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In this paper, we provided a fast algorithm for pricing European options under a double exponential 
jump-diffusion model based on Fourier transform. We derived a closed-form (CF) representation of the 
characteristic function of the model. By using fast Fourier transform (FFT) technique, we obtained an 
approximation numerical solution for the prices of European call options. Our numerical results show 
that our method is fast, accurate and easy to implement. The proposed option pricing method is useful 
for empirical analysis of asset returns and managing the corporate credit risks. 
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INTRODUCTION 
 
The Fourier transform is a widely used and a well 
understood mathematical tool from Physics and  
Engineering disciplines applicable to numerous tasks, for 
example signal processing (Allen and Mills, 2004), or as 
a method for solving partial differential equations (Duffy, 
2004). Inside the field of finance, the Fourier inversion 
method was first proposed in the Stein and Stein (1991) 
stochastic volatility model that uses the transform method 
in order to find the distribution of the underlying. Carr and 
Madan (1999) proposed Fourier transforms with respect 
to log-strike price; Bakshi and Madan (2000) provided an 
economic foundation for characteristic functions; Duffie et 
al. (2000) offered a comprehensive survey that the 
Fourier methods are applicable to a wide range of 
stochastic processes; Carr and Wu (2004) applied the 
transforms to time changed levy processes and the class 
of generalized affine models. Hurd et al., (2010) 
expressed the spread option payoff in terms of gamma 
function and fast Fourier transform (FFT) technique. For 
an overview of option pricing using Fourier transforms, 
see Martin (2010). 

It has been noticed recently (Barndorff-Nielsen and Shephard 
2006; Aigbedion et al., 2008; Maekawa et al., 2008; Akkurt 
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et al., 2009) that sudden changes in the financial time 
series data are common. Many investors during the 
current global financial crisis encounter effects of jumps. 
It has been suggested from extensive empirical studies 
that markets tend to have both overreaction and under-
reaction to various good or bad news. One may interpret 
the jump part of the model as the market response to 
outside news. More precisely, in the absence of outside 
news the asset price simply follows a geometric Brownian 
motion. Good or bad news arrives according to a Poisson 
process, and the asset price changes in response 
according to the jump size distribution. By adding jumps 
to the archetypal price process with Gaussian 
innovations, Merton (1976) was able to partly explain the 
observed deviations from the benchmark model which 
are characterized by fat tails and excess kurtosis in the 
returns distribution [for an overview of ‘stylized facts’ on 
asset returns see Cont (2001), statistical properties of 
implied volatilities are summarized in Cont et al., (2002)]. 
In the sequel also, other authors developed more realistic 
models based on jump processes (Eberlein and Keller, 
1995; Madan et al., 1998; Kou, 2002).  

However, they derived option values from an analytical 
form of the conditional density function, for the value of 
the underlying on maturity given in the initial state. Many 
of these original results are quite complicated requiring 
special functions or infinite summations which are difficult 



 
 
 
 
to be applied in real option pricing. This paper focus on 
pricing European options in a double exponential jump 
diffusion (DEJD) model recently proposed by Kou (2002). 
The purpose of this paper is to provide a fast, accurate 
and easy to implement numerical method for European 
options pricing by FFT technique. The main idea using 
the transform methods is to take an integral part of the 
payoff function over the probability distribution obtained 
by inverting the corresponding Fourier transform. Our 
contributions are that, we derived the characteristic 
function of the DEJD process, provided FFT of European 
call options pricing under the DEJD model and developed 
applied program codes in Matlab package. These results 
are important for option valuation and may also have 
implications in empirical analysis of assets return and 
managing the corporate credit risks. 
 
 
PROBLEM DESCRIPTION 
 
We consider an arbitrage-free and frictionless financial market 

where only riskless asset B and risky asset S are traded 

continuously up to a fixed horizon date T . Let
( , , , )PΩ

t
F F

be a 
complete probability space with a filtration satisfying the usual 
conditions, that is, the filtration is continuous on the right and ғ0 
contains all p -null sets. The DEJD model assumes that the return 
process has two components, a continuous part modeled as 
Brownian motion, and a jump part with jump times driven by a 
Poisson process.  According to Kou (2002), the following dynamic 

is proposed to model the asset price
( )S t

, under the physical 
probability measure p 
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where interest rate r and the volatility σ  are assumed to be 

constants, 
( )W t

 is a standard Brownian motion which is tF -

adapted, 
( )N t

 is a Poisson process with constant intensity λ and 

{ }, 1,2,jV V j= = L
 is a sequence of independent identically 

distribute non-negative random variables, 
( 1)z E V= −

 and 

suppose
logY V=

has an asymmetric double exponential 
distribution with the density: 
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where 1 denotes the indicator function, so ( 0)y≥1
 equals 1 if 0y ≥ , 

but 0 otherwise.  
,  0,  1p q p q≥ + =

 is, respectively up-move jump 
and down-move jump. From (2), we can obtain 
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In the model, all sources of randomness, 

( )N t
,  

( )W t
 and  jY

 are assumed to be independent. 

Zhang and Wang          257 
 
 
 

Solving the stochastic different equation, (1) gives the dynamics of 
the asset price as follows: 
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DERIVING THE CHARACTERISTIC FUNCTION 
 
To obtain FFT of European call options pricing, we need to compute 
the characteristic function of the DEJD process. The characteristic 
function of the process (3) is defined as: 
 

( ) ln ( ) .iu S tu E eφ  =  
                 

(4)
                                        

where i  is the imaginary unit. We now compute the characteristic 
function of the process (3). 
 
 
Theorem  
 

Let 
ln ( ),TX S T=

suppose the asset price 
( )S t

 follows (3), we 
have: 
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Proof: From (3), we have: 
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where 
( )W t

 is a standard Brownian motion satisfying 

( )( ) 0,W t N t�
. The characteristic function of (3) can be 

transformed into the following equal. 
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Because of 
( )( ) 0,W t N t�

,  we can obtain 
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From (2), we can obtain  
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Because jY
is a sequence of independent identically distribute 

random variables, we can obtain: 
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Put (7) and (9) into (6), we can obtain our theorem. 
 
 
A FAST ALGORITHM FOR EUROPEAN OPTION PRICING 
BASED ON FAST FOURIER TRANSFORM (FFT) 
 

Let K  be the strike price and T  the expiration of a European call 

option with terminal asset price
( )S T

, where 
( )S T

 is governed by 
the dynamics (3). By using the rational expectations argument with 
a hyperbolic absolute risk aversion (HARA) type utility function for 
the representative agent, one can choose a particular risk-neutral 
measure Q, under which the price of a European call option is 
computed as the discounted risk-neutral expectation of the terminal 

payoff ( ( ) ) max( ( ) ,0)S T K S T K+− = − :  
 
 

( ) ,( , ( )) ( ( ) )r T t EC t S T e S T K− − += −                     (10)               
             
Assume that for simplicity (without loss of ‘‘generality’’) we let 

0t = and define ln .k K=  Furthermore, we express the call option 

pricing function (10) as a function of the log strike K  rather than the 

terminal log asset price TX
: 
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where ( )T Tq X
 is the density of the process TX

. 
Unfortunately, the call price function (11) is not square-integrable 

because 
( )TC k

 converges to 
( )0S

 for k → −∞ . Hence, Carr and 
Madan (1999) introduced a new technique with the key idea to 
calculate the Fourier transform of a modified call option price with 
respect to the logarithmic strike price. With this specification and a 
FFT routine, a whole range of option prices can be obtained within a 
single Fourier inversion. In this section, we develop the numerical 
solutions of the prices by using the idea of Carr and Madan (1999). 
 
 
Fourier transforms of in-the-money option prices 
 

By introducing an exponential damping factor
keα

with 0α > , it is 
possible to make the integrand in (11) square-integrable; we 

modified the pricing function (11) by
( ) ( )e

T

k
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. The 

European call price can be easily recovered by applying the FFT: 
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In this instance, an 

efficient implementation of the FFT requires a closed form 

representation of the characteristic function
( )uφ

. We have seen 
that the asset price dynamics (3) does indeed have an analytical 
characteristic function (5).  

This method is viable when α  is chosen in a way that the 
damped option price is well behaved.  Damping the option price with 

e kα
 makes it integrable for the negative axis 0k < . On the other 

hand, for 0k > , the option prices increase by the exponential e kα
 

which influences the integrability for the positive axis. A sufficient 
condition of (11) to be integrable for both sides (square integrability) 

is given by 
( )0Tψ

 being finite, that is, 
( )( )1 .T iφ α− + < ∞

 

which is equivalent to: 
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Therefore, 
( )Tc k

 is well behaved when the moments of order 

1 α+ of the underlying exist and are finite. If not all moments of 
( )S T

 exist, this will impose an upper bound onα .

 

Using the trapezoid rule for the integral on the right-hand side of 
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The FFT returns N  values of k  and we employ a regular spacing 

of size h , so that our values for k  are 
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This gives us log strike levels ranging from b−  tob , where, 
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In order to apply FFT we define: 
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To obtain an accurate integration with larger values of
η

, we 
incorporate Simpson's rule weightings into our summation. From 
(12) to (17) and Simpson's rule weightings, we obtain European call 
option value as: 
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where jω
 is the Kronecker delta function that is unity for 0n =  

and zero otherwise. The summation in (18) is an exact application of 
the FFT. 
 
 
Fourier transforms of out-of-the-money option prices 
 
For very short maturities, the call value approaches to its non-
analytic intrinsic value causes the integrand in the Fourier inversion 
oscillate high, and therefore difficult to numerically integrate. We 
introduce an alternative approach that works with time values only, 
which is quite similar to the previous approach. But in this case, the 
call price is obtained via the Fourier transform of a modified time 
value, where the modification involves a hyperbolic sine function 
instead of an exponential function. 

Let
( )Tz k

denote the time value of an out-of-the-money option, 

that is, for Tk X<
 we have the put price for 

( )Tz k
and for 

Tk X>
we have the call price. Scaling 

(0) 1S =
 for simplicity, 

( )Tz k
 is defined by: 
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Let 
( )T uζ

 be the Fourier transform of 
( )Tz k
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Considering a damping function
( )sinh kα

, the time value of an 
option follows a Fourier inversion, 
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The use of the FFT for calculating out-of-the-money option prices is 
similar   to   (18).   The  only  differences  are  that  they  replace  the 
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multiplication by e ukα−
 with a division by 

( )sinh kα
 and the 

function call to 
( )T
vψ

 is replaced by a function call to
( )

T
vϒ

. 
 
 
NUMERICAL RESULTS AND DISCUSSION 
 
In this section, we used 128 European call option levels at 
four combinations of parameter settings and compared 
the accuracy and speed with that of the FFT technique 
and closed-form (CF) formulae derived by Kou (2002). 
Throughout this section, we shall use the default 
parameters: 
 

 100, 0.05, 0.6, 0.3,S r p σ= = = = 1.T =  For our FFT 

methods, we used 4096N =  points in our quadrature, 

implying a log strike spacing of 300
0.01047h

π
= =

 which 
is adequate for practice. For the choice of the dampening 
coefficient in the transform of the modified call price, we 

used a value of 2.74α = . Numerical outcomes are listed 
in Table 1 and applied program codes in Matlab package 
are presented in the Appendix. 

Our numerical experiment shows that the FFT approach 
is considerably faster than the CF method of Kou (2002). 
The FFT takes about 2 s to produce 128 option prices at 
four combinations of parameter settings, while the CF 
method of Kou takes about 100 s. 

Furthermore, Table 1 compared the pricing accuracy 
between the two methods across a range of strike prices. 
If we consider the CF method to be the benchmark, the 
relative percentage differences are all less than 0.17%. 

In addition, the program of the FFT is very simple. It 
requests only a dozen lines of code in Matlab, while the 
one of the CF method is more complicated and requests 
about seventy lines. Our numerical example confirms that 
our FFT numerical solution is correct. It also illustrates 
how much more efficient this technique is. 
 
 
CONCLUSIONS 
 
In the present paper, we derived a CF representation of 
the characteristic function of the DEJD process. By using 
FFT, we obtained fast, accurate and easy to implement 
numerical solution to European call options under the 
DEJD model. It should be noted that this study has 
examined only European call options pricing. As for put 
options pricing, one can obtain easily corresponding result 
by the put-call parity (Black and Scholes, 1973). 
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Table 1. Accuracy check and the FFT method versus CF solution. 
 

 
 1 2 20.0η η= =  

1 2 40.0η η= =  

 Price FFT Price CF Price FFT Price CF 

90K =  

1.0λ =  19.9548 19.9548 19.7603 19.7633 

3.0λ =  20.4646 20.4569 19.8932 19.8941 

5.0λ =  20.9581 20.9431 20.0247 20.0237 

 

100K =  

5.0λ =  14.5191 14.5393 14.2874 14.3099 

3.0λ =  15.1203 15.1348 14.4447 14.4657 

5.0λ =  15.6960 15.7051 14.6000 14.6196 

 

110K =  

1.0λ =  10.3318 10.3485 10.0857 10.1033 

3.0λ =  10.9677 10.9817 10.2511 10.2681 

5.0λ =  11.5753 11.5867 10.4144 10.4307 
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APPENDIX 
 
Matlab codes for in-the-money the options pricing by 
FFT 
 
function CallValue 
=inDexpJ(ata1,ata2,lamta,sigma,r,p,s0,strike,T) 
%sigma = volatility 
%T = maturity 
%r = interest rate 
%s0 = initial asset price 
x0 = log(s0); 
alpha = 2.74; 
N= 4096; 
c = 600; 
eta = c/N; 
b =pi/eta; 
u = [0:N-1]*eta; 
lamda = 2*b/N; 
position = (log(strike) + b)/lamda + 1;  %position of call 
v = u - (alpha+1)*i; 
A=i*v*x0; 
k=p*ata1/(ata1-1)+(1-p)*ata2/(ata2+1)-1; 
l=p*ata1./(ata1-i*v)+(1-p)*ata2./(ata2+i*v)-1; 
B=T*(i*v*(r-0.5*sigma^2-lamta*k)-
0.5*sigma^2*(v.^2)+lamta*l); 
charFunc=exp(A+B); 
ModifiedCharFunc = charFunc*exp(-r*T)./(alpha^2 ... 
+ alpha - u.^2 + i*(2*alpha +1)*u); 
SimpsonW = 1/3*(3 + (-1).^[1:N] - [1, zeros(1,N-1)]); 
FftFunc = exp(i*b*u).*ModifiedCharFunc*eta.*SimpsonW; 
payoff = real(fft(FftFunc)); 
CallValueM = exp(-log(strike)*alpha)*payoff/pi; 
format short; 
CallValue = CallValueM(round(position)); 
 
 
Matlab codes for out-of-the-money the options 
pricing by FFT 
 
function CValue =outDexpJ(ata1,ata2,lamta,sigma,r 
,p,s0,strike,T) 
x0 = log(s0); 
alpha = 2.74; 
N= 4096; 
c = 600; 
eta = c/N; 
b =pi/eta; 
u = [0:N-1]*eta; 
lamda = 2*b/N; 
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position = (log(strike) + b)/lamda + 1; %position of call 
w1 = u-i*alpha; 
w2 = u+i*alpha; 
v1 = u-i*alpha -i; 
v2 = u+i*alpha -i; 
k=p*ata1/(ata1-1)+(1-p)*ata2/(ata2+1)-1; 
A1=i*v1*x0; 
l1=p*ata1./(ata1-i*v1)+(1-p)*ata2./(ata2+i*v1)-1; 
B1=T*(i*v1*(r-0.5*sigma^2-lamta*k)-
0.5*sigma^2*(v1.^2)+lamta*l1); 
charFunc1=exp(A1+B1); 
ModifiedCharFunc1 = exp(-r*T)*(1./(1+i*w1) - ... 
exp(r*T)./(i*w1) - charFunc1./(w1.^2 - i*w1)); 
A2=i*v2*x0; 
l2=p*ata1./(ata1-i*v2)+(1-p)*ata2./(ata2+i*v2)-1; 
B2=T*(i*v2*(r-0.5*sigma^2-lamta*k)-
0.5*sigma^2*(v2.^2)+lamta*l2); 
charFunc2=exp(A2+B2); 
ModifiedCharFunc2 = exp(-r*T)*(1./(1+i*w2) - ... 
exp(r*T)./(i*w2) - charFunc2./(w2.^2 - i*w2)); 
ModifiedCharFuncCombo = (ModifiedCharFunc1 - ... 
ModifiedCharFunc2)/2 ; 
SimpsonW = 1/3*(3 + (-1).^[1:N] - [1, zeros(1,N-1)]); 
FftFunc = exp(i*b*u).*ModifiedCharFuncCombo*eta.*... 
SimpsonW; 
payoff = real(fft(FftFunc)); 
CallValueM = payoff/pi/sinh(alpha*log(strike)); 
format short; 
CValue = CallValueM(round(position)); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


