are calculated using bond length (spring length), 
bond angle and stretch-bond interactions. Molecular modeling therefore provides more accurate force 
function. Molecular modeling, however, works on mesh free structures, particles. In the developed 
model, potential calculations of particles are adapted to triangulated models as in mass-spring 
systems. The potentials of mass-points are then calculated using the connectivity of triangle mesh 
based on potential functions of molecular mechanics. Simulation results show that proposed method 
produces realistic simulations. 
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INTRODUCTION 
 
Steadily improving imaginary graphic applications 
became indispensable part of nowadays technology in 
which Computer Graphics’ model deformation has signifi-
cant role. Model deformation implies simulating physical 
behaviors of objects, which has an elastic and plastic 
structure. Modeling and simulation deformable objects 
have broad range of application areas such as character 
animation, simulating natural phenomenon and surgery 
simulators. There are two distinct approaches used in 
deformation simulations: non-physically based and physi-
cally based. Non-physically based approaches, e.g. free 
form, have their limitation in realistically representing their 
real word counterparts. The deformation characteristic of 
the object in these methods is not taken into account. 
Physically based methods include physical properties of 
the object and well known equations like Newton’s force 
law. 

There have been numerous physically based techni-
ques developed in computer graphics (Nealen et al., 
2005). Finite element method (FEM) and mass-spring 
systems (MSS) are the two popular physically-based 
methods. FEM models the mechanical properties (stress-
strain relationship) and requires solution of partial different- 
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tial equations. FEM, therefore, is computationally expen-
sive and is not always suitable for interactive applica-
tions. Researches have developed techniques to improve 
accuracy (Wu et al., 2001) and speed (Debunne et al., 
2001) of the FEM. A less accurate but faster method is 
MSS, in which a discrete model consists of mass-point 
connected by springs, is simulated using Hooke’s Law 
(Baraff and Witkin, 1999). There are number of works re-
ported on improving accuracy (Duysak and Zhang, 2003; 
Lloyd et al., 2007) and speed (Kang et al., 2000) of MSS. 
Another physically based method is known as particle 
systems. 
Particle systems, which were used in early works for 
modeling fuzzy objects such as clouds, were adapted to 
be used in physically based animation of solids and 
liquids (Tonnesen, 1991). Particle systems work based 
on potential energies of each particle, which is the sum of 
the pair-wise potential energies between particles. Parti-
cle systems are very famous for molecular modeling in 
physics. Molecular modeling, also known as molecular 
mechanics, is a technique to calculate energy and 
geometry of molecules (Rapaport, 2004). In this tech- 
nique, a force field, which describes functional form and 
parameter sets of potential energy of a system of 
particles (generally atoms), is used. A basic form of force 
field includes forces between bonded atoms and between 
non-bonded atoms.  



 
 
 
 

A good example of use of molecular modeling in defor-
mation simulation is reported in (Pithioux et al., 2005). 
They used Lennard-Jones potential formulation to 
calculate forces between atoms. Their work is a classical 
application of particle systems and can not be used with 
mass-spring systems. We developed a new scheme 
which combines particle systems and mass-spring 
system. We applied the method of molecular modeling to 
objects which is represented by triangles. The triangles 
have vertices connected by springs as in mass-spring sy-
stems. Each mass-point is treated as an atom and spring 
is bond between two atoms. Then, bond stretching and 
angle bending formulas of molecular modeling are used 
to calculate internal forces.  
 
 
MATERIALS AND METHODS 
 
Mass-spring systems  
 
Mass-spring systems have been widely used in computer graphics 
applications because of their simplicity, speed and their acceptable 
accuracy. In mass-spring simulations the geometry of a deformable 
object is represented by a 3D mesh consisting of n  nodes, which 
are interconnected by m  links. Each node in the mesh represents 
a virtual mass and is called a mass-point. Displacements of these 
mass-points describe the deformation of the object. It is assumed 
that the springs are weightless. These springs define the distance 
relationships between mass-points because the deformation 
characteristic is embedded into the 3D mesh by spring parameters; 
namely stiffness and damping. A simple representation of such a 
system is shown in Figure 1. 

In mass-spring systems, the mass-point forces consist of forces 
from the environment and forces generated by the springs 
themselves. The total force exerted on each mass- is: 
 

( )f f f k fexttotal k d= + +
                      

(1)
                                                                                     

 

 
where extf  represents external forces from environment  and kf  

and df  are the spring forces due to spring stiffness and damping. 

Since the external force is assumed to be known (e.g. applied from 
user), the internal force generated between mass-points (atoms) is 
given as (Mesit et al., 2007), 
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Where; ax  and bx  are position vectors of mass-points, av  and 

bv  are velocity vectors of the mass-points, 0r  is the spring rest 

length (distance between mass-points) and k  and d   are the 
spring and viscosity (or damping) constants respectively.  
Equation 2 indicates that mass-spring systems use a linear func-
tion based on the distance of the mass-points. Angle information of 
bonded (linked) mass-points is not included in this function.  
 
 
Potential energies from molecular modeling for triangles 
 
In  molecular  modeling,  the  potential of  each  atom  is  calculated  
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Figure 1. (a) a mesh structure consists of mass-points (atoms) and 
springs (bonds) is used to model deformable object and (b) ideal 
spring whose stiffness and damping are represented by a resistor 
and capacitor respectively 
 
 
 
based on atomic interaction between atoms that are linked by 
covalent bonds and between non-bonded (non-covalent). Covalent 
bonds in molecular modeling are similar to springs in mass-spring 
systems. Similarly, atoms in molecular modeling correspond to 
mass-points in mass-spring systems. Molecular modeling or particle 
systems are designed based on mesh free dynamics (Tonnesen, 
1991). Mass-spring systems however work on triangulated models. 
Most of the modeling and simulation application use triangulated 
models.  

In this work, instead of using mesh free representation, we 
assume that deformable object consists of particles (atoms) that are 
connected by springs (bonds) forming triangles. Internal forces in 
this model occur when a particle (an atom) and its neighbors inte-
racted to each other. There are two preservations in the proposed 
model: the first one is bond distance preservation between two 
bonded particles and the second one is preservation of angle 
formed by three atoms. Potential energy functions of atoms that are 
bonded by triangle mesh are given in following sections. 
 
 
Potential energy due to bond stretching 
 
The bond representation of a triangular model is given in Figure 2a. 
In this model the covalent links are springs and vertices of the 
triangle are the atoms. The potential energy for bond stretching and 
compressing can be defined (Rapaport, 2004; Burket and Allinger, 
1982) based on Hooke’s Law as, 
 

1,2 pairs

2
0

1
2

( )b b bk r rΦ = −�                                                       (3)                                            

 

Where bk is the bond force constant, br  
is the bond current dis-

tance and 0r  
is bond equilibrium length. Any deviation from 

equilibrium length will change the potential energy. 
 
 
Potential energy due to bond angle bending 
 
Angle bending energy is also included in molecular dynamics. The 
angle is defined by there atoms forming the triangle as in Figure 2b. 
The angle potential is given as, 
 

2
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1
2

(cos cos )
bond
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Figure 2. Triangle element: building block of deformable object. (a) Vertices are considered as atoms while the 

links between atoms are bonds with bond length rb, (b) The bond angle, θ  , is formed by three atoms of a 
triangle and (c) bond stretch-bend interaction. 

 
 
 

Where kθ  is the angular constant, cosθ  is the bond current 

angle and 0cosθ  is the equilibrium bond angle. Any changes on 

equilibrium angle will change the bond angle potential.
 
 

 
 
Potential energy due to stretch-bend interactions 
 
A cross term potential function is also employed in molecular me-
chanics to handle situations where changes in bond angle forces 
the two bonds forming the angle to stretch to alleviate the strain. 
The cross term potential function given in equation 5 therefore 
includes bond stretching and bending terms. 
 

0 0
0, ( )[( ) ( ) ]a bb

triangle
Cos Cos r r r rθ θ θΦ = − − + −�

       

(5)

    

                                            

                                                      
                                                                                                        

Where a   and b represent bonds to a common atom. Cross-term 
effect is illustrated in Figure 2c. 
 
 
Total internal forces and system dynamics  
 

The potential energy of a particle (an atom or a mass-point) Φ
 
is 

obtained summing of potential energies between bonded atoms. 
 
 ,b bθ θΦ= Φ + Φ + Φ                                           (6)                         

                                                           

The force f
 

acting on individual atom (mass-point) is then 

calculated using negative gradient of the potential energy: 
 

f Φ= −∇
                                                                                

(7) 

 
There are three potential energies defined (equations 3, 4, 5) for 
the proposed model. The internal forces for each potential energy 
are derived. Details of the derivation of these force functions are 
given in Appendix. Force due to bond length changes (bond 
stretch) is: 

0 0 0
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Where i , j  and k  are indices of atoms and vectors ijr
→

, ikr
→

and
 

jkr
→

 
show force directions for bonds between atoms. Bond current 

distances are ijr , ikr and jkr . Initial bond distances are 

represented by 
0

ijr , 
0

ikr and 
0
jkr . 

 

Bond angle bending force can 

be obtained as: 
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The force function caused by stretch- bend interaction is derived as: 
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Total internal force of the proposed method is the sum of the forces 
due to bond stretching, angle bending and stretch-bond 
interactions, 
 

int ,b bf f f fθ θ= + +
                                                            

(11)
                                                       

 
If we compare the internal force function of proposed method 
(equation 11) with that of mass-spring systems (equation 1), 
proposed method provides a more physically realistic force function 
representing characteristics of deformable objects. 
 
 
RESULTS AND DISCUSS�ONS 
 
Simulation algorithm needs to handle collisions which can 
occur between the particles of the deformable object or 
with the simulation environment. We used an algorithm 
described in (Provot, 1997) to handle any possible colli-
sion. Once the internal forces are known (equation 11) 
one of the many well known  integration  method  can  be 



 
 
 
 

 
 
Figure 3. Syringe insertion is simulated using Phantom 
Omni haptic device 

 
 
 
used, e.g. Euler explicit integration. In this work, the 
Verlet Integration Method is used to compute positions 
and velocities of points in deformable model. In the Verlet 
algorithm, ( )x t defines the position, ( )v t is the velocity 

and  ( )
( )

F t
a t

m
=  is the acceleration at time t of a point 

with mass m. Iteration time step is defined with h∆ . The 
Verlet integration method is given as (Teschner et al., 
2004), 
 

2 4( ) 2 ( ) ( ) ( ) ( )x t h x t x t h h a t O h+ ∆ = − − ∆ + ∆ + ∆  

2( ) ( )
( ) ( )

2
x t h x t h

v t O h
h

+ ∆ − − ∆= + ∆
∆                           

(12)                                                                                                                                                   

 
In the first equation, the calculation of positions is 
independent of velocities but requires knowledge about 
positions at time t h− ∆ . Computational cost of the Verlet 
Integration method is similar to Euler’s method.  
We created our simulation environment using C++,  
OpenGL and  Haptic Device APIs as a software part with 
a Phantom Omni haptic device as hardware as shown in 
Figure 3. ] 

We first simulated syringe insertion to a human model. 
The model consists of 1886 atoms (vertices) and 868 
bonds (springs). We were able perform interactive real-
time simulations. Figure 4 shows a syringe deforming the 
model. 

The second simulation is performed by pulling a moon 
model by a hook, Figure 5a. The moon model consists of 
3198 atoms and 9504 bonds. Real-time performance is 
also achieved for this simulation. 

A third simulation is also provided to show multiple inte-
ractions, Figure 5b. A simple net is hit by a ball and a tool 
from different sides while it is pulled down from one of its 
atom. As can be seen from the Figure, three  different  in- 
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Figure 4. Syringe insertion simulation; a) before the simulation 
and b) after deformation is performed. 

 
 
interactions are handled successfully by the simulation 
algorithm. 

In this work, we incorporate mass-spring systems and 
molecular dynamics. Force functions are derived from po-
tential functions of molecular modeling. Developed 
algorithm works on triangular meshes unlike classical 
particular systems. Previous works only used Lennard- 
Jones potential formula for calculating  internal  forces. In 
this work we use bond stretching, angle bending and 
stretch-bend interaction formulas for internal force 
generation. We successfully applied our algorithm to 
various deformable object simulations. The proposed 
algorithm works in real-time as mass-spring systems but 
provides physically more accurate results because of the 
accurate internal force generation based on molecular 
modeling. 
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Figure 5. (a) A moon model is pulled by a hook. (b) A simple net is faced with several 
interactions, a tool and a ball. 

 
 
REFERENCES 
 
Baraff D, Witkin A (1999). Physically based modeling course notes, 

Course 36, Siggraph’99. 
Burket U, Allinger NL (1982). Molecular Mechanics, Am. Chem. Soc. 
Debunne G, Desbrun M, Cani MP, Barr A (2001). Dynamic real-time 

deformations using space and time adaptive sampling. Computer 
Graphics proceedings Aug 2001, proceeding of Siggraph’01. 

Duysak A, Zhang JJ (2003). Identification of simulation parameters 
using neural networks. 6th International conference on Computer 
Graphics and Artificial Intelligence pp. 189-199. 

Kang YM, Choi JH, Cho HG (2000). Fast and stable animation of cloth 
with an approximated implicit method. Proceedings of the Computer 
Graphics International (CGI’00) pp. 247-255.  

Lloyd BA, Szekely G, Harders M (2007). Identification of spring 
parameters for deformable object simulation. IEEE Trans. Visuali-
zation Comput. Graphics, 13(5): 1081-1094. 

Mesit J, Guha R, Chaudhry S (2007). 3D Soft Body Simulation Using 
Mass-Spring Systems with Internal Pressure Force and Simplified 
Implicit Integration. J. Comput. 2(8). 

Nealen A, Müller M, Keiser R, Boxermann E, Carlson M (2005). 
Physically Based Deformable Models in Computer Graphics 
Proceedings of Eurographics pp. 71-94. 

Pithioux M, Lopez O, Meier U, Monserrat C, Juan MC, Lcaniz M (2005). 
ParSys: a new paticle system fort he introduction of on-line physical 
behaviour to three-dimensional synthetic objects. Comput. Graphics 
pp. 135-144. 

Provot X (1997). Collision and self collision handling in cloth model 
dedicated to design garments. Graphic Interface pp.177-89. 

Rapaport DC (2004). “The Art of Molecular Dynamics Simulation”, 2nd 
Edition, Cambridge University Press. 

Teschner M, Heidelberger B, Muller M, Gross M (2004). A versatile and 
robust model for geometrically complex deformable solids. Computer 
Graphics International.  Proceedings pp. 312–319. 

Tonnesen D (1991). Modeling liquids and solids using thermal particles. 
In Graphics Interface pp. 255–262. 

Wu X, Downes MS, Goktekin T, Tendick F (2001). Adaptive nonlinear   
finite Elements For deformable body simulation using dynamic 
progressive meshes.  Eurographics, 20: 349-358. 

 
 
APPENDIX 
 
The building block of triangulated models is a simple 
triangle as shown  
Equation 4 includes a cosθ  term and finding force 
function therefore requires derivation of this cosθ  
function. Below equation represents the relationships 
between bond lengths and cosθ , 
 

θ

 
 

2 2 2 2 cosij ijjk ik ikr r r rr θ= + −
 

 

cosθ  term is then  
2 2 2

2
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ij ik

r r
r r
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Taking gradient of equation 4 with respect to jkr is then, 
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Equation 5 is given based on triangular notation as 
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Negative gradient of this function with respect to ijr , 

ikr and cosθ is 
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Since derivative of cosθ  is already known, the above 
equation can be rearranged to obtained the force function 
given by equation 10. 
 


