

International Journal of the Physical Sciences Vol. 6(34), pp. 7771 - 7779, 16 December, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.787
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Dynamic checking reactive applications: An event
driven framework

Seyed Morteza Babamir

Department of Computer Engineering, University of Kashan, Kashan, Iran. E-mail: babamir@kashanu.ac.ir.

Accepted 14 November, 2011

Reactive applications are embedded software of reactive systems which continuously interact with their
environments. In this paper, we aim to propose a method to dynamically checking reactive applications
using event based rules. The rules formed in event-condition-action constitute the checker as an active
program. In order to enjoy activeness, the checker actively reacts to environment events when they
occur. The checker as an active system, in fact, catches runtime events and reacts to them. The
effectiveness of the proposed method is shown by checking some properties in case study.

Key words: Dynamic checking, event based rule, active database, aspect-oriented.

INTRODUCTION

Reactive applications performing according to occurrence
of events have continuous interaction with their
environment. The term reactive system introduced by
David Harel and Amir Pnueli (Harel and Politi, 1998)
denotes systems that continuously interact with their
environment. They react to their environment at the
speed of the environment. E-commerce applications such
as stock market and sale alerts, system management
applications, such as command and control applications,
traffic-light controller and process control in industry are
the quintessential ones. The significance of such
applications is rising because the majority of systems
somehow have interaction with their environment. In such
systems, the system reactions to events should be
verified.

Reactive systems have commonly deterministic
behavior. Although the execution of a reactive system
can be an infinite series of input/output sequences, the
output values are completely determined by the past and
present inputs at each step.

In this paper, we use event based rules to demonstrate
behavior of reactive system. Event based rule was first
used in active databases (Morgenstern, 1983) in form of
Event-Condition-Action. In Paton and Diaz (1999) and
Widom and Ceri (1996), a couple of mechanisms have
been applied to event based rules. In Event-Condition-
Action rule base rule, the event triggers the rule and the
condition in an expression should be held for firing the

rule. Upon triggering the rule, the action is executed. In
other words, upon occurrence of the event and holding
the condition(s), the rule fires and the action is taken. The
action may be taken instantly or with a delay. Also, rules
may be cascade meaning that firing a rule is casually
dependent on firing some other rule/rules.

In this paper, we aim to propose an active environment
to support checking reactive software. To this end, we
equip source code of the target software with observer
code and then, we construct a checker in form of an
active program using event based rules. Events
represent execution points of the target software, such as
method calls and returns. The activeness of the checker
program enables it to react to events when they happen.

We continue this paper as follows: The related work is
discussed in related work. Dynamic checking and event-
based rule are discussed in dynamic checking and event
based rules, respectively. The proposed method is
considered and applied to a case study in the proposed
model and case study. Finally in conclusion, we deal with
conclusions and major advantages of the proposed
method.

RELATED WORK

Barringer et al. (2004) presented a rule-based framework
for monitoring specifications stated in temporal logics.

7772 Int. J. Phys. Sci.

 state state

 Result

Formal

Properties

Observe Check Running

 program

Figure 1. Dynamic checking (Delgado et al., 2004).

They implemented their method as a Java library called
EAGLE. EAGLE was introduced as a general purpose
rule-based temporal logic for specifying run-time
monitors. Associating actions with the stated formulas
and incorporating monitoring code into the target
programs automatically is their future ideas.

Chavarría-Báez and Li (2006) proposed an active rule
based verification to verify knowledge base. Their method
is based on conditional colored petri nets. They stated
that they consider incorporating the analysis of ECA rules
with temporal composite events.

Song et al. (2011) proposed a method to observe
potential violations of rules derived from protocol
specification standards such as those specified by
Internet Engineering Task Force (IETF) and Request For
Comments (RFC) (Carpenter, 2011).

They exploited words such as “MUST” and “SHOULD”,
used to express requirements in standard documents to
extract the rules.

Reger (2010) considered the advantage and way of
rule-based runtime verification in a multicore system. The
method is evaluated using a number of micro
benchmarks from the DaCapo benchmark suite. Reger
used RuleR, which is a rule-based runtime verification
tool and consists of a specification language. Properties
are defined in terms of parameterized conditional rules in
form of rulename: antecedent→ consequent.

A rule indicates that the consequent should be held on
the next step if the antecedent is true for the current step.
The RuleR algorithm takes a RuleR specification and an
observation trace to decide.

Barringer et al. (2010) and Barringer et al. (2009)
stated that their previous work called EAGLE is complex
and difficult to efficient implementation. Accordingly, they
introduce RULER, a primitive conditional rule-based
system, for effective run-time checking. Then, they
introduced the parameterized RULER where rule names
may have rule expression or data parameters. They
proposed a trace-checking algorithm to check a finite
trace of ground observations for conformance against the
rules of the RULER specifications.

Pankowski (1995) contended with monitoring temporal
behavior, integrity constraints and controlling activities in
database systems using ECA rules. The rule conditions

are stated in temporal expressions and may be
expressed as a query in an algebra or calculus formula.
Events may have attributes holding data about the
current state of database or about the activity generates
the event.

Koschel and Astrova (2008) proposed a method to
monitor events in Web services using distributed ECA
rules. They stated that their method addresses: (1)
Description and detection of arbitrary event types from
heterogeneous distributed sources, (2) support of
parameters in ECA rules such as event occurrence
notification time such as after, before, instead and event
granularity such as an event instance or a set of events.

d’Amonrim and Havelund (2005) introduced a temporal
logic called HAWK and its supporting tool to monitor Java
programs at runtime. HAWK is an extension of the rule-
based EAGLE logic (Barringer et al., 2004) with
constructs for capturing parameterized program events
such as method calls and returns.

In Sahoo et al. (2008) and Elliott (2000), event
paradigm was extended using algebra of events to
construct new type of events. Each new event may be
used to construct other events; accordingly an arbitrarily
sophisticated of events may be created. The authors
stated that the event oriented programming can aid in
dividing programs into understandable and reusable
pieces. Declarative event-oriented programming pro-
posed by Sahoo et al. (2008) and Elliott (2000) is algebra
based method of event combinators embedded in a
functional host language.

In Babamir and Jalili (2005), we used UML State
Machines (that is, Activity and Statechart Diagrams) for
specification of object-oriented programs. Then, we
automatically produced ECA rules from State Machines
and dynamically analyze the runtime behaviors of
programs.

DYNAMIC CHECKING

Dynamic checking has already been proposed as a
method with the goal of checking system runtime
behavior against formal requirements (Figure 1) (Delgado
et al., 2004).

This technique: (1) Bridges the gap between formal
verification of software specification and testing of the
software implementation. This leads to validation of
requirements (properties) and steering of the software
program at runtime; (2) Decides about current execution
of program not about all the executions. Dynamic
checking, in fact, considers properties that (1) were left
undecided in verification of software specification, (2)
were not discovered by testing of the software
implementation and (3) are closely related to physical
environment where the software executes.

As Figure 1 shows, states of running program should be

Figure 2. Weaving into modules of software (Babamir and
Jalili, 2010).

observed to analysis. Observing may be carried out in
one-step, two-step or multithreaded method. The one-
step method, the observer code is designed as a library
of procedures linked to the target software or integrated
into the run-time system. This method enjoys good
performance but it is an intrusive method because the
target software and observer are able to affect each
other.

The two-step model, the observation process is carried
out separately. Accordingly, the target software and the
observer cannot affect behavior of each other. However
to use this method, we contend with complexity of
construction of the observer. In addition, it reduces
performance. The multithreaded method, the observer is
constructed as a separate thread and executed in parallel
with the target software.

Weaving

As stated in dynamic checking, to apply the one step
method, one should weave the observer code into the
target software. Figure 2 (Babamir and Jalili, 2010)
shows weaving an invocation method into software
modules where the method undertakes observing the
software behavior against some constraint (property).

The weaved code will send software states as events
to the analyzer when it executes (Figure 1). The observer
code used to acquire program behavior may be
embedded or disjointed (Goldsby et al., 2008). The
former indicates that observer code is embedded in the
target software while the latter indicates that the observer
code is executed in parallel with the target software.

EVENT BASED RULE

Event based rule was first used in active database systems

Babamir 7773

(Morgenstern, 1983; Paton and Diaz, 1999; Widom and
Ceri, 1996). An active database management system
(Figure 3) is a system reacting to the events actively
without intervention of user.

The activeness is stated by event based rules in form
of Event-Condition-Action where: (1) Event stands for a
concerned change in the system environment; (2)
Condition is a predicate allowing/disallowing firing the
rule and (3) Action indicating the system reaction when
the event occur and the predicate holds. An event based
rule is shows as Relation (1).

On event When condition Then action (1)

By exploiting event based rules we can enjoy advantages
of rapid detection of abnormal events, notification of
users and the centralized control of services should be
served by the system.

Active rule is a dominant method used in reactive
behavior. In Chavarría-Báez and Xiaoou (2010), a
software tool called ECAPNVer was specified for
verifying an active rule base. According to Chavarría-
Báez and Xiaoou (2010), the tool can detect and correct
structural errors as well as potential errors such as
redundancy and partial redundancy, inconsistency and
partial inconsistency, incompleteness and circularity. The
active rules may be defined statically or dynamically. In
the static method, the rules are defined based on
properties have been specified in advance while in the
dynamic one, the rules are created at run time
(Chakravarthy and Varkala, 2006).

Active rules have been used to monitoring (such as
active data bases), control (such as reactive systems)
and reasoning (such as knowledge based systems) using
stored facts and deducing new facts. In addition, in the
most programming languages, exception handlers can be
defined for catching program exceptions (events). In
these handlers, active rules are used to catch events.

Active rules may be used to data observing in order to
verify constraints and control authorization. In verifying
constraints, rules observe and detect inconsistencies and
abort queries that violate the constraints. In controlling
authorization, rules check user/ application permission to
perform actions. Management of telecommunications
network and decision support systems are applications
that depend on data observing activities.

We use event rules because reactive systems are
event driven. Event based method helps us in
representing a reactive system so that it may be invoked,
not only by synchronous/ asynchronous events
generated by users, application programs or changes of
sensor values or time. Publish/subscribe, for instance, is
an event based reactive system where providers publish
notifications and consumers subscribe to notifications by
issuing subscriptions, which are stateless event filters
(Cheung and Jacobsen, 2010; Parzyjegla et al., 2010). In

7774 Int. J. Phys. Sci.

Figure 3. Event rules in active database.

 Section 1 Section 2

event

observing

condition

checking

computing

& decision

action

execution

E

N

V

I

R

O

N

M

E

T

Figure 4. The proposed framework.

this model, routing is decided using distribution of event
notifications in the network. Events may be different;
typical examples are change of a sensor value, change of
an application state or change of time. In addition, events
may be combined into complex events. The combination

may be carried out in form of logical composition, event
ordering, sequential and temporal ordering and event
periodicity. Rules in combined and complex rules fire
according to consumption policies. The policies are new,
historical, and increasing. The first policy denotes
consumption of the most recent primitive event of a
complex event if the complex occurs. In the second
policy, events are consumed in time order. In the third
policy, all primitive events of a complex event are
consumed if the complex event occurs.

Event handling

Dispatching events to the rule processor, storing events
in a history are tasks of event handler. The rules are
processed in four steps: (1) Detection (2), Condition
observing (3), Conflict resolution and (4) Action
execution. In the first step, events that may influence any
activated rules are detected. Then the events are stored
in a history. Condition observer is responsible for
monitoring condition of any activated rule when it
becomes true. Execution of an action may cause to fire
further events. This leads to recurrence of all the steps to
be repeated until no more events are detected.

Figure 5. Trigger graph of a composite rule.

Aspect Aspect1 {

pointcut P1() :

call (void *.credit (float));

before: change() {

write("about to perform method");

 }

}

Figure 6. A typical aspect with pointcut P1.

THE PROPOSED MODEL

We use triggers to activate processes in order to check
software at run time. To this end, we represent a
framework consisting of two sections: (1) Event
observation and action execution and (2) Checking and
decision (Figure 4). Having observed a concerned event
and environment conditions, the first section sends them
to the second section. The second one checks conditions
and computes some reaction and takes some action if
the condition(s) are satisfied. The decision is taken
according to policies ascertained in advance. After taking
the action, the environment state will change to new state
that it may drive another event.

A trigger graph is constituted when we have a
sequence of events, conditions and actions. In the graph,
a vertex denotes a rules and an arc from a vertex to other
vertex(es) denotes triggering target nodes by the source
one. Figure 5 shows a trigger graph where rules r1 and r6
trigger rules r2 and r3 and rules r7 and r8 respectively.
Rules r4 and r5 are triggered by both rules r3 and r7.

Activation of a rule may change status of the system
environment. In an activation graph, a rule is thought as a
vertex and an arc denotes realization of rule condition of

Babamir 7775

the source vertex after the execution of the rule action. In
fact, in the trigger graph we have a trigger when a rule
event occurs, while in the activation graph we have
activation when a rule condition becomes true. An
activation graph is complementary to a trigger graph.

Weaving method

Here, we aim to address our weaving method (Weaving)
by which the observer code is weaved into the target
software. The observer code undertakes the task of
sending software states to the checker. In fact, the
software will become activate when it is equipped with
the observer code. This means that the embedded
observer code will notify the checker when some event
captured by the target software. As Figure 2 shows, the
observer code should be weaved in proper places of the
target software. To weave the observer code
automatically into source code of the target software, we
use aspects (Katz and Mezini, 2011). The automatic
weaving avoids the weakness of manual one.

In a manual weaving, source code of the target
software is read by user and the observer code is
inserted in. Due to manual method is time consuming and
suffers from probable incompleteness, the automatic
method is preferable. If inserting the observer code in
some places of the target software is missed, it leads to
the missing information that the checker needs to check
behavior of the target software. Accordingly, false or
missed detection of faults may occur.

If we consider that the target software would have a
function to process each distinct event, the observation
code should be weaved before/after functions. By an
automatic method, places of functions invocations are
automatically identified and then the relevant observer
code is weaved into. To this end, the aspect weaver is
used. By using the weaver we are able to regularly
crosscut the target software, locate the relevant functions
and weave the observer code into.

Representing locations and the weaving method (that
is, before or after function invocation) are called joint
points. Each joint point is stated by modifier pointcut.
Figure 6 shows aspect Aspect1 with pointcut P1
consisting of call instruction and before modifier.

The call instruction indicates that the concerns are
functions specified by “void *.credit(float)” and the before
modifier indicates that the insertion code (The write
instruction) would be executed before the functions. The
insertion code, that is, the write instruction is called
advice. Figure 7 shows how an aspect is weaved into
software by the aspect weaver.

In our method, we use concept of aspect oriented in
requirements specification level (Garcia-Duque et al.,
2006; Baniassad and Clark, 2004; Rashid et al., 2002;
Busyairah and Zarinah, 2011) put forward the idea of

7776 Int. J. Phys. Sci.

Aspect
Specify Join points including:

1-Specify locations(call)

2-Specify weaving method

(before, after and around)

3-Specify insertion code (advice)

Software

…

call credit(…);
…

call credit(…);

…

call credit(…);

Aspect Weaver

Modified Software
…

advice code;

call credit(…);

…

advice code;

call credit(…);

…

advice code;
call credit(…);

Figure 7. Weaving aspect into software.

aspects for requirements. Aspect is new idea for
allocating requirements to components. These
components appear in form of classes, packages and
services and there are some constraints which cut across
requirements, that is, components. Such constraints
called crosscutting concerns in aspect-speak form
aspects. Accordingly, an aspect enables us to keep
concerns separate in design and implementation phases
of system.

In other words, an aspect is a solution for an
engineering technique to separate concerns from require-
ments. The crosscutting leads to modularization of the
requirements constraints. Accordingly by inspecting the
primary requirements, we try to identify aspects. Consider
the security concern in using an ATM card, for instance;
this is a concern that cuts across below requirements.
So, it would be considered as an aspect.

R1: ATM needs to send the customer’s card and account
number to the system for activation.
R2: ATM needs to send the customer’s account number
to the system to get the identifier of his/her account.

Implementing proposed model

We deal with implementing the model proposed in Figure
4 using event based rules stated in form of event-
condition-action. To this end, we start with requirements
and constraints. Having identified constraints and
requirements, the related probe codes for crosscutting

points of requirements are weaved into units of the
program. In fact, the created aspects denote the modules
that centralize distributed functionality. In order to what
events should be captured by the observer, we consider
the constraints and equip the observer with method calls
for obtaining events (“event observing” of in Figure 4).
So, events are objects representing execution points of
software.

Equipped with event processing mechanism, the target
software becomes an active system passing events to
the checker. The components condition checking and
computing and decision in the checker program (Figure
4) is built from condition and action parts of event-based
rules. According to taken decision, the response to the
event is made. Below shows the steps we take to imple-
ment the proposed model. These steps are practically
shown in case study using a case study.

1. Identifying functional requirements
2. Identifying requirements constraints
3. Considering the functions of the target software and
 event processing functions
4. Specifying event-based rules
5. Specifying aspects

Events may be primitive or composite. A composite
appears in form of (E1|E2) meaning that one of the two
events E1 or E2 must occur and (E1:E2) meaning that
the two events must occur in the given order.

Therefore, our activated system consists of two
activated components: (1) The target software whose

behavior to be checked and (2) The checker program that
checks the target software. The target software is
activated automatically by weaving aspect codes into its
source code. The checker program is activated using a
set of event-based rules. Therefore, the system becomes
event-aware, which can observe and pass events at
certain points of the target software.

CASE STUDY

Here, we apply the proposed method to safety critical
software of aircraft traffic system. In an air traffic system,
there is a region of airspace consisting of a number of
aircrafts with a unique identifier for each aircraft. Some
requirements implemented by the software and the
constraint should be checked are as follows:

Functional requirements:

1. To add an aircraft to the airspace at a specified height,
2. To remove an aircraft from a region. This is carried out
 if some aircraft moves to an adjacent region.
3. To move an aircraft from one height to another,
4. To lookup an aircraft returning the current height of
 that aircraft in the region

Constraint:

For safety reasons, all aircraft must be separated by at
least n meters in height. In fact, there must not be other
aircraft at that height or within n meters of an aircraft.
Also, the vertical separation of an aircraft must be at least
n meters.

Functional requirements stated previously is
implemented by the following functions
public Create() {
// To create an empty (without any aircraft) region.
 new region;
 region. state=empty;
 return region.no;
 }
public EnterFirst (region, aircraft, height){
// To add an aircraft to a region
 region.state=full;
 aircraft.region_no=region.no;
 return region.no;
 }
public Exit(region, aircraft){
// To remove an aircraft from a region. This operation is
used when the aircraft moves to an adjacent region.
 region.state=empty;
 aircraft.region_no=0;
 return region.no;
 }

Babamir 7777

public EnterAgain(region,aircraft,height){
 // To move an aircraft from one height to another
 Exit(region, aircraft);
 EnterFirst(region, aircraft, height);
 return region.no
 }
public Altitude (region, aircraft) {
// To show height of an aircraft in a region
 return region.height;
 }
public Vacated(region, aircraft) {
// This is a Boolean function returns true if there is not the
aircraft in the region.
 if region.no != aircraft.region_no
 return true
 else return false;
public Occupied(region, height){
// This is a Boolean function returns true if there is some
aircraft within n meters of that height
 if (region.state = empty) return false;
 if ABS(region.height-hight) ≤ n)
 return true
 else return false;
 }

Specifying aspects

As stated previously in, the proposed model, rules are
stated in form of event-base, “ON Event When condition
DO action”. Therefore, we should identify, (1) event(s)
that should be observed, (2) condition(s) to be
considered when the concerned events occur, and (3)
action(s) to be decided by the checker program. The
stated requirements indicate the concerned event entry of
an aircraft to a region.

Considering the stated constraint, we can obtain
conditions from functions Altitude(), Vacated() and
Occupied(). Having specified the event and conditions,
now we can specify the rules:

ON entry WHEN Vacated(region, aircraft) Alert (“some
aircraft in the region”) and Reject request

ON entry WHEN Occupied (region, height) Alert
(“unsuitable height”) and Reject request

Now, we should take an aspect per rule; however,
since both rules were defined on same event, just an
aspect is considered. Functions which deal with the event
are EnterFirst(), Exit() and EnterAgain(). Accordingly, the
concern entry cut across these functions. The following
code shows the EntryAspect in the AspectJ language.
Public aspect EntryAspect // the Aspect
{
 Pointcut Entry ():
 call (public no Enter*(region, aircraft, height);
 // join point 1
 before(): Entry () {

7778 Int. J. Phys. Sci.

 if Occupied(region, height)
 Alert (“not suitable height”);
 }

 call(public no EnterFirst(region, aircraft,
 height); // join point 2
 before(): Entry () {
 if not vacated(region, aircraft)
 Alert (“entrance not permitted”);
 }

 call(public no EnterAgain(region, aircraft);
 // join point 3
 before(): Entry() {
 if region = = Create()
 Alert (“no aircraft in region”)
 if vacated(region, aircraft)
 Alert (“the aircraft is not in region”)
 }

 call(public no Exit(region, aircraft);
 // join point 4
 before(): Entry() {
 if region = = Create()
 Alert (“aircraft not in region”)
 }

 call (public height Altitude(region, aircraft);
 // join point 5
 before(): Entry() {
 if region = = Create()
 Alert (“aircraft not in region”)

 }
}

The call functions in aspect EntryAspect indicate the
points would match in the program. These points are
target functions in the software defined previously in,
case study. The call function “Enter*” in aspect
EntryAspect, for instance, matches functions EnterFirst
and EnterAgain in the target software. Having a call
function matched some target function(s), the weaver
weaves the advice code of the call function into the target
function. The advice codes (denoted by the “Entry” label)
in the joint points 1 and 2 are weaved into function
EnterFirst() and the joint points 1 and 3 are weaved into
function EnterAgain(). The joint points 4 and 5 are
weaved into functions Exit() and Altitude() respectively.

Conclusion

An event-based model was proposed to check reactive
software. To this end, we provided source code of the
target software with observer code to pass events to the
checker program. Observing and checking presented in

form Even-Condition-Action rules where events
represented as method calls.

In contrast with the related work stated in related work,
the main contribution is presenting a constructive method
where check rules are mapped to aspects. This facilitated
and automated mapping design of checker program into
its implementation.

However, obtaining event-based rules for observing
and checking from requirements and constraints was not
automated. This can be carried out by bridging the gap
between abstract specification of requirements and
constraint and event-based rules. Exploitation of event-
based rules has additional benefit because a diverse
behavior of target software can be checked in terms of
which part of the rule(s) is satisfied.

A case study was proposed to show practicality of the
proposed model. Employing the proposed mode to
distributed and real-time software can be thought as
future work.

REFERENCES

Babamir SM, Jalili S (2005). Dynamic analysis of object-oriented

programs using state machines and ECA rules. The 14
th
 International

Conference on Intelligent and Adaptive Systems and Software
Engineering (IASSE-200S). pp. 243-248.

Babamir SM, Jalili S (2010). Making Real Time Systems Fault Tolerant:
a Specification Based Approach. J. Sci. Ind. Res., 69: 501-509.

Baniassad E, Clarke S (2004). Finding aspects in requirements with
Theme/Doc. Workshop on Early Aspects. pp. 15-22.

Barringer H, Goldberg A, Havelund K, Sen K (2004). Rule-Based
Runtime Verification, The 5

th
 International Conference on Verification,

Model Checking, and Abstract Interpretation, LNCS, 2937, Springer.
pp. 44-57.

Barringer H, Havelund K, Rydeheard D, Groce A (2009). Rule Systems
for Runtime Verification A Short Tutorial. The 9

th
 International

Workshop on Runtime Verification, LNCS 5779, Springer. pp. 1-24.
Barringer H, Rydeheard D, Havelund K (2010). Rule Systems for Run-

time Monitoring: from EAGLE to RuleR. J. Logic and Comput, Oxford
University Press, 20(3): 675-706.

Busyairah SA, Zarinah MDK (2011). An approach for crosscutting
concern identification at requirements level using NLP. Int. J. Phys.
Sci,. 6(11): 2718-2730.

Carpenter B (2011). The IETF Process: an Informal Guide.
http://www.ietf.org/about/process-docs.html

Chakravarthy S, Varkala S (2006). Dynamic programming environment
for active rules. The 7

th
 International Baltic Conference on Databases

and Information Systems. pp. 3-16.
Chavarría-Báez L, Li X (2006). Structural Error Verification in Active

Rule-Based Systems using Petri Nets. The 5
th
 Mexican International

Conference on Artificial Intelligence, IEEE Society. pp. 12-21.
Chavarría-Báez L, Xiaoou L (2010). ECAPNVer: A Software Tool to

Verify Active Rule Bases. The 22
nd

 IEEE International Conference on
Tools with Artificial Intelligence. pp. 138-141.

Cheung AKY, Jacobsen HA (2010). Load balancing content-based
publish/ subscribe systems. ACM Transactions on Computer
Systems (TOCS). 28(4): Article 9.

d’Amonrim M, Havelund K (2005). Event Based Runtime Verification of
Java Programs. The 3

rd
 international workshop on Dynamic Analysis

(WODA '05), ACM SIGSOFT Software Engineering Notes. 30(4): 1-7.
Delgado N, Gates AQ, Roach SA (2004). Taxonomy and Catalog of

Runtime Software-Fault Monitoring Tools. IEEE Transactions on
Software Engineering. 30(22): 859-872.

Elliott C (2000). Declarative Event-Oriented Programming. The 2
nd

 ACM

SIGPLAN Int. Conference on Principles and Practice of Declarative
Programming. pp. 56-67.

Garcı´a-Duque J, López-Nores M, Pazos-Arias JJ, Fernández-Vilas
A, Díaz-Redondo RP, Gil-Solla A, Ramos-Cabrer M, Blanco
Fernández Y (2006). Guidelines for the incremental identification of
aspects in requirements specifications. J. Requirements Eng., 11(4):
239-263.

Goldsby HJ, Cheng B HC, Zhang J (2008). AMOEBA-RT: Run-time
verification of adaptive software, Software Engineering Models in
Software Engineering. Workshops and Symposia at MoDELS,
Lecture Notes in Computer Science. 5002: 212-224.

Harel D, Politi M (1998). Modeling reactive systems with Statecharts.
McGraw-Hill.

Katz S, Mezini M (Eds.) (2011). Transactions on Aspect-Oriented
Software Development VIII. Lecture Notes in Computer Science. Vol.
6580.

Koschel A, Astrova I (2008). Event Monitoring Web Services for
Heterogeneous Information Systems. World Academy of Science,
Engineering and Technology. Vol. 33.

Morgenstern M (1983). Active databases as a paradigm enhanced
computing environments. The 9

th
 VLDB International Conference. pp.

34-42.
Pankowski T (1995). Active Objects With Temporal ECA Rules in

Intelligent Database Systems. Decentralized Intelligent Multi Agent
Systems. pp. 347-354.

Babamir 7779

Parzyjegla H, Graff D, Schr¨oter A, Richling J, M¨uhl G (2010). Design

and Implementation of the Rebecca Publish/Subscribe Middleware, in
From Active Data Management to Event-Based Systems and More,
Springer, in Sachs K, Petrov I, Guerrero P (Eds.). pp.124-140.

Paton NW, Díaz O (1999). Active database systems. ACM Computing
Surveys. 31(1): 63-103.

Rashid A, Sawyer P, Moreira A, Arau´jo J (2002). Early Aspects: A
Model for Aspect-Oriented Requirements Engineering. The 10

th
 IEEE

International Conference on Requirements Engineering. Pp.199-202.
Reger G (2010). Rule-Based Runtime Verification in a Multicore System

Setting. MSc Dissertation, University of Manchester.
Sahoo SK, Man-Lap Li, Ramachandran P, Adve SV, Yuanyuan Z

(2008). Using likely program invariants to detect hardware errors,
IEEE International Conference on Dependable Systems and
Networks with FTCS and DCC. pp. 70-79.

Song J, Ma T, Cadar C, Pietzuch P (2011). Rule-based Verification of
Network Protocol Implementations Using Symbolic Execution. The
20

th
 International Conference on Computer Communications and

Networks (ICCCN). pp. 1-8.
Widom J, Ceri S (1996). Active database systems-triggers and rules for

advanced database processing. Morgan Kaufmann Publishers.

