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This paper proposes a new exponential lag synchronization (ELS) method for chaotic behavior in 
nonlinear Bloch equations. An ELS controller that is based on Lyapunov theory and linear matrix 
inequality (LMI) approach is presented to guarantee the exponential synchronization of drive and 
response systems. The proposed controller can be obtained by solving a convex optimization problem 
represented by the LMI. A simulation study is presented to demonstrate the effectiveness of the 
proposed synchronization scheme.   
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INTRODUCTION 
 
During the last two decades, synchronization in chaotic 
dynamic systems has received a great deal of interest 
among scientists from various research fields since 
Pecora and Carroll (1990) introduced a method to 
synchronize two identical chaotic systems with different 
initial conditions. It has been widely explored in a variety 
of fields including physical, chemical and ecological 
systems (Chen and Dong, 1998). In the literature, various 
synchronization schemes, such as variable structure 
control (Wang and Su, 2004), OGY method (Ott et al., 
1990), parameters adaptive control (Park, 2005; Wang et 
al., 2003), observer-based control (Yang and Chen, 
2002), active control (Bai and Lonngen, 1997; Bai and 
Lonngren, 2000), time-delay feedback approach (Park, 
2005),  approach (Ahn, 2009a, 2009c), backstep- 
ping design technique (Wu and Lu, 2003; Hu et al., 2005), 
fuzzy logic approach (Ahn, 2009b, 2009d), and so on, 
have been successfully applied to the chaos 
synchronization. 

The interaction of the two-level atom or the spin with 
the electric or magnetic field usually described by the 
nonlinear Bloch equation is very important for the under-  
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understanding of the underlying physical processes of 
nuclear magnetic resonance, magnetic resonance 
imaging, electron spin resonance, and two-level laser 
propagation (Yang et al., 2007; Ziolkowski et al., 1995; 
Zou et al., 2004). The basic process can be viewed as 
the combination of a precession about a magnetic field 
and of a relaxation process. Abergel (2002) demon- 
strated that the set of nonlinear Bloch equations would 
admit chaotic solutions for a certain set of numerical 
values assigned to the system constants and initial 
conditions. Ucar et al. (2003) extend the calculation of 
Abergel (2002) and demonstrate that an active control 
method can synchronize two of these nonlinear Bloch 
equations. Recently, some control schemes, such as 
adaptive control (Park, 2006) and stability criterion 
method (Ghosh et al., 2008), were proposed for syn- 
chronizing chaotic behavior in nonlinear Bloch equations. 

In the typical synchronization regimes, lag synchro- 
nization has been proposed as the coincidence of the 
states of chaotic systems in which one of the systems is 
delayed by a finite time. Many experimental investiga- 
tions and computer simulations of chaos synchronization 
in uni-directionally coupled external cavity semiconductor 
lasers (Shahverdiev et al., 2002; Taherion and Lai, 1999; 
Barsella and Lepers, 2002) have demonstrated the 
presence of lag time between the drive and response 
lasers intensities. Similar experiments for chaotic circuits 
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(Huang et al., 2001) have also demonstrated the com- 
plete synchronization, that is, the states of two chaotic 
systems remain identical in the course of temporal evo- 
lution and this is practically impossible for the presence of 
the signal transmission time and evolution time of 
response system itself. Thus, knowledge of the lag 
synchronization is of considerable practical importance. 
Recently, some control methods, such as observer based 
scheme (Li et al., 2005), impulsive control (Li et al., 2005), 
projective approach (Zhang and Lu, 2008; Li, 2009), and 
adaptive control (Tang et al., 2008; Wang et al., 2009), 
have been applied to the lag synchronization for chaotic 
systems. To the best of our knowledge, however, for the 
lag synchronization of chaotic behavior in nonlinear Bloch 
equations, there is no result in the literature so far, which 
still remains open and challenging. 

In this paper, a new controller for the exponential lag 
synchronization (ELS) of chaotic behavior in nonlinear 
Bloch equations is proposed. This controller is a new 
contribution to the topic of chaos synchronization. Theo- 
retical proof shows that the ELS controller can make the 
closed-loop lag synchronization error system exponen- 
tially synchronized. Based on Lyapunov method and 
linear matrix inequality (LMI) approach, an existence 
criterion for the proposed controller is represented in 
terms of the LMI. The LMI problem can be solved 
efficiently by using recently developed convex 
optimization algorithms (Boyd et al., 1994). 

This paper is organized as follows. An introduction of 
nonlinear Bloch equations and problem formulations is 
discussed. Next, an LMI problem for the ELS of chaotic 
behavior in nonlinear Bloch equations is proposed and a 
numerical example is given and finally, conclusion is 
presented. 
 
 
NONLINEAR BLOCH EQUATIONS AND PROBLEM 
FORMULATION 
 
In dimensionless units, the dynamic model of nonlinear 
modified Bloch equations with feedback field (Abergel, 
2002) is given by 
  

                             

                                   (1) 
 
Where; ,  and  are the system parameters and 

 and  are the longitudinal time and transverse 
relaxation times, respectively. The subscript ` ' indicates 
that the system will be considered as the drive (or 
master) system.  

 
 
 
 
Abergel has extensively investigated the dynamics of the 
system (1) for a fixed subset of the system parame- ters 
( , , , ) and for a space area range of the 
radiation damping feedback  (Abergel, 2002). In 
particular, the regions of the radiation damping feedback 

 that would admit chaotic behavior were obtained. For 
details of other dynamic properties of the system (1), 
refer to Abergel (2002), Lonngren and Bai (2003). The 
synchronization problem of system (1) is considered by 
using the drive-response configuration. The system (1) is 
considered as the drive system. According to the drive- 
response concept, the controlled response system is 
given by 
 

                                        (2) 
 
Where; , and  are the nonlinear 
controllers. 
 
Define the lag synchronization error as  
 

           (3) 

 
Where;  is the synchronization lag. Then the 
following lag synchronization error system are obtained:  
 

                                        (4) 
 
which is rewritten as  
 

        (5)                                                                                   
 
Where , ,  and  are defined by  



 
 
 
 

 
 

 
 
 
 
Definition 1 
 
Exponential lag synchronization: The error system 
Equation 5, is exponentially lag-synchronized if the lag 
synchronization error  satisfies  
 

                   (6) 
              
Where  and  are positive scalars.  
 
 
MAIN RESULT  
 
In this section, we present the LMI problem for achieving 
the exponential lag synchronization of Nonlinear Bloch 
Equations.  
 
 
Theorem 1 
 
For a given , if there exist  
and  such that 
  

           (7) 

 
Then the exponential lag synchronization is achieved 
under the controller 
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                                        (8)  
 
 
Proof 
 
The closed-loop error system with the control input: 
 

 
 

Where  is the gain matrix of the control input 
 and can be written as  

 

                       (9) 
  
Consider a Lyapunov function  
 

                (10)  
 
Where; . 
 

Note that  satisfies the following Rayleigh 
inequality (Strang, 1986):  
 

  (11) 
 

Where;  and  are the maximum and 
minimum eigenvalues of the matrix.  
 

The time derivative of  along the trajectory of 
Equation 9 is 
  

 

 
 
If the following matrix inequality is satisfied  
 

          (12) 
 

we have  
 

  

                      (13) 

 
From Equation 13, we obtain  
 

  
 

Where 
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Figure 1. State trajectories 

 
 
 
Using Equation 11, we have  
 

     (15) 

 
Since  
 

                (16) 

 
The relation (15) guarantees the exponential lag 
synchronization. From Schur complement, the matrix 
inequality (12) is equivalent to  
 

    (17)                        

 

Pre- and post-multiplying (17) by  and 
introducing change of variables such as  and 

, Equation 17 is equivalently changed into the 
LMI (7). Then the gain matrix of the control input  is 
given by . This completes the proof.             
 
 
Remark 1  
 
The LMI problem given in Theorem 1 is  to  determine 

whether the solution exists or not. It is called the 
feasibility problem. The LMI problem can be solved effi- 
ciently by using recently developed convex optimization 
algorithms (Boyd et al., 1994). In this paper, in order to 
solve the LMI problem, we utilize MATLAB LMI Control 
Toolbox (Gahinet et al., 1995), which implements 
state-of-the-art interior-point algorithms.  
 
 
NUMERICAL EXAMPLE 
 
In order to verify and demonstrate the effectiveness of 
the proposed method, the simulation result obtaining from 
synchronizing nonlinear Bloch equations under different 
initial conditions is discussed. For the numerical simula- 
tion, the system parameters , , , , and  are 
fixed as , , , , and , respectively, 
so that the Bloch equations exhibit a chaotic behavior. 
Let  and , where  is an 
identity matrix. Applying Theorem 1 to the Bloch 
equations yields  
 

   (18) 

 
Figure 1 shows state trajectories for drive and response 
systems when the initial conditions are given by  
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Figure 2. Synchronization errors 

 
 
 

    (19) 

 
From Figure 1, it can be seen that drive and response 
systems are indeed achieving chaos lag synchronization. 
Figure 2 shows that the lag synchronization error  
converges to zero exponentially fast. Simulation results 
reveal that the response system controlled using the 
proposed method performs well. The effectiveness  and  

accuracy of the proposed method are verified. 
 
 
Conclusion 
 
In this paper, we propose a new ELS scheme for chaotic 
behavior in nonlinear Bloch equations. Based on 
Lyapunov theory and LMI formulation, the proposed 
method can guarantee the ELS between the drive and 
response systems. The ELS controller can be easily 
obtained by solving the LMI problem. Furthermore, a nu-  
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merical simulation is given to illustrate the effectiveness 
of the proposed scheme. 
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