
International Journal of the Physical Sciences Vol. 6 (25), pp. 5937-5950, 23 October, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.880
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Overlapping Alldiff constraints: SAT versus CSP
encoding application to the Sudoku

Eric Monfroy1,2*, Broderick Crawford1,3, Ricardo Soto3,4 and Fernando Paredes5

1
Universidad Técnica Federico Santa María, Department, de Informática, Av. España 1680, Valparaíso, Chile.

2
CNRS, LINA, Université de Nantes, France.

3
Pontificia Universidad Católica de Valparaíso, Chile.

4
Universidad Autónoma de Chile, Chile.

5
Escuela de Ingeniería Industrial, Universidad Diego Portales, Santiago, Chile.

Accepted 18 August, 2011

Constraint satisfaction problems (CSP) or Boolean satisfiability problem (SAT) are two well-known
paradigms to model and solve combinatorial problems. Modeling and resolution of CSP is often
strengthened by global constraints (e.g., Alldiff constraint). This paper highlights two different ways of
handling specific structural information: a uniform propagation framework to handle (interleaved) Alldiff
constraints with some CSP reduction rules and a SAT encoding of these rules that preserves the
reduction properties of CSP. We illustrate our approach on the well-known Sudoku puzzle which
presents 27 overlapping Alldiff constraints in its 9 × 9 standard size. We also present some preliminary
results we obtained in CHR, GeCode and Zchaff.

Key words: Boolean satisfiability problem (SAT), computer science, decision support, constraint programming,
global constraint, automated reasoning.

INTRODUCTION

During the last decades, two closely related communities
have focused on the resolution of combinatorial
problems.

On one hand, the constraint programming community
has focused on the resolution of discrete constraint
satisfaction problems (CSP). This paradigm provides the
user with a general modeling framework, in which
problems are classically expressed by a set of decision
variables which values belong to finite integer domains.
Then, constraints can be defined to model the
relationships that exist between these variables.
Concerning the resolution algorithms, complete methods
aim at exploring a tree by enumerating variables and
reducing the search space using constraint propagation
techniques, while incomplete methods can be used to
explore this search space, according to specific or more
general heuristics (metaheuristics). Again, much work has
been achieved to define very efficient propagation

*Corresponding author. E-mail: ericmonfroy@gmail.com.

algorithms and search heuristics.
On the other hand, the SAT community has developed

very efficient algorithms and techniques to handle the
seminal Boolean satisfaction problem, which was the first
problem to be proved NP-complete (Cook, 1971). The
model is very simple, but limits the user to Boolean
variables and conjunctive normal form (CNF) proposi-
tional formulas to model its problems. The dedicated
complete resolution techniques (that is, able to decide if
an instance is satisfiable or not) mainly rely on the Davis-
Putnam-Logemann-Loveland (DPLL) procedure (Davis et
al., 1962). Incomplete algorithms have also been pro-
posed to overcome the problem of size of the instance,
mostly based on local search procedures (Selman et al.,
1994; Hoos, 1999). In addition, very sophisticated
techniques, including symmetries and structure detection,
learning techniques, hybrid heuristics, etc., have been
proposed in order to build very efficient solvers, which are
able to handle huge and very difficult benchmarks, as
highlighted during the annual SAT competitions (Hirsch et
al., 2010).

Concerning this resolution aspect, the two paradigms

5938 Int. J. Phys. Sci.

share some common principles (Bordeaux et al., 2006).
Here, we will only focus on complete methods that aim at
exploring a tree by enumerating variables (finite domain
variables or Boolean ones) and reducing the search
space using propagation techniques (constraint
propagation or unit propagation).

Now, if we look closer to the modeling facilities, on the
CSP side, the identification of typical constraints (so-
called global constraints that arise in several real-world
problems) has increased the declarative expressiveness.
Moreover, the development of very specialized and
efficient algorithms has considerably improved the
resolution performances. The first example is certainly
the Alldiff constraint of Regin (1994) expressing that a set
of n variables have all different values. On one hand, this
constraint is very useful since it naturally appears in the
modeling of many problems, such as timetabling,
planning, resource allocation, etc. On the other hand, it is
well known that usual constraint propagation techniques
are inefficient for this kind of constraint (due to limited
domain reduction when decomposing the constraint into

 disequalities) and specific algorithms have
been proposed to boost resolution (van Hoeve and
Katriel, 2006).

On the SAT side, no such high level modeling feature is
offered: the user must translate his problem into
propositional logic, involving often, ad-hoc techniques. As
a consequence, up-to-date benchmarks (e.g., industrials
ones) are often incomprehensible by users and
sophisticated preprocessing tools should be used to
simplify their structures or detect particular structural
properties (e.g., equivalences, implications). Hence, it
could be useful to provide a more declarative approach
for modeling problems in SAT by adding an intermediate
layer to translate high level constraints into propositional
formulas. Systematic basic transformations from CSP to
SAT have been proposed (Gent, 2002; Walsh, 2000;
Gavanelli, 2007; Kasif, 1990; Sinz, 2005) to ensure some
consistency properties to the Boolean encodings. Even if
some specific relation-ships between variables (e.g.,
equivalences) are handled specifically by some SAT
solvers, global constraints must be transformed into
clauses and properties can then be established according
to the chosen encodings(Bacchus, 2007; Bailleu and
Boufkhad, 2003; Gent and Nightingale, 2004; Marques
Silva and Lynce, 2007).

At this time, global constraints have been extensively
studied and a lot of them are available in modern solvers,
with associated reduction algorithms. Nevertheless, when
modeling problems, the user often take into account
several global constraints, which may share common
variables. Therefore, while the global constraint approach
was a first step from basic atomic constraints to more
powerful relations (improving then the strength of the
local consistencies to reduce the variables domains), the
next step would consist of handling efficiently multiple

global constraints. Recent works have begun to deal with
such combinations of several global constraints (van
Hoeve et al., 2008; van Hoeve and Regin, 2006; Regin
and Gomes, 2004).

In this paper, we focus on the Alldiff constraint
mentioned earlier. From the previous considerations, one
may notice that handling sets of distinct variables was
often a more general problem and that, in some cases,
such Alldiff constraints could be interleaved, leading to a
high computational complexity (Elbassioni et al., 2005).
For instance, consider two Alldiff constraints on two sets

of variables and such that . Many
Alldiff constraints overlap in various problems such as
Latin squares and Sudoku (Simonis, 2005). Therefore, in
this paper, our purpose is twofold:

1. Boolean satisfiability problem: we want to provide, on
the CSP solving side, a uniform propagation framework to
handle Alldiff constraints and, in particular, interleaved
Alldiff. From an operational point of view, we define
propagation rules to improve resolution efficiency by
taking into account specific properties induced by
interleaved Alldiff. Our purpose is to define rules
independent from existing solvers and which could be
easily integrated in them.
2. We also want to generalize possible encodings of
Alldiff and multiple Alldiff constraints in SAT (that is, by a
set of CNF formulas). Our purpose is to keep the
reduction properties of the previous propagation rules.
Therefore, our encodings are fully based on these rules.

Our goal is not to compare the efficiency of CSP
reductions versus their SAT encodings (nor to compete
with existing solvers), but to generate CSP rules and SAT
encodings that are solver independent: no specific
features are required for the solvers (just adding new
propagators for the cathodic protection (CP) system) and
no new global constraints (but it is also possible to add
new global constraints) have to be integrated in the
modeling language (only the Alldiff is necessary on the
CP side). Thus, our techniques can easily be integrated
in standard solvers (both CSP and SAT solvers); if one is
interested in better efficiency, the solvers can then be
improved (based on the CSP rule structures or on the
SAT formulas structures) to take advantage of their own
facilities.

This paper highlights two different ways of handling
specific structural information when faced to multiple
Alldiff constraints. On the CSP side, one may use global
constraints and study the propagation properties to
design new propagation rules or specific algorithms to
insure consistency. Note that treating several interleaved
Alldiff constraints may perform more reduction (that is,
reduce more and more quickly the search space) than
using each Alldiff separately. On the SAT side, the
resolution process is fixed but one may embed
information within encoding itself and take advantage of
the structure through unit propagation.

ENCODING CSP VERSUS SAT

CSP basic notions

A CSP is defined by a set of variables

taking their values in their respective

domains . A constraint is a

relation . A tuple is a

solution if and only if .

Note that we consider as a set of constraint
(equivalent to a conjunction) and that we will use set
notations. Usual resolution processes (Apt, 2003;
Bordeaux et al., 2006) are based on two main
components, such as reduction and search strategies.
Search consists in enumerating the possible values of a
given variable in order to progressively build a variables
assignment and reach a solution. Reduction techniques
are added at each node to reduce the search tree (local
consistency mechanisms): the idea is to remove values
of variables that cannot satisfy the constraints. This
approach requires an important computational effort, and
performances can be improved by adding more specific
techniques, such as efficient constraint propagation
algorithms for global constraints. We recall a basic
consistency notion (the seminal arc consistency is the
binary sub-case of this definition).

Definition 1

Generalized arc consistency (GAC);a constraint

onvariables is a generalized arc-

consistent iff ,

, s.t. . A CSP is GAC if all its
constraints are GAC.

The reduction/enumeration approach requires an
important computational effort and thus, encounters
difficulties with large scale problems. Performances can
be significantly improved by adding specific techniques
such as efficient propagation algorithms, global
constraints, etc. Here, we are concerned with global
constraints, and more specifically, with reduction rules for
overlapping Alldiff.

Modeling the problems: Sudoku as a CSP

The Sudoku (a more constrained Latin square) is a
puzzle (e.g., Sudopedia) which can be easily encoded as

a CSP: it is played on a 9 9 partially filled grid which
must be completed using numbers from 1 to 9 such that
the numbers in each row, column and major 33 blocks

are different. A Sudoku puzzle (with) can

Monfroy et al. 5939

be modeled by Alldiff over variables with domain

:

1. A set of variables

2. A domain function such that

3. A set of variables subsets

 defined

by , , ,

4. A set of Alldiff constraints

and and

Domain reduction rules

Inspired by Apt (2003), we use a formal system to
precisely define reduction rules to reduce domains with
respect to constraints. We abstract constraint propagation
as a transition process over CSPs. A domain reduction
rule is of the form:

where and and are first order formulas
(that is, conditions for the application of the rules) such

that is consistent. We canonically generalize ⊆to

sets of domains as iff

.. Given a set of variables , we also

denote the union is the set cardinality.

Given a CSP , a transition can be
performed to get a reduced CSP

, if there is an
instance of a rule (that is, a renaming without variables'
conflicts):

such that and is the

greatestsubset of such that

In the conclusion of a rule (in), we use the following

notations: means that can be removed from

the domain of the variable (without loss of solution);

5940 Int. J. Phys. Sci.

similarly, means that can be removed from

each domain variable of and

(respectively) is a shortcut for

(resp.).
Since we only consider here rules that do not affect

constraints and variables, the sets of variables will be
omitted and we highlight the constraints that are required

to apply the rules by restricting our notation to

We will say that is GAC if is GAC with

respect to . For example, a very basic rule to enforce
basic node consistency (Apt, 2003) on equality could be:

This rule could be applied on

, with to

obtain , , etc.

The transition relation using a rule is denoted by

. * denotes the reflexive

transitive closure of . It is clear that terminates due to
the decreasing criterion on domains in the definition of
the rules (Apt, 2003). This notion can obviously be

extended to sets of rules . Note also that we require

that the result of *is independent from the order of
application ofthe rules as shown in Apt K R (2003) (this is
obvious with the rules that we use). From a practical point
of view, it is generally faster to first sequence rules that
execute faster.

SAT basic notions

An instance of the SAT problem can be defined by a pair

 where is a set of Boolean

variables and is a

Booleanformula . The formula is said to
be satisfiable if there exists an assignment

satisfying and unsatisfiable otherwise.

The formula is in conjunctive normal form (CNF) if it is
a conjunction of clauses (a clauseis a disjunction of
literals and a literal is a variable or its negation).

In order to transform our CSP into a SAT

problem, we must define how the set is constructed

from and how is obtained. Concerning the
variables, we use the direct encoding as presented in

Walsh (2000): (is

truewhen has the value , false otherwise).
To enforce exactly one value for each variable, we use

the next clauses:

and

Given a constraint , one may add for all tuples

, a clause recording this nogood value or use other
encodings based on the valid tuples of the constraint
(Bacchus, 2007). One may remark that it can be very
expensive and it is strongly related to the definition of the
constraint itself. Therefore, as mentioned in the
introduction, several work have addressed the encodings
of usual global constraints into SAT (Bailleu and
Boufkhad, 2003), 12 or (Marques Silva and Lynce, 2007).
Here, our purpose is to define uniform transformation
rules for handling multiple Alldiff constraints, which are
often involved in many problems.

From the resolution point of view, complete SAT solvers
are basically based on a branching rule that assign a
truth value to a selected variable and unit propagation
(UP) which allows to propagate unit clauses in the current
formula (Bordeaux et al., 2006). This principle is very
close to the propagation of constraints achieved by
reduction rules to enforce consistency. Therefore, we will
study the two encodings CSP and SAT from this
consistency point of view. According to Walsh (2000) and
Bacchus (2007), we say that a SAT encoding preserves a
consistency iff all variables assigned to false by unit
propagation have their corresponding values eliminated
by enforcing GAC.

More formally, given a constraint , UP leads to a unit

clause iff is not GAC with (is removed

from by enforcing GAC) and if is unsatisfiable then
UP generates the empty clause (enforcing GAC leads to
an empty domain).

ALLDIFF CONSTRAINTS: REDUCTION RULES AND
TRANSFORMATIONS

In the following, we classically note) the

Alldiff constraint on a subset of variables , which
semantically corresponds to the conjunction of

pairwise disequality

constraints .

Figure 1. Application of [O3] on a Sudoku or Latin square row.

Figure 2. Application of [O3] on a Sudoku or Latin square
row.

Single Alldiff constraint

We first reformulate a well-known consistency property
described (Regin, 1994; van Hoeve and Katriel, 2006)
with respect to the number of values remaining in the
domain of the variables. This case corresponds of course
to the fact that if a variable has been assigned, then the
corresponding value must be discarded from other
domains.

Property 1

If then

the corresponding conjunction is GAC

with respect to . Note that enforcing GAC on the

disequalities with reduces less the domains than
enforcing GAC on the global Alldiff constraint.

This rule can be generalized when considering a

subset of variables with possible values,

:

Monfroy et al. 5941

Consider , and that two variables of an Alldiff
only have the same two possible values. Then, it is trivial
to see that these two values cannot belong to the
domains of the other variables (Figure 1).

Figure 2 shows an application of : the values 1, 2
and 3 only appear in 3 cells, thus they can be removed
from the other cells.

Property 2

If for all

so that then

 has the GAC property.
The proof can be obtained from Regin (1994). Now, the

Alldiff constraints can be translated in SAT, by encoding

 for a variable with a set of CNF
clauses:

This representation preserves GAC. Indeed, if is
false (that is, when the variable x is valued to d) and

 is false (that is, when

the variable is valued to) then must be true

to satisfy the clause (cannot be valued to).

Generalized to a subset of variables

with possible values ,

, the
clauses are:
 �������− �����:

� � � ⋯� 	
� ¬������������
m
s=1 ���

����=1
��
��1=1

��
��=1��∈��\��′

∨ �� � ��������f∈������\{��1 ,⋯,����}
m
i=1 �

∨ ¬���������

Property 3

preserves the GAC property.

5942 Int. J. Phys. Sci.

Figure 3. Initial grid.

Figure 4. After several reductions by

Proof: As mentioned earlier, our transformation is directly
based on consistency rules and therefore Property 2
remains valid for the SAT encoding. This can be justified
through the propositional rewriting of the direct encoding

of into (not given here for lack of
space).

MULTIPLE OVERLAPPING ALLDIFF CONSTRAINTS

In the presence of several overlapping Alldiff constraints,

specific local consistency properties can be enforced
according to the number of common variables, their
possible values and the number of overlaps. To simplify,

we consider Alldiff constraints such that

. This restriction could be weakened but it
is generally needed in classical problems (especially for
Sudoku or Latin squares). We now study typical
connections between multiple Alldiff. Therefore, we
consider simultaneously several constraints in the design
of new rules to achieve GAC as it was the case when
considering a global Alldiff instead of a conjunction of pair
wise disequalities to improve reduction.

Several Alldiff connected by one intersection

This is a simple propagation rule: if a value appears in
variables of the intersection of two Alldiff, and that it does
not appear in the rest of one of the Alldiff, then it can be
safely removed from the other variables domains of the
second Alldiff.

Figures 3 and 4 show an example of applications of

: Figure 3 is the intial grid and Figure 4 the grid

after reduction by several applications of . is
coded in SAT

as
clauses:

can be extended to to handle

 Alldiff constraints connected by one

intersection. Let denote by the set of variables
appearing in

the common intersection:

Figures 3 and 5 show an example of application of

 (with): Figure 3 is the initial grid, and

Figure 5. After reductions by

Figure 6. A pattern for applying

Figure 5 the grid after reduction by .
Note that this rule can be implicitly applied to the

different symmetrical possible orderings of the Alldiff.

Monfroy et al. 5943

is translated in SAT as

 clauses:

Property 4

Consider Alldiff with a non empty intersection.

Given and

then .

The proof is straightforward. We illustrate it on Figures 3,

4 and 5. Consider the application of 9 is in the

intersection of , and and not in the rest of

thus, 9 can be removed safely from and
(except from the intersection of the 3 Alldiff); none other

application of is possible, leading to the third grid.

Now, consider the application of on the initial grid:

first between of and ; 9 is in the intersection of

and and not in the rest of ; thus, 9 can be removed

safely from ; the same for 2; applying [OI2] on and

 removes 9 from the rest of ; applying on

and does not perform any effective reduction; this
leads to the second grid which is smaller than the third
one.

Although one could argue that is useless

(Property 4) in terms of reduction, in practice can
be interesting in terms of the number of rules to be

applied. Moreover, can be scheduled before

 to reduce the CSP at low cost.

Several Alldiff connected by several intersections

We first consider 4 Alldiff having four non-empty

intersections two by two (Figure 6). (respectively)

denotes (respectively). now denotes
the union of the four intersections:

.

 must at least be an element of 2 opposite intersections

5944 Int. J. Phys. Sci.

Figure 7. A pattern for applying with

(at least or) otherwise,
the problem has no solution. Our rule is still valid in this
case, and its reduction will help showing that there is no
solution.

Translated in SAT, we obtain

 clauses with

:

This rule can be generalized to a ring of Alldiff with

 non-empty intersections (Figure 7 for a case of 8

Alldiff). Let be the union of the variables of the

intersections: .

(respectively) represents the union of the such

that is odd (respectively even):

(respectively .

These are SAT clauses, such

that

The reduction we obtain by applying rules for a single

Figure 8. A pattern for applying

Alldiff and several Alldiff is stronger than enforcing GAC.

Property 5

Given a conjunction of constraints and a

set of domains . Given 2 sets of rules

and

.

Consider and

, then and

 are GAC, and moreover .

The proof is based on the fact that

already enforces GAC and that the ,
preserve GAC. The proof is similar to the proof of

 of Property 3.

Some more rules

We now give some more rules that are more problem

Monfroy et al. 5945

specific, or represent some well-known rules for solving
the Sudoku problem. We do not give the SAT translation,
as it is more or less automatic, following the technique
shown earlier. We exemplify the rules with the Sudoku
problem.

 (presented earlier) extends

 in terms of ring. Now, we present

which extends the matrix notion of : a set of
Alldiff (e.g., rows for a Sudoku) that cross another set of

 Alldiff (e.g., columns of a Sudoku), forming
intersections (Figure 8 contains an example, with

, where the rule could be applied).

Consider as the union of the variables of the

intersections ; as the union of the

first Alldiff (e.g., rows) deprived of the intersections

with the other Alldiff (e.g., columns):

and as the union of the second set of Alldiff

(e.g., columns) deprived of the intersections with the
first Alldiff (e.g., rows):

Proof

Consider Alldiff (rows) and m other Alldiff (columns),

and occurs in the intersections rows/columns but not
in rows. To cover the rows, one d from one intersection

for each row will be used. Moreover, these will not

appear in the same column. Since we have rows and

 columns, the of the intersection will be sufficient,

and thus, can be removed from the columns, except at
the intersections with the rows.

Note that for , represents the

Swordfish technique for Sudoku grids (Figure 8).

Similarly to we can see some conditions that
make the problem has or no solution: e.g., in the case of

, must be found in at least 2 intersections of
each row and at least 2 intersections of each column;

otherwise, if , the problem has no solution.

Sudoku technique: XY-Wing

This technique considers 4 Alldiff constraints (2 rows and

5946 Int. J. Phys. Sci.

Figure 9. A pattern for XY-Wing.

Figure 10. A pattern for XY-Wing.

2 columns, 2 blocks and 2 rows, or 2 blocks and 2
columns) that form a "ring", that is, the four 2 by 2
intersections are non-empty.

The XY-Wing technique (Figures 9 and 10) can be
formalized by the following rule:

For 2 blocks and 2 rows (or columns), in the best case

this rule removes 5 values for a 9 9 Sudoku. For 2
columns and 2 blocks, this rule removes at most one

value for a Sudoku, or a Latin square.

Sudoku technique: XYZ-Wing

This is a variant of the XY-Wing, based on the intersection

of a block and a column/row: if 3 values
appear in a variable of the intersection, and the
column/row contains a variable with the 2

values , and that the block contains a variable

with the 2 values , then, can be removed
from the other variables of the intersection (Figure 11).

EVALUATION

To evaluate these rules, we use them with the SAT and
CSP approaches on the Sudoku problem. The Sudoku is
a well-known puzzle (e.g., Sudopedia) which can be
easily encoded as a constraint satisfaction problem: it is

generally played on a 9 9 partially filled grid, which
must be completed using numbers from 1 to 9 such that

the numbers in each row, column and major 3 3
blocks are different.

More precisely, the Sudoku puzzle (with

) can be modeled by Alldiff constraints

over variables with domain , as shown earlier

in ENCODING CSP VERSUS SAT .
The Sudoku puzzle is a special case (that is, more

constrained) of Latin squares, which do not require the
notion of blocks nor the Alldiff constraints over the blocks.

SAT approach

We now compute the size of the SAT model for a Sudoku

of size by computing the number of generated clauses
by each rule (Table 1).

In the following, we consider 9 9 grids. To encode
such a Sudoku of size 9, the minimum number of clauses

is 20493 (definition of the variables and
whereas encoding all the rules generates approximately

 clauses. This increase of the number of

clauses is mainly due to (Figure 12).

Monfroy et al. 5947

Figure 11. A pattern for XYZ-Wing.

Table 1. The size of the SAT model for a Sudoku of size

 Number of clauses Complexity

Definition of the variables

 with +

Thus, it is not practicable to generate Sudoku problems
in SAT including initially all the rules. To observe the
impact of these rules on the behavior of SAT solvers, we
run Zchaff (Moskewicz et al., 2001) on 9 Sudoku grids
coded with:

1. Definition of the variables
2. Definition of the variables

3. Definition of the variables

4. Definition of the variables

Figure 13 illustrates the encoding impact on the behavior

of Zchaff. For some instances, improves the
results. We suppose that the performances using the

other could be better. These results confirm

Property 5 because does not improve the

behavior if is present. We can observe that

the worst performances are obtained when
is combined to the basic definition of the problem. This
rule is probably rarely used, but its clauses may disrupt
the heuristics. Nevertheless, the costly but powerful could
be added dynamically, during the resolution process in

order to boost unit propagation.

CSP approach

From a CSP point of view, we have few rules to manage.
However, the combinatoric/complexity is pushed in the
rule application, and more especially in the matching: the
head of the rule must be tried with all possible
configurations of the constraints, and the guard must be
tested. Implementing our rules in CHR (SWI-Prolog
version) as propagation rules is straightforward but a
generic implementation is rather inefficient. The matching
of the head of the rule is too weak, and a huge number of
conditions have to be tested in the guard. We thus
specialized the CHR rules for arrays of variables, which is
thus, well suited for problems such as Latin squares and
Sudoku. The rules are also scheduled in order to first
apply less complex rules, that is, the rules that are faster
to apply (strong matching condition and few conditions in
the guard), and which have more chance to effectively
reduce the CSP. However, we are still working on the
implementation to improve the matching. For example, by

particularizing to the Sudoku, we obtained a speed
up of up to 1000 for some Sudokus. We also
implemented some rules as new propagators in GeCode
(Gecode, 2009). The preliminary results are promising,

5948 Int. J. Phys. Sci.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0 1 2 3 4 5 6 7 8 9

N
b

 C
la

u
s
e

s

m

Figure 12. Number of clauses generated by for each value of with

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8 9

N
b

 d
e

c
is

io
n

s
 (

Z
c
h

a
ff

)

instances

Def. of the var. + [SAT−O1]
Def. of the var. + [SAT−O1] + [SAT−O2]
Def. of the var. + [SAT−O1] + [SAT−OI2]

Def. of the var. + [SAT−O1] + [SAT−O2] + [SAT−OI2]

Instances

N
b

 d
e

c
is

io
n

 (
Z

c
h

a
ff

)

120

100

80

60

40

20

1 2 3 4 5 6 7 8 9

Instances

Figure 13. Encoding impact on Zchaff behavior.

and we plan to improve propagation time with a better
scheduling of propagators, such as applying complex
rules when all standard propagators have already
reached a fixed point.

RELATED WORK

Global constraints in CSP

Recent works deal with the combination of several global
constraints. van Hoeve et al. (2008) present some filtering
algorithms for the sequence constraint and some
combinations of sequence. Regin and van Hoeve (2006)
studied the conjunction of open global cardinality
constraints with specific restrictions. Regin and Gomes
(2004) describes the cardinality matrix constraint which

imposes that the same value appears times in the

variables of each row (of size) and times in the

variables of each column (of size). Consider some
Alldiff constraints on the rows and columns of a matrix,
this is a special case of the cardinality matrix constraint

with .
However, this constraint forces each Alldiff to be of size

 or while with our rules, they can be of different
sizes. Nevertheless, these approaches require some
specialized and complex algorithms for reducing the
domains, while our approach allows us to simplify and
unify the presentation of the propagation rules and
attempts at addressing a wider range of possible
combinations of Alldiff.

From the modeling point of view, Simonis (2005)
evaluate the difficulty of the Sudoku problem. To this end,
various models using different types of constraints are
proposed (e.g., the row/column interaction is described by
the cardinality matrix global constraint; together with the
row/block interaction, this should be compared to the

application of our rule on all intersections of a
column and a row, and block and row (or column)). In our
approach, we use only the classical model and do not
change it; we only add more propagation rules. Moreover,
our rules can be used with other problems.

Global constraints in SAT

The basic encodings of CSP into SAT have been fully
studied (Bacchus, 2007; Bessiere et al., 2003; Gent,
2002; Walsh, 2000; Sinz, 2005; Gavanelli, 2007;
Dimopoulos and Stergiou, 2006; Hoos, 1999) to preserve
consistency properties and induce efficient unit
propagation in SAT solvers. The specific encodings of
global constraint has also been addressed, e.g.,
cardinality (Bailleu and Boufkhad, 2003; Marques Silva
and Lynce, 2007), among (Bacchus, 2007) or Alldiff (Gent
and Nightingale, 2004). Our transformation is based on

Monfroy et al. 5949

reduction rules and extended to multiple connected Alldiff.
As some of these works we proved it correctness with
respect to GAC.

CONCLUSION AND FUTURE WORK

We have defined a set of consistency rules for general
Alldiff constraints that can easily be implemented in usual
constraint solvers. These rules have also been used to
encode the same constraints in SAT, preserving some
propagation properties through unit propagation. This
work provides then a uniform framework to handle
interleaved Alldiff and highlights the relationship between
CSP and SAT in terms of modeling and resolution when
dealing with global constraints.

We now plan to investigate other rules that could be
handled in our framework, in order to add new
constraints. For instance, if we consider a “ring" of 3 Alldiff
constraints having 3 non-empty intersections two by two.

 denotes , and now denotes the union of

the intersections: :

This rule is different from the others since it does not
achieve any reduction, but adds a new Alldiff constraint
over the union of the intersection of the 3 Alldiff. However,
this new constraint will enable more reductions.

We also plan to add a meta mechanism such as in
Crawford et al. (2011) for computing efficient strategies
for applying rules.

REFERENCES

Apt KR (2003). Principles of Constraint Programming. Cambridge

University. Press.
Bacchus F (2007). Gac via unit propagation. In CP 2007, volume 4741

of LNCS, pp. 133-147. Springer, 2007.
Bailleu O, Boufkhad Y (2003). Efficient cnf encoding of boolean

cardinality constraints. In CP 2003, volume 2833 of LNCS, pp. 108-
122. Springer.

Bessiere C, Hebrard E, Walsh T (2003). Local consistencies in SAT. In
SAT 2003, volume 2919 of LNCS, pp. 400-407. Springer.

Bordeaux L, Hamadi Y, Zhang L (2006). Propositional satisfiability and
constraint programming: A comparative survey. ACM Computing
Survey, 38(4):12.

Crawford B, Soto R, Castro C, Monfroy E, Paredes F (2011). An
extensible Autonomous Search framework for Constraint
programming. IJPS. In Press.

Cook S (1971). The complexity of theorem-proving procedures. In Third
Annual ACM Symposium on Theory of Computing, pp.151-158.
ACM.

Davis M, Logemann G, Loveland D (1962). A machine program for
theorem proving. Communications of the ACM, 5(7):394-397.

5950 Int. J. Phys. Sci.

Dimopoulos Y, Stergiou K (2006). Propagation in csp and sat. In CP

2006, volume 4204 of LNCS, pp. 137{-51. Springer.
Elbassioni K, Katriel I, Kutz M, Mahajan M (2005). Simultaneous

matchings. In ISAAC 2005, volume 3827 of LNCS, pp. 106-115.
Springer.

Gavanelli M (2007). The log-support encoding of csp into sat. In CP
2007, volume 4741 of LNCS, pp. 815-822. Springer.

Gecode (2009). Gecode: generic constraint development environment.
http://www.gecode.org/

Gent I (2002). Arc consistency in SAT.Technical Report APES-39A-
2002, University of St Andrews.

Gent I, Nightingale P (2004). A new encoding of alldifferent into sat. In
Proc. of 3

rd
 Int. Work.onModelling and Reformulating CSP, CP2004,

pp. 95-110.
Hirsch E, Le Berre D, Roussel O, Simon L (2010). Sat competitions.

http://www.satcompetition.org/.
Hoos H (1999). Sat-encodings, search space structure, and local search

performance. In IJCAI 99, pp. 296-303. Morgan Kaufmann.
Kasif S (1990). On the parallel complexity of discrete relaxation in

constraint satisfaction networks. AI, 45(3):275-286.
Marques Silva J, Lynce I (2007). Towards robust cnf encodings of

cardinality constraints. In CP 2007, volume 4741 of LNCS, p. 483-
497. Springer.

Moskewicz M, Madigan C, Zhao Y, Zhang L, Malik S (2001). Chaff:
Engineeringan efficient SAT solver. In DAC 2001, pp. 530-535.
ACM.

Regin J-C, Gomes C (2004). The cardinality matrix constraint. In CP
2004, pp. 572-587.

Regin J-C (1994). A filtering algorithm for constraint of difference in
csps. In Nat. Conf. of AI, pp. 362-367.

Selman B, Kautz H, Cohen B (1994). Noise strategies for improving

local search. In Proceedings of the 12th Nat. Conf. on AI, pages 337-
343.

Simonis H (2005). Sudoku as a constraint problem. In Proc. of the 4th
CP Int. Work. On Modelling and Reformulating Constraint
Satisfaction Problems, pp. 17-27.

Sinz C (2005). Towards an optimal cnf encoding of Boolean cardinality
constraints.In CP 2005, volume 3709 of LNCS, pp. 827-831.
Springer.

Sudopedia. www.sudopedia.org.
van Hoeve W-J, Katriel I (2006). Handbook of Constraint Programming,

chapter Global Constraints.Elsevier.
van Hoeve W-J, Pesant G, Rousseau L-M, Sabharwal A (2008). New

filtering algorithms for combinations of among constraints.
van Hoeve W-J, Regin J-C (2006). Open constraints in a closed world.

In CPAIOR2006, volume 3990 of LNCS, pages 244-257. Springer.
Walsh T (2000). SAT vs CSP. In CP 2000, volume 1894 of LNCS, pp.

441-456. Springer.

