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This article proposes a method to compute the maximum allowable delay time (  ) for linear-time-

invariant-time-delayed-systems (LTI-TDS) with state-PID feedback control. It presents the main theorem 

with corollary, and computing steps to obtain .  Stability of a LTI-TDS with state- proportional integral 

derivative (PID) feedback is ensured if the delay time is less than .  The proposed approach is 

compared with the matrix pencil method. Stabilization for the system is also proposed by using a low-
pass filter. It was shown by simulation that the system is made more tolerable to delay by judicious 
selection of the DC gain and the time-constant of the filter. Seven case studies serve to demonstrate the 
effectiveness of the proposed approaches. 
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INTRODUCTION 
 
Control of systems with delays has been a very active 
issue for academic and industry for several decades 
because of many concerned practical systems including 
heat and chemical processes, material transport systems, 
etc. (Normey-Rico and Chamacho, 2007). The most 
common control technique for this system category is 
proportional integral derivative (PID) control. As 
microcontrollers become cheaper, embedded systems 
have been increasingly used worldwide. Unlike their 
analog counterparts, microcontroller-based control needs 
time for instruction-set execution, data conversion 
process, and data communication in the control loop. 
These introduce inevitable delay to a computer-controlled 
system, although, the plant itself is not a delayed type. 
Characteristic equation of such a system becomes 
transcendental. In effect, the number of eigenvalues 
becomes infinite (Michiels et al., 2002; Richard, 2003). 
Control design via eigenvalue assignment for this class of 
systems is not simple as researchers have developed the 
finite spectrum assignment methods to achieve this 
(Manitius and Olbrot, 1979; Wang et al., 1995; Brethe 
and Loiseau, 1998). 
 
 
 
*Corresponding author. E-mail: Sarawut@sut.ac.th. 

Delay also has a detrimental effect on stability (Niculescu, 
2001). Since a system can withstand a certain delay time 
before becoming unstable, stability analysis is a prime 
interest for prediction of a tolerable delay. An early 
method for stability test was proposed by Rekasius 
(1980). The method uses exact bilinear transformation to 
represent the transcendental term as ratio of s-
polynomials. The work has been extended to time-
delayed linear-time-invariant (LTI) systems (Olgac and 
Sipahi, 2002). The same authors present their 
comparative studies among five stability analysis 
methods, and conclude that the Rekasius’ method is the 
most attractive one due to simplicity, accuracy and 
exactness (Sipahi and Olgac, 2006). Moreover, this 
approach lends itself nicely to stability analysis of 
retarded and neutral systems (Sipahi and Olgac, 2003; 
Olgac and Sipahi, 2004, 2005). Interestingly, the method 
has been applied for computing generalized eigenvalues 
of certain constant matrices. It uses a matrix pencil 
approach that can be executed in finite steps, and 
applied for predicting a tolerable delay (Chen et al., 1995; 
Niculescu, 2001; Fu et al., 2006). Recently, a new 
approach based on Lambert W-function to compute 
eigenvalue spectrum and predict stability of a delayed 
system has been proposed (Asl and Ulsoy, 2003; Yi et al., 
2010). Computation  based  on  this  approach  is  rather 



 
 
 
 
complex. Furthermore, there is no guarantee for 
existence and convergence of a solution. From our 
experience of using the method via the command “fsolve” 
of MATLAB

TM
, computing did not converge to a solution 

for a system of higher order than two. 
In engineering practice, state-derivative (or state-D) 

feedback is a useful approach particularly to mechanical 
vibration control. Recently, state-PID feedback has been 
proposed for regulation problem of an LTI system 
(Sujitjorn and Wiboonjaroen, 2011). The concept is 
extended to an LTI system with a single delay as 
described by this paper.     Since the    stability of an LTI  
system is sensitive to delay and derivative component, 
this article presents stability analysis based on Routh’s 
criterion in comparison with the matrix pencil approach. 
Various numerical examples and a case study of 
pendulum control are demonstrated. Moreover, 
stabilization of a LTI system with delay using a low-pass 
filter is presented. This article presents the reviews of our 
computing approaches, results, numerical examples with 
discussions and conclusion, respectively. 
 
 
COMPUTING METHODS 
 
Here, we give reviews of two computing methods used in this article 
to obtain a tolerable delay. Consider a linear-time-invariant with 
single time-delay system (LTI-TDS) represented by: 
  

( ) ( ) ( )t t t   
d

x Ax A x                           (1) 

 

where ( 1)nx , ( ) ( )n n n n R  
d

A ,A  

and R  . A and dA are constant matrices. The system 

characteristic equation is expressed by: 
  

 ( , ) det 0, 0sf s s e      
d

I A A                  (2) 

 
or in a general form: 
  

( 1)

1 0( , ) ( ) ( ) ... ( )n s n s

n nCE s a s e a s e a s    

                       (3) 

 

0

( ) 0
n

k s

k

k

a s e 



   

 

where ( )ka s  is (n-k)th order of s-polynomial having real 

coefficients. The aforementioned system is stable if and only if all 
characteristic roots lie on the left half of the s-plane. Due to the 
transcendental term, the number of characteristic roots becomes 
infinite. These roots have been referred to in literatures as 
characteristic spectrum, eigenvalue spectrum or eigen-spectrum. 
Only the dominant branch of such spectrum was used to justify 
stability since the rest of the branches lie on the left side of the 
dominant one. The Rekasius’ substitution method has been very 
attractive, because it helps single out the dominant branch of the 
eigen-spectrum, which is useful for stability analysis. The following 
calculation procedures  are  based  on  this  approach.  One  which 
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employs the Routh’s criterion is referred to as direct method 
proposed by this article. Another one employs an algebraic 
calculation, and is referred to as matrix pencil method. 
 
 

Direct method 
 

Computing procedures to obtain  :  

 

Step 1: Define the system characteristic equation in the form of 
Equation 3. 
Step 2: Substitute the transcendental term in Equation 3 by the 
Rekasius substitution, and arrange the characteristic equation in 
the form of, 
 

0

1
( , ) ( ) 0

1

kn

k
k

Ts
CE s T a s

Ts

 
  

 
  

  
0

( ) 1 (1 ) 0
n

n k k
k

k

a s Ts Ts




     

 
2

0

( ) 0
n

k
k

k

b T s


   
             (4) 

 

Step 3: Construct the Routh’s array, ( )RA T , according to Equation 

5: 
 

2 4

1 3 5

2,1 2,2 2,3

1,1 1,2

0,1

( )

0

0 0

m m m

m m m

m m m

b b b

b b b

R R R
RA T

R R

R

 

  

  

 
 
 
 

  
 
 
 
  

                       (5) 

 

where m is the maximum order of s in Equation 4. 
 

Step 4: Iteratively compute Equation 5 for ckT  that results in 

ckj eigenvalues according to the Routh’s stability criterion. 

Step 5: Substitute T  and   in Equation 6 by ckT  and ck , 

respectively.  
 

12
tan ( ) , 0,1,...T l l  



    
 

                   (6) 

 

Obtain min( ).   

 
 
Matrix pencil method 
 

Computing procedures to obtain  :  

 
Step 1: Define the system characteristic equation in the form of 
Equation 3. 
Step 2: Substitute the transcendental term in Equation 3 by the 
Rekasius substitution, and arrange the characteristic equation in 
the form of, 
 

0

( , ) ( ) 0
d

d

n n
n n i

i
i

CE s T b T s


 



                     (7) 

 

in which n is the system order and nd is the commensurate degree. 
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Rearrange the transformed characteristic polynomial (Equation 7) in 
the form of Equation 8: 

 

0

( , ) ( ) ,
dn

k
k

k

CE s T q s T


                            (8) 

 

where 1
0 1

0

( ) ...
d

d d d

n n
n n l n n n n

k kl k k
l

q s q s q s q s


    



     

( )dk n nq  , klq  are constants. 

 
Step 3: Construct the Hurwitz matrix: 

 
( )

dk n nq  H                                           (9) 

 
Step 4: Compute the real eigenvalues of the matrix pencil Γ for 

, 1,..., ,k dT k m m nn   , as: 

 
( )  Γ U V                                           (10) 

 
where  

 

( ) ( )

( )

d d d d

d

n n n n n n

nq

  

 
 
  
 
 
  

I

U R
I

H

                                  (11) 

 
and 

 

( ) ( )

0 1 1

0 0

0 0 0

( ) ( ) ( )

d d d d

d

n n n n n n

nq q q

  



 
 
  
 
 
  

I

V R
I

H H H

                 (12) 

 
where U and V consist of square block matrices of order n+nd. 

 

Step 5: Compute ckT for Equation 10 that results in ckj  

eigenvalues for Equation 8. 

Step 6: Substitute T  and   in Equation 6 by ckT  and ck , 

respectively. Obtain min( ).   

 
Note that, for both methods, Steps 1 to 4 require symbolic 
programming; otherwise, they need to be done by hand. Steps 5 to 
6 use conventional numerical computing. 

 
 
MAIN RESULTS 

 
Tolerable delay 

 
Consider a LTI-TDS of the form: 
 

( ) ( ) ( )t t u t   x Ax B                                   (13) 

 
 
 
 

where ( 1)nx  is the state vector, u R  is the control 

input, ( )n nA  and ( 1)nB  are the system matrix and the 

control vector, respectively. 
 
 
Theorem 1 
 
Suppose that the system (Equation13) is completely 
controllable and t-stabilizable (Olgac and Sipahi, 2004), 
for the state-PID feedback that control the system 
characteristic equation is: 
  

1 1
( , ) det ( ( ) 0,

1

Ts
CE s T s s

s Ts

 
      

 
p i dI A B K K K  

 

,R T R   . 

 
 

Proof  
 
For the delayed control input: 
 

( ) ( ) ( ) ( ),u t t t dt t         p i dK x K x K x   

 

the closed-loop system can be expressed by: 
 

( ) ( ) ( ) ( ) ( ) ,t t t t dt t         
 p i d

x Ax B K x K x K x     (14) 

 

The system (Equation 13) possesses the following 
characteristic equation: 
 

1
( , ) det ( ) 0,sCE s s s e R

s

   
       

 
p i dI A B K K K       (15) 

 

Substituting 
1

,
1

s Ts
e

Ts

 



 T R , we obtain: 

 

1 1
( , ) ( , ) det ( ) 0

1

Ts
CE s CE s T s s

s Ts


 
       

 
p i dI A B K K K     (16) 

 
This completes the proof. 

The following is an immediate consequence of theorem 
1. 
 
 
Corollary 1  
 
For a completely controllable and t-stabilizable system 
(Equation 13): 
 
1. With the state-P feedback control, the characteristic 
polynomial is expressed by: 
  

1
( , ) det ,

1

Ts
CE s T s

Ts

 
   

 
pI A BK T R              (17) 



 
 
 
 
2. With the state-D feedback control, the characteristic 
polynomial is expressed by: 

 
1

( , ) det ) ,
1

Ts
CE s T s s

Ts

 
   

 
dI A BK T R               (18) 

 
3. With the state-PD feedback control, the characteristic 
polynomial is expressed by: 

 

 1
( , ) det ( ) ,

1

Ts
CE s T s s

Ts

 
    

 
p dI A B K K T R         (19) 

 
4. With the state-PI feedback control, the characteristic 
polynomial is expressed by: 

  
1 1

( , ) det ( ) ,
1

Ts
CE s T s

s Ts

 
    

 
p iI A B K K T R        (20) 

 
According to the Rekasius substitution: 

 

1
,

1

s Ts
e

Ts

 



 ,R T R   ,  

 
where ,s j R   , the relationship between T  and   

is: 

 

12
tan ( ) , 0,1,...T l l  



    
      (21) 

 
Some Ts cause the eigenvalues s j  with infinite 

numbers of t, that is: 

  

, 1,2.. , 0,1...ck ck klT s j k m l          (22) 

 
The maximum delay time ( ) can be figured out from: 

 

12
min tan ( ) min( )T l   



       
       (23) 

 
 results in critical or marginal stability. This means that a 

t-stabilizable system remains stable if 0 .    

 
 
Stabilization 

 
Consider a LTI system having single input of the form of 
Equation 13. If the system is unstable, a stabilizing state-
PID feedback is designed by applying a first-order low 
pass filter to Equation 13, when Kf and Tf is the DC gain 
and the time constant of the filter. In this way, a time-
delayed system can be stabilized, that is, the system is 
more robust to the delay time. Corollary 2 is also an 
immediate consequence of Theorem 1. 
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Corollary 2  
 
Consider the system described by Theorem 1 with the 
maximum allowable delay   . A low pass filter is 

added to the system. Therefore, the system characteristic 
equation can be express by: 
  

11
( , ) det ( ( ) . 0,

1 1

fck
ck

ck f

KT s
CE s T s s

s T s T s

 
      

   
p i dI A B K K K

       (24) 

 

Note that ckT causes a pair of imaginary characteristic 

 

roots  ckj . Furthermore, 

 
1. With the state-P feedback control, the characteristic 
polynomial is expressed by: 
  

1
( , ) det ,

1 1

fck
ck

ck f

KT s
CE s T s

T s T s

 
   

   
pI A BK                 (25) 

 
2. With the state-D feedback control, the characteristic 
polynomial is expressed by: 
  

1
( , ) det ,

1 1

fck
ck

ck f

KT s
CE s T s s

T s T s

 
   

   
dI A BK          (26) 

 
3. With the state-PD feedback control, the characteristic 
polynomial is expressed by: 
  

1
( , ) det ( ) ,

1 1

fck
ck

ck f

KT s
CE s T s s

T s T s

 
    

   
p dI A B K K       (27) 

 
4. With the state-PI feedback control, the characteristic 
polynomial is expressed by: 
  

11
( , ) det ( ) ,

1 1

fck
ck

ck f

KT s
CE s T s

s T s T s

 
    

   
p iI A B K K     (28) 

 
Applying the aforementioned characteristic polynomials, 
one can compute for the parameters of the low pass filter 
that stabilize the system. In other words, the system will 
be able to tolerate a longer delay time. 

The following examples serve to demonstrate the 
proposed method via simulations. The first case study is 
explained in details. Since the other cases have similar 
work procedures, they are presented in brief with results.  

 
 
EXAMPLES 

 
Let us consider a t-stabilizable LTI system having: 
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                                 a 

 

                                 b 

 

                                  c 

  
 

Figure 1. State responses of Example 1 delay time: (a) 

 120 .ms   , (b)  155 .ms    and (c) 170 .ms    

 
 
 

0 1

4.6985 0

 
  

 
A  and 

0

0.25

 
  
 

B . 

 
The system is unstable, and has its eigenvalues at 

2.1676.j Examples 1 to 5 demonstrate how we can 

calculate the maximum allowable delay ( ) by using the 

direct method proposed in comparison with matrix pencil 
method. Stabilization of a delayed system is illustrated by 
Example 6. Example 7 provides a design example of an 
inverted pendulum on a cart system. 
 
 
Example 1: State-P feedback 
 
Using the Ackermann’s formula, a required pair of closed-
loop poles at 4 2j  can be placed via the gain matrix 

 61.2 32 .pK  The closed-loop system without delay is 

stable. Next, we compute the value .  

 
 
 
 

The characteristic polynomial ( , )CE s  can be formulated 

as: 
  

2
2 1 0( , ) ( ) ( ) ( )s sCE s a s e a s e a s       

 

in which 2 ( ) 0a s  , 1( ) 8 15.3a s s   and 

2
0 ( ) 4.6985a s s  . Next, ( , )CE s T is obtained as: 

 
2

3 2
3 2 1 0

0

( , ) ( )
n

k
k

k

CE s T b T s b s b s b s b


      

 

in which 3( ) 2Tb T  , 2( ) 2 16Tb T   , 

1( ) 16 21.203Tb T   and 0( ) 39.997.b T  The constructed 

Routh’s array is as follow: 
 

1,1

0,1

2 16 21.203

2 16 39.997
( )

0

0

T T

T
RA T

R

R

 
 


 
 
 
  

. 

 
Using an iterative computing, the set of Ts can be 

obtained as  0.0922,0.1251 .T   For 0.0922T  ,  

 

0.1844 14.0451

0.5248 39.9970
( )

0.0087 0

39.9970 0

RA T

 
 
 
 
 
 

,  

 
and the obtained eigenvalues are 0.0008 8.7276j  

8.7276j   and 2.8476.  For 0.1251T  , the obtained 

Routh’s array and eigenvalues are as follows: 
 

0.2502 13.3475

0.0016 39.9970
( )

6267.8784 0

39.9970 0

RA T

 
 


 
 
 
 

,  

 
1.3271 7.6560j and 2.6478 , respectively. Therefore, 

0.0922ckT  s is the critical time interval, and the 

imaginary-axis crossover frequencies 8.7276ck   rad/s. 

Finally, we obtain 155 .ms   

Figure 1 illustrates responses of the system states. As 
shown in Figure 1a, the response converges to zero, as 
the delay time is less than the maximum allowable delay. 
In contrast, oscillatory and unstable responses can be 
observed in Figure 1b and c, as the delay times are 
longer than the maximum delay. 

Now we present the calculation procedures based on  
the matrix pencil approach  as  follows,  that  is,  one  can 



 
 
 
 
write the characteristic polynomial of the system as: 
 

 ( , ) det sCE s s e     dI A A  

 
2

2 1 0( ) ( ) ( )s sa s e a s e a s      

 

where 2 ( ) 0a s  , 1( ) 8 15.3a s s   and 2
0 ( ) 4.6985.a s s   

Using the Rekasius substitution, the characteristic 
polynomial can be rewritten as:  
 

2
0 1 2( , ) ( ) ( ) ( )CE s T q s q s T q s T   ,  

 

where 2

0( ) 8 20q s s s   , 3 2

1( ) 8 10.6q s s s s    and 

2( ) 0.q s  The next step is to form the Hurwitz matrices, 

and is obtained as: 
 

0

0 8 0 0

0 1 20 0
( )

0 0 8 0

0 0 1 20

q

 
 
 
 
 
 

H , 1

1 10.6 0 0

0 8 0 0
( )

0 1 10.6 0

0 0 8 0

q

 
 


 
 
 

 

H   

 

and
2

0 0 0 0

0 0 0 0
( )

0 0 0 0

0 0 0 0

q

 
 
 
 
 
 

H .  

 
Now, we can form the matrices U and V as follows:  
 

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

U

,  

 
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 8 0 0 1 10.6 0 0

0 1 20 0 0 8 0 0

0 0 8 0 0 1 10.6 0

0 0 1 20 0 0 8 0

 
 


 
 
 

 
 
 

 
 
 
  

V
 

 
As a result, ( ) Γ 0, 1.0232 and 0.0922. Therefore, 

0.0922T  and 1.0232T  are used. The later value of T 

results in eigenvalues = 7.0227 , 1.6683 and 1.6683 , 

respectively. The former one gives 0.00003 8.7281j  and 

2.8477 as eigenvalues. We could say that 

0.00003 8.7281 8.7281j j    ckj , and hence, 
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0.0922ckT   and 8.7281ck   rad/s. Finally, the 

maximum allowable delay is obtained as 155 ,ms  which 

is equal to that obtained previously. 
 
 
Example 2:  State-D feedback 
 
Consider the same system as the previous case. Now, 
the system is stabilized by using state-D feedback. The 

gain matrix  7.5 3.1 dK is obtained by applying the 

design method in (Sujitjorn and Wiboonjaroen, 2011). 
The closed-loop system is stable with 0  s. Applying 

the proposed direct method, we obtain 0.0399ckT s as 

the critical time interval, and 5.4178ck   rad/s as the 

imaginary-axis crossover frequencies. Therefore, the 

maximum delay is 78.6 .ms   ms. Next, we demonstrate the 
calculation based on the matrix pencil method. To keep 
our presentation short, only important data are given as 
follows:  
 

2
0 1 2( , ) ( ) ( ) ( )CE s T q s q s T q s T   , 2

0( ) 8.34 20.88q s s s   , 
3 2

1( ) 1.07 2.65q s s s s    and 
2( ) 0.q s  The Hurwitz matrices 

are: 
 

0

0 8.34 0 0

0 1 20.88 0
( )

0 0 8.34 0

0 0 1 20.88

q

 
 
 
 
 
 

H ,
1

1 2.65 0 0

0 1.07 0 0
( )

0 1 2.65 0

0 0 1.07 0

q

 
 


 
 
 

 

H  ,  

 

2

0 0 0 0

0 0 0 0
( )

0 0 0 0

0 0 0 0

q

 
 
 
 
 
 

H ; and 

 
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

U
,  

 

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 8.34 0 0 1 2.65 0 0

0 1 20.88 0 0 1.07 0 0

0 0 8.34 0 0 1 2.65 0

0 0 1 20.88 0 0 1.07 0

 
 


 
 
 

 
 
 

 
 
 
  

V . 
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( ) Γ -1.2636, 0 and 0.0398 are obtained. Finally, 

0.0398,ckT  5.4288 rad/s,ck     78.6 .ms   ms. 

 
 
Example 3: State-PI feedback 
 
Consider the same open-loop system. The system can 
be stabilized via the state-PI feedback to achieve the 
closed-loop poles at 4 2 j  and 5 . The corresponding 

gain matrices are  18.79 52 pK  and [ 400 iK  

240]. 0.0538ckT s , 13.45ck   rad/s and 93.1ms   

are obtained via using the proposed direct method. The 
matrix pencil approach results in, 
 

2
0 1 2( , ) ( ) ( ) ( )CE s T q s q s T q s T   , 3 2

0( ) 13 60 100q s s s s     

 

, 4 3 2

1( ) 13 50.60q s s s s    100s  and 
2( ) 0.q s   

 

0

1 60 0 0

0 13 100 0
( )

0 0 60 0

0 0 13 100

q

 
 
 
 
 
 

H ,
1

13 100 0 0

1 50.60 0 0
( )

0 13 100 0

0 0 50.60 0

q

  
 


 
  
 

 

H ,  

 

 
2

0 0 0 0

0 0 0 0
( )

0 0 0 0

0 0 0 0

q

 
 
 
 
 
 

H , 

 
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

U

,  

 
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 60 0 0 13 100 0 0

0 13 100 0 1 50.60 0 0

0 0 60 0 0 13 100 0

0 0 13 100 0 0 50.60 0

 
 


 
 
 

 
  
 

 
  
 
  

V
, 

 

0.0537,ckT  13.46 rad/s,ck   and 93.1 .ms   ms. 

 
 
Example 4: State-PD feedback 
 
The same system as of Example 1 is stabilized via the 
state-PD feedback method  (Sujitjorn  and  Wiboonjaroen, 

 
 
 
 

2011). The PD-gain matrices are  61.2 0 pK and 

 32 0 dK . Applying the proposed direct method, we 

obtain 0.0922ckT s , 8.7275ck   rad/s and 155 .ms   

Similar situations to those of the previous cases can be 
observed. 

As a result of applying the matrix pencil method, we 
obtain: 
 

2

0( ) 8 20q s s s   , 3 2

1( ) 8 10.60q s s s s    ,
2( ) 0q s  , 

 

0

0 8 0 0

0 1 20 0
( )

0 0 8 0

0 0 1 20

q

 
 
 
 
 
 

H ,
1

1 10.60 0 0

0 8 0 0
( )

0 1 10.60 0

0 0 8 0

q

 
 


 
 
 

 

H  , 

 

2

0 0 0 0

0 0 0 0
( )

0 0 0 0

0 0 0 0

q

 
 
 
 
 
 

H , 

 

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

U ,  

 

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 8 0 0 1 10.60 0 0

0 1 20 0 0 8 0 0

0 0 8 0 0 1 10.60 0

0 0 1 20 0 0 8 0

 
 


 
 
 

 
 
 

 
 
 
  

V , 

 

0.0922,ckT  8.7281 rad/s,
kc    and  155 .ms   ms. 

 
 

Example 5: State-PID feedback 
 

The state-PID feedback method is applied to stabilize the 
same system, and the proposed direct method is applied 
to obtain the maximum allowable delay. As a result, the 
following data are obtained:  
 

 18.794 0pK ,  400 240  iK , [ 52 dK , 0] , 

0.0538ckT s , 13.4500ck    rad/s and  93.1 .ms    The 



 
 
 
 

                                   a 

 

                                    b 

 

                                    c 

  
 

Figure 2. State responses of Example 5 delay time: (a) 

 75 .ms   , (b)  93.1 .ms    and (c) 98 .ms    

 
 
 
similar figures are obtained from using the matrix pencil 
method. Figure 2a illustrates stable responses, while 
Figure 2b and c illustrates unstable ones.  

At this stage, we can conclude that the proposed direct 
method is exact, and gives the same accuracy as the 
existing matrix pencil method does. The calculation 
procedures are quite different. The matrix pencil 
approach needs some knowledge of matrix algebra and 
numerical computation. The direct method proposed 
needs only basic knowledge of Routh’s criterion and loop 
iterative computing commonly taught in undergraduate 
level.  
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Example 6  
 
This example serves to demonstrate the effectiveness of 
using a low pass filter to stabilize a time-delayed system. 
We show by numerical example that a system can be 
more robust to a delay by judicious selection of the DC 
gain and the time-constant of the filter.  

Consider the situation of Example 5 in which 

0.0538 ,ckT s and 93.1 .ms   The characteristic 

polynomial ( , )ckCE s T can be formulated as: 

 
5 4 3 2

5 4 3 2 1 0( , )ckCE s T b s b s b s b s b s b       

 

where 5 fb T , 4 18.59 1fb T  , 3  4.70 fb T , -13 18.58fK  , 

2 87.33 186.33  4.70f fb T K   , 1 9.28 87.33fb K   and 

0 1858.74 .fb K  Based on the Routh’s criterion, one can 

derive stability conditions as follows:  
 

0fT  , 18.58 1 0fT   ,  

 

215 +(1727011-2140000 ) -65000 +92900
0

 92950  + 5000

2
f f f f

f

T K T K

T
 ,  

 
2

f[( (79749240000 -62725571526 +947660)-3391631400f f fT K K K  

2 3 2

f+ (6023052378 +16032547)-3755190 +2422290000f f fT K T K  

2+4000)/(-43000 +(428000000 -345402200)f f fT K T +13000000 -18580000) 0fK   
, 

 
3[(34546258963800 + (1108187974720000f f  fK T K  

2-1687522386738128 +645051990274042 +8275914780) f f  K K  

2 2

f+ (-54999431947216 +52748872305290  f fT K K  

2+140012232951)-71783654969200 fK  

3 3

f+33659915120000 + (34079510680 -32794074270)f fK T K  

2+34932000)/( (7974924000000 -6272557152600f f fT K K  

3+94766000)-339163140000 -375519000f fk T  

2 2+242229000000 + (602305237800 +1603254700)f f fK T K , +400000)] > 0  
  

 
and 
 
185.87 0fK  . 

 
The filter gain and the time-constant must be positive. 
Select Kf=0.5 (arbitrary), therefore the aforementioned 

stability conditions reduce to 0 0.0317fT  . Let 

0.001fT  and    the  delay    be   93.1 ,ms    Figure  3a 
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                               a 

 

                              b 

  
 

Figure 3. State responses of Example 6. (a) 0.001fT  and (b) 

0.04fT   
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y
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no friction
 

 

Figure 4.  Inverted pendulum on cart. 

 
 
 
illustrates the state responses of this stabilized case. If 

we choose 0.04fT  , which defies the stability condition, 

the system is obviously unstable as shown by the 
responses in Figure 3b. 

 
 
 
 
Example 7 
 
An inverted pendulum system is adopted as an example 
and represented by the diagram as shown in Figure 4. Its 
state model is expressed by: 
 

0 1 0 0 0

20.601 0 0 0 1

0 0 0 1 0

0.4905 0 0 0 0.5

u

   
   


    
   
   
   

x' x , 

 

where 1 2 3, ',x x x x     and 4 'x x . With its poles 

at 0,0  and 4.5388 , the system is inherently unstable. It 

is desirable to place the closed-loop poles at 

2 3.464 , 4, 10j     and 10 . The state-PID feedback 

method is applied to stabilize the system, and the 
proposed direct method is applied to obtain the maximum 
allowable delay. As a result, the following data are 
obtained: 
 

[-20.601 0 0 0]
p

K , 

[7123.1490 1490.2386
I

K 1956.3781 , 

1043.4560] , [-120.6720 -24.6841
d

K , 

-313.0368 -49.3195] , 0.0236ckT  , 27.62ck   rad/s 

and 41.8 .ms   The matrix pencil method fails to provide 

useful numerical data since the matrix Γ is singular. 
Figure 5a shows the unstable responses corresponding 
to the delay of 41.8 ms. By selecting Kf=0.5, we obtain 

the stability condition 0 0.0083fT  . Figure 5b depicts 

the stable responses when the delay is 41.8 ,ms   and 

0.0001fT  (arbitrarily selected). When the filter time-

constant is 0.014fT  , which is out of the stable region, 

the system becomes unstable as demonstrated by the 
responses in Figure 5c. 
 
 
Conclusions 
 
This article has presented a new approach to compute 
the maximum allowable delay in a LTI-TDS that 
incorporates state-PID feedback. The proposed approach, 
referred to as the direct method utilizes the exact bilinear 
transformation known as Rekasius substitution to 
represent the transcendental term, and the Routh’s 
stability criterion. Computational results are compared 
with those obtained from the matrix pencil method. It was 
found out that both methods have similar accuracies. 
Stabilization of a system with delay via a low pass filter is 
also elaborated. As shown by one control design 
example, the matrix pencil method cannot provide useful 
information, because one of the matrices involved   in the 



 
 
 
 

                            a 

 

                             b 

 

 

  
 

Figure 5. State responses of example 7 when 41.8ms   (a) no 

filter, (b) filter time-constant 0.0001fT  and (c) 0.014fT  . 

 
 
 
calculation is singular. The direct method is successful 
with this case. Seven examples illustrated in this article 
confirm the effectiveness of the proposed approach. 
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