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Constraint satisfaction problems (CSP) or Boolean satisfiability problem (SAT) are two well-known 
paradigms to model and solve combinatorial problems. Modeling and resolution of CSP is often 
strengthened by global constraints (e.g., Alldiff constraint). This paper highlights two different ways of 
handling specific structural information: a uniform propagation framework to handle (interleaved) Alldiff 
constraints with some CSP reduction rules and a SAT encoding of these rules that preserves the 
reduction properties of CSP. We illustrate our approach on the well-known Sudoku puzzle which 
presents 27 overlapping Alldiff constraints in its 9 × 9 standard size. We also present some preliminary 
results we obtained in CHR, GeCode and Zchaff. 
 
Key words: Boolean satisfiability problem (SAT), computer science, decision support, constraint programming, 
global constraint, automated reasoning. 

 
 
INTRODUCTION 
 
During the last decades, two closely related communities 
have focused on the resolution of combinatorial 
problems. 

On one hand, the constraint programming community 
has focused on the resolution of discrete constraint 
satisfaction problems (CSP). This paradigm provides the 
user with a general modeling framework, in which 
problems are classically expressed by a set of decision 
variables which values belong to finite integer domains. 
Then, constraints can be defined to model the 
relationships that exist between these variables. 
Concerning the resolution algorithms, complete methods 
aim at exploring a tree by enumerating variables and 
reducing the search space using constraint propagation 
techniques, while incomplete methods can be used to 
explore this search space, according to specific or more 
general heuristics (metaheuristics). Again, much work has 
been   achieved   to   define   very   efficient   propagation  
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algorithms and search heuristics. 
On the other hand, the SAT community has developed 

very efficient algorithms and techniques to handle the 
seminal Boolean satisfaction problem, which was the first 
problem to be proved NP-complete (Cook, 1971). The 
model is very simple, but limits the user to Boolean 
variables and conjunctive normal form (CNF) proposi-
tional formulas to model its problems. The dedicated 
complete resolution techniques (that is, able to decide if 
an instance is satisfiable or not) mainly rely on the Davis-
Putnam-Logemann-Loveland (DPLL) procedure (Davis et 
al., 1962). Incomplete algorithms have also been pro-
posed to overcome the problem of size of the instance, 
mostly based on local search procedures (Selman et al., 
1994; Hoos, 1999). In addition, very sophisticated 
techniques, including symmetries and structure detection, 
learning techniques, hybrid heuristics, etc., have been 
proposed in order to build very efficient solvers, which are 
able to handle huge and very difficult benchmarks, as 
highlighted during the annual SAT competitions (Hirsch et 
al., 2010). 

Concerning this resolution  aspect,  the  two  paradigms  
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share some common principles (Bordeaux et al., 2006). 
Here, we will only focus on complete methods that aim at 
exploring a tree by enumerating variables (finite domain 
variables or Boolean ones) and reducing the search 
space using propagation techniques (constraint 
propagation or unit propagation). 

Now, if we look closer to the modeling facilities, on the 
CSP side, the identification of typical constraints (so-
called global constraints that arise in several real-world 
problems) has increased the declarative expressiveness. 
Moreover, the development of very specialized and 
efficient algorithms has considerably improved the 
resolution performances. The first example is certainly 
the Alldiff constraint of Regin (1994) expressing that a set 
of n variables have all different values. On one hand, this 
constraint is very useful since it naturally appears in the 
modeling of many problems, such as timetabling, 
planning, resource allocation, etc. On the other hand, it is 
well known that usual constraint propagation techniques 
are inefficient for this kind of constraint (due to limited 
domain reduction when decomposing the constraint into 

 disequalities) and specific algorithms have 
been proposed to boost resolution (van Hoeve and 
Katriel, 2006). 

On the SAT side, no such high level modeling feature is 
offered: the user must translate his problem into 
propositional logic, involving often, ad-hoc techniques. As 
a consequence, up-to-date benchmarks (e.g., industrials 
ones) are often incomprehensible by users and 
sophisticated preprocessing tools should be used to 
simplify their structures or detect particular structural 
properties (e.g., equivalences, implications). Hence, it 
could be useful to provide a more declarative approach 
for modeling problems in SAT by adding an intermediate 
layer to translate high level constraints into propositional 
formulas. Systematic basic transformations from CSP to 
SAT have been proposed (Gent, 2002; Walsh, 2000; 
Gavanelli, 2007; Kasif, 1990; Sinz, 2005) to ensure some 
consistency properties to the Boolean encodings. Even if 
some specific relation-ships between variables (e.g., 
equivalences) are handled specifically by some SAT 
solvers, global constraints must be transformed into 
clauses and properties can then be established according 
to the chosen encodings(Bacchus, 2007; Bailleu and 
Boufkhad, 2003; Gent and Nightingale, 2004; Marques 
Silva and Lynce, 2007). 

At this time, global constraints have been extensively 
studied and a lot of them are available in modern solvers, 
with associated reduction algorithms. Nevertheless, when 
modeling problems, the user often take into account 
several global constraints, which may share common 
variables. Therefore, while the global constraint approach 
was a first step from basic atomic constraints to more 
powerful relations (improving then the strength of the 
local consistencies to reduce the variables domains), the 
next step  would  consist  of  handling  efficiently  multiple  

 
 
 
 
global constraints. Recent works have begun to deal with 
such combinations of several global constraints (van 
Hoeve et al., 2008; van Hoeve and Regin, 2006; Regin 
and Gomes, 2004). 

In this paper, we focus on the Alldiff constraint 
mentioned earlier. From the previous considerations, one 
may notice that handling sets of distinct variables was 
often a more general problem and that, in some cases, 
such Alldiff constraints could be interleaved, leading to a 
high computational complexity (Elbassioni et al., 2005). 
For instance, consider two Alldiff constraints on two sets 

of variables  and  such that . Many 
Alldiff constraints overlap in various problems such as 
Latin squares and Sudoku (Simonis, 2005). Therefore, in 
this paper, our purpose is twofold: 

 
1. Boolean satisfiability problem: we want to provide, on 
the CSP solving side, a uniform propagation framework to 
handle Alldiff constraints and, in particular, interleaved 
Alldiff. From an operational point of view, we define 
propagation rules to improve resolution efficiency by 
taking into account specific properties induced by 
interleaved Alldiff. Our purpose is to define rules 
independent from existing solvers and which could be 
easily integrated in them. 
2. We also want to generalize possible encodings of 
Alldiff and multiple Alldiff constraints in SAT (that is, by a 
set of CNF formulas). Our purpose is to keep the 
reduction properties of the previous propagation rules. 
Therefore, our encodings are fully based on these rules. 

Our goal is not to compare the efficiency of CSP 
reductions versus their SAT encodings (nor to compete 
with existing solvers), but to generate CSP rules and SAT 
encodings that are solver independent: no specific 
features are required for the solvers (just adding new 
propagators for the cathodic protection (CP) system) and 
no new global constraints (but it is also possible to add 
new global constraints) have to be integrated in the 
modeling language (only the Alldiff is necessary on the 
CP side). Thus, our techniques can easily be integrated 
in standard solvers (both CSP and SAT solvers); if one is 
interested in better efficiency, the solvers can then be 
improved (based on the CSP rule structures or on the 
SAT formulas structures) to take advantage of their own 
facilities. 

This paper highlights two different ways of handling 
specific structural information when faced to multiple 
Alldiff constraints. On the CSP side, one may use global 
constraints and study the propagation properties to 
design new propagation rules or specific algorithms to 
insure consistency. Note that treating several interleaved 
Alldiff constraints may perform more reduction (that is, 
reduce more and more quickly the search space) than 
using each Alldiff separately. On the SAT side, the 
resolution process is fixed but one may embed 
information within encoding itself and take advantage of 
the structure through unit propagation. 



 
 
 
 
ENCODING CSP VERSUS SAT 
 
CSP basic notions 
 

A CSP  is defined by a set of variables 

taking their values in their respective 

domains . A constraint  is a 

relation . A tuple is a 

solution if and only if . 

Note that we consider  as a set of constraint 
(equivalent to a conjunction) and that we will use set 
notations. Usual resolution processes (Apt, 2003; 
Bordeaux et al., 2006) are based on two main 
components, such as reduction and search strategies. 
Search consists in enumerating the possible values of a 
given variable in order to progressively build a variables 
assignment and reach a solution. Reduction techniques 
are added at each node to reduce the search tree (local 
consistency mechanisms): the idea is to remove values 
of variables that cannot satisfy the constraints. This 
approach requires an important computational effort, and 
performances can be improved by adding more specific 
techniques, such as efficient constraint propagation 
algorithms for global constraints. We recall a basic 
consistency notion (the seminal arc consistency is the 
binary sub-case of this definition). 
 
 
Definition 1 
 

Generalized arc consistency (GAC);a constraint  

onvariables  is a generalized arc-

consistent iff , 

, s.t. . A CSP is GAC if all its 
constraints are GAC. 

The reduction/enumeration approach requires an 
important computational effort and thus, encounters 
difficulties with large scale problems. Performances can 
be significantly improved by adding specific techniques 
such as efficient propagation algorithms, global 
constraints, etc. Here, we are concerned with global 
constraints, and more specifically, with reduction rules for 
overlapping Alldiff. 
 
 
Modeling the problems: Sudoku as a CSP 
 
The Sudoku (a more constrained Latin square) is a 
puzzle (e.g., Sudopedia) which can be easily encoded as 

a CSP: it is played on a 9 9 partially filled grid which 
must be completed using numbers from 1 to 9 such that 
the numbers in each row, column and major 33 blocks 

are different. A  Sudoku puzzle (with ) can  
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be modeled by  Alldiff over  variables with domain 

: 
 

1. A set of  variables  

2. A domain function  such that 

 

3. A set of  variables subsets 

 defined 

by , , , 

 

4. A set of  Alldiff constraints  

and  and 

 
 
 
Domain reduction rules 
 
Inspired by Apt (2003), we use a formal system to 
precisely define reduction rules to reduce domains with 
respect to constraints. We abstract constraint propagation 
as a transition process over CSPs. A domain reduction 
rule is of the form: 
 

 
 

where  and  and  are first order formulas 
(that is, conditions for the application of the rules) such 

that  is consistent. We canonically generalize ⊆to 

sets of domains as  iff 

.. Given a set of variables , we also 

denote  the union  is the set cardinality. 

Given a CSP , a transition can be 
performed to get a reduced CSP 

,  if there is an 
instance of a rule (that is, a renaming without variables' 
conflicts): 
 

 
 

such that  and is the 

greatestsubset of  such that 

 
 

In the conclusion of a rule (in ), we use the following 

notations:  means that  can be removed from 

the domain of the variable  (without loss of solution);  
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similarly,  means that  can be removed from 

each domain variable of  and  

(respectively ) is a shortcut for  

(resp. ). 
Since we only consider here rules that do not affect 

constraints and variables, the sets of variables will be 
omitted and we highlight the constraints that are required 

to apply the rules by restricting our notation to  

We will say that  is GAC if  is GAC with 

respect to . For example, a very basic rule to enforce 
basic node consistency (Apt, 2003) on equality could be: 
 

 
 
This rule could be applied on 

,  with  to 

obtain , , etc. 

The transition relation using a rule  is denoted by 

. * denotes the reflexive 

transitive closure of . It is clear that  terminates due to 
the decreasing criterion on domains in the definition of 
the rules (Apt, 2003). This notion can obviously be 

extended to sets of rules . Note also that we require 

that the result of *is independent from the order of 
application ofthe rules as shown in Apt K R (2003) (this is 
obvious with the rules that we use). From a practical point 
of view, it is generally faster to first sequence rules that 
execute faster. 

 
 
SAT basic notions 

 
An instance of the SAT problem can be defined by a pair 

 where is a set of Boolean 

variables and  is a 

Booleanformula . The formula is said to 
be satisfiable if there exists an assignment 

satisfying and unsatisfiable otherwise. 

The formula  is in conjunctive normal form (CNF) if it is 
a conjunction of clauses (a clauseis a disjunction of 
literals and a literal is a variable or its negation). 

In order to transform our CSP  into a SAT 

problem, we must define how the set  is constructed 

from  and how  is obtained. Concerning the 
variables, we use the direct encoding as presented in 

Walsh (2000):  ( is 

truewhen  has the value , false otherwise). 
To enforce exactly one value for each variable, we use 

the next clauses: 

 
 
 
 

 
 
and 

 

 
 

Given a constraint , one may add for all tuples 

, a clause recording this nogood value or use other 
encodings based on the valid tuples of the constraint 
(Bacchus, 2007). One may remark that it can be very 
expensive and it is strongly related to the definition of the 
constraint itself. Therefore, as mentioned in the 
introduction, several work have addressed the encodings 
of usual global constraints into SAT (Bailleu and 
Boufkhad, 2003), 12 or (Marques Silva and Lynce, 2007). 
Here, our purpose is to define uniform transformation 
rules for handling multiple Alldiff constraints, which are 
often involved in many problems. 

From the resolution point of view, complete SAT solvers 
are basically based on a branching rule that assign a 
truth value to a selected variable and unit propagation 
(UP) which allows to propagate unit clauses in the current 
formula (Bordeaux et al., 2006). This principle is very 
close to the propagation of constraints achieved by 
reduction rules to enforce consistency. Therefore, we will 
study the two encodings CSP and SAT from this 
consistency point of view. According to Walsh (2000) and 
Bacchus (2007), we say that a SAT encoding preserves a 
consistency iff all variables assigned to false by unit 
propagation have their corresponding values eliminated 
by enforcing GAC. 

More formally, given a constraint , UP leads to a unit 

clause  iff  is not GAC with  (  is removed 

from  by enforcing GAC) and if  is unsatisfiable then 
UP generates the empty clause (enforcing GAC leads to 
an empty domain). 

 
 
ALLDIFF CONSTRAINTS: REDUCTION RULES AND 
TRANSFORMATIONS 

 

In the following, we classically note ) the 

Alldiff constraint on a subset of variables , which 
semantically corresponds to the conjunction of 

pairwise disequality 

constraints . 



 
 
 
 

 
 
Figure 1. Application of [O3] on a Sudoku or Latin square row. 

 
 
 

 
 
Figure 2. Application of [O3] on a Sudoku or Latin square 
row. 

 
 
 

Single Alldiff constraint 

 
We first reformulate a well-known consistency property 
described (Regin, 1994; van Hoeve and Katriel, 2006) 
with respect to the number of values remaining in the 
domain of the variables. This case corresponds of course 
to the fact that if a variable has been assigned, then the 
corresponding value must be discarded from other 
domains. 

 

 

 
 
 
Property 1 
 

If  then 

the corresponding conjunction  is GAC 

with respect to . Note that enforcing GAC on the 

disequalities with  reduces less the domains than 
enforcing GAC on the global Alldiff constraint. 

This rule can be generalized when considering a 

subset  of  variables with  possible values, 

: 
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Consider , and that two variables of an Alldiff 
only have the same two possible values. Then, it is trivial 
to see that these two values cannot belong to the 
domains of the other variables (Figure 1). 

Figure 2 shows an application of : the values 1, 2 
and 3 only appear in 3 cells, thus they can be removed 
from the other cells. 
 
 
Property 2 
 

If  for all 

so that then 

 has the GAC property. 
The proof can be obtained from Regin (1994). Now, the 

Alldiff constraints can be translated in SAT, by encoding 

 for a variable  with a set of CNF 
clauses: 
 

 

 
 

This representation preserves GAC. Indeed, if  is 
false (that is, when the variable x is valued to d) and 

 is false (that is, when 

the variable  is valued to ) then must be true 

to satisfy the clause (  cannot be valued to ). 

Generalized to a subset  of  variables  

with  possible values , 

, the  
clauses are: 
 �������− �����: 

� � � ⋯� 	
� ¬������������
m
s=1 ���

����=1
��
��1=1

��
��=1��∈��\��′

∨ �� � ��������f∈������\{��1 ,⋯,����}
m
i=1 �

∨ ¬��������� 
 

 
 
Property 3 
 

preserves the GAC property. 
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Figure 3. Initial grid. 

 
 
 

 
 

Figure 4. After several reductions by  

 
 
 
Proof: As mentioned earlier, our transformation is directly 
based on consistency rules and therefore Property 2 
remains valid for the SAT encoding. This can be justified 
through the propositional rewriting of the direct encoding 

of  into  (not given here for lack of 
space).  
 
 
MULTIPLE OVERLAPPING ALLDIFF CONSTRAINTS  
 
In the presence of several overlapping Alldiff constraints,  

 
 
 
 
specific local consistency properties can be enforced 
according to the number of common variables, their 
possible values and the number of overlaps. To simplify, 

we consider Alldiff constraints  such that 

. This restriction could be weakened but it 
is generally needed in classical problems (especially for 
Sudoku or Latin squares). We now study typical 
connections between multiple Alldiff. Therefore, we 
consider simultaneously several constraints in the design 
of new rules to achieve GAC as it was the case when 
considering a global Alldiff instead of a conjunction of pair 
wise disequalities to improve reduction. 
 
 
Several Alldiff connected by one intersection 
 
This is a simple propagation rule: if a value appears in 
variables of the intersection of two Alldiff, and that it does 
not appear in the rest of one of the Alldiff, then it can be 
safely removed from the other variables domains of the 
second Alldiff. 
 

 

 

 
 
Figures 3 and 4 show an example of applications of 

: Figure 3 is the intial grid and Figure 4 the grid 

after reduction by several applications of .  is 
coded in SAT 

as  
clauses: 
 

 

 
 

can be extended to  to handle 

 Alldiff constraints connected by one 

intersection. Let denote by the set of variables 
appearing in 

the common intersection:   
 

 

 
 
Figures  3  and  5  show  an  example   of  application of 

  (with ):  Figure  3  is  the  initial  grid,  and  



 
 
 
 

 
 

Figure 5. After reductions by  

 
 
 

 
 

Figure 6. A pattern for applying  

 
 
 

Figure 5 the grid after reduction by . 
Note that this rule can be implicitly applied to the 

different  symmetrical   possible   orderings  of  the  Alldiff. 
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is translated in SAT as 

 clauses: 
 

 

 
 
 
Property 4 
 

Consider  Alldiff with a non empty intersection. 

Given  and 

then . 
 
The proof is straightforward. We illustrate it on Figures 3, 

4 and 5. Consider the application of  9 is in the 

intersection of ,  and  and not in the rest of 

thus, 9 can be removed safely from  and  
(except from the intersection of the 3 Alldiff); none other 

application of  is possible, leading to the third grid. 

Now, consider the application of  on the initial grid: 

first between of  and ; 9 is in the intersection of  

and  and not in the rest of ; thus, 9 can be removed 

safely from ; the same for 2; applying [OI2] on  and 

 removes 9 from the rest of ; applying  on  

and  does not perform any effective reduction; this 
leads to the second grid which is smaller than the third 
one. 

Although one could argue that  is useless 

(Property 4) in terms of reduction, in practice  can 
be interesting in terms of the number of rules to be 

applied. Moreover,  can be scheduled before 

 to reduce the CSP at low cost. 
 
 
Several Alldiff connected by several intersections  
 

We first consider 4 Alldiff having four non-empty 

intersections two by two (Figure 6).  (respectively ) 

denotes (respectively ).  now denotes 
the union of the four intersections: 

. 
 

 
 

 

 
 

 

 must at least be an element of 2 opposite intersections
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Figure 7. A pattern for applying  with  

 
 
 

(at least or ) otherwise, 
the problem has no solution. Our rule is still valid in this 
case, and its reduction will help showing that there is no 
solution. 

Translated in SAT, we obtain 

 clauses with 

: 
 

 

 
 

This rule can be generalized to a ring of Alldiff with 

 non-empty intersections (Figure 7 for a case of 8 

Alldiff). Let  be the union of the variables of the  

intersections: .  

(respectively ) represents the union of the  such 

that  is odd (respectively even): 

(respectively . 
 

 

 
 

 
 

These are  SAT clauses, such 

that  

 
 

 
 
The reduction we  obtain  by  applying  rules  for  a  single  



 
 
 
 

 
 

Figure 8. A pattern for applying  
 
 
 

Alldiff and several Alldiff is stronger than enforcing GAC. 
 
 
Property 5 
 

Given a conjunction of constraints  and a 

set of domains . Given 2 sets of rules 

and 

. 

Consider and 

, then  and  

 are GAC, and moreover . 

The proof is based on the fact that  

already enforces GAC and that the ,  
preserve GAC. The proof is similar to the proof of 

 of Property 3. 

 
 
Some more rules 
 
We now give  some  more  rules  that  are  more  problem  
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specific, or represent some well-known rules for solving 
the Sudoku problem. We do not give the SAT translation, 
as it is more or less automatic, following the technique 
shown earlier. We exemplify the rules with the Sudoku 
problem. 

 (presented earlier) extends 

 in terms of ring. Now, we present  

which extends the matrix notion of : a set of  
Alldiff (e.g., rows for a Sudoku) that cross another set of 

 Alldiff (e.g., columns of a Sudoku), forming  
intersections (Figure 8 contains an example, with 

, where the rule  could be applied). 

Consider as the union of the variables of the  

intersections ;  as the union of the 

first  Alldiff  (e.g., rows) deprived of the intersections 

with the  other Alldiff (e.g., columns): 

 

and as the union of the second set of  Alldiff 

(e.g., columns) deprived of the intersections with the  
first Alldiff (e.g., rows): 

 
 

 

 
 
 

Proof 
 

Consider  Alldiff (rows) and m other Alldiff (columns), 

and  occurs in the intersections rows/columns but not 
in rows. To cover the rows, one d from one intersection 

for each row will be used. Moreover, these  will not 

appear in the same column. Since we have  rows and 

 columns, the of the intersection will be sufficient, 

and thus, can be removed from the columns, except at 
the intersections with the rows. 

Note that for ,   represents the 

Swordfish technique for  Sudoku grids (Figure 8). 

Similarly to  we can see some conditions that 
make the problem has or no solution: e.g., in the case of 

, must be found in at least 2 intersections of 
each row and at least 2 intersections of each column; 

otherwise, if , the problem has no solution. 
 
 

Sudoku technique: XY-Wing 
 

This technique considers 4 Alldiff constraints (2 rows  and 
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Figure 9. A pattern for XY-Wing. 

 
 
 

 
 
Figure 10. A pattern for XY-Wing. 

 
 
 
2 columns, 2 blocks and 2 rows, or 2 blocks and 2 
columns) that form a "ring", that is, the four 2 by 2 
intersections are non-empty.  

The XY-Wing technique (Figures 9 and 10) can be 
formalized by the following rule: 

 

 
 

 
For 2 blocks and 2 rows (or  columns),  in  the  best  case  

 
 
 
 

this rule removes 5 values for a 9  9 Sudoku. For 2 
columns and 2 blocks, this rule removes at most one 

value for a  Sudoku, or a  Latin square. 
 
 
Sudoku technique: XYZ-Wing 
 
This is a variant of the XY-Wing, based on the intersection 

of a block and a column/row: if 3 values  
appear in a variable of the intersection, and the 
column/row contains a variable with the 2 

values , and that the block contains a variable 

with the 2 values , then, can be removed 
from the other variables of the intersection (Figure 11). 
 

 

 
 

 
 

 
 
 
EVALUATION 
 

To evaluate these rules, we use them with the SAT and 
CSP approaches on the Sudoku problem. The Sudoku is 
a well-known puzzle (e.g., Sudopedia) which can be 
easily encoded as a constraint satisfaction problem: it is 

generally played on a 9 9 partially filled grid, which 
must be completed using numbers from 1 to 9 such that 

the numbers in each row, column and major 3 3 
blocks are different. 

More precisely, the  Sudoku puzzle (with 

) can be modeled by  Alldiff constraints 

over  variables with domain , as shown earlier 

in ENCODING CSP VERSUS SAT . 
The Sudoku puzzle is a special case (that is, more 

constrained) of Latin squares, which do not require the 
notion of blocks nor the Alldiff constraints over the blocks. 
 
 

SAT approach 
 

We now compute the size of the SAT model for a Sudoku 

of size  by computing the number of generated clauses 
by each rule (Table 1). 

In the following, we consider 9 9 grids. To encode 
such a Sudoku of size 9, the minimum number of clauses 

is 20493 (definition of the variables and  
whereas encoding all the rules generates approximately 

 clauses. This increase of the number of 

clauses is mainly due to  (Figure 12). 
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Figure 11. A pattern for XYZ-Wing. 

 
 
 

Table 1. The size of the SAT model for a Sudoku of size  
 

 Number of clauses Complexity 

Definition of the variables 
 

 

 

 
 

   

  with  +   
 
 
 

Thus, it is not practicable to generate Sudoku problems 
in SAT including initially all the rules. To observe the 
impact of these rules on the behavior of SAT solvers, we 
run Zchaff (Moskewicz et al., 2001) on 9 Sudoku grids 
coded with: 
 

1. Definition of the variables  
2. Definition of the variables 

 
3. Definition of the variables 

 
4. Definition of the variables 

 
 

Figure 13 illustrates the encoding impact on the behavior 

of Zchaff. For some instances,  improves the 
results. We suppose that the performances using the 

other could be better. These results confirm 

Property 5 because  does not improve the 

behavior if is present. We can observe that 

the worst performances are obtained when  
is combined to the basic definition of the problem. This 
rule is probably rarely used, but its clauses may disrupt 
the heuristics. Nevertheless, the costly but powerful could 
be added dynamically, during the resolution process in 

order to boost unit propagation.  
 
 

CSP approach 
 
From a CSP point of view, we have few rules to manage. 
However, the combinatoric/complexity is pushed in the 
rule application, and more especially in the matching: the 
head of the rule must be tried with all possible 
configurations of the constraints, and the guard must be 
tested. Implementing our rules in CHR (SWI-Prolog 
version) as propagation rules is straightforward but a 
generic implementation is rather inefficient. The matching 
of the head of the rule is too weak, and a huge number of 
conditions have to be tested in the guard. We thus 
specialized the CHR rules for arrays of variables, which is 
thus, well suited for problems such as Latin squares and 
Sudoku. The rules are also scheduled in order to first 
apply less complex rules, that is, the rules that are faster 
to apply (strong matching condition and few conditions in 
the guard), and which have more chance to effectively 
reduce the CSP. However, we are still working on the 
implementation to improve the matching. For example, by 

particularizing  to the Sudoku, we obtained a speed 
up of up to 1000 for some Sudokus. We also 
implemented some rules as new propagators in GeCode 
(Gecode, 2009).  The  preliminary  results  are  promising,
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Figure 12. Number of clauses generated by  for each value of  with  
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Figure 13. Encoding impact on Zchaff behavior. 

 



 
 
 
 
and we plan to improve propagation time with a better 
scheduling of propagators, such as applying complex 
rules when all standard propagators have already 
reached a fixed point. 
 
 
RELATED WORK  
 
Global constraints in CSP 
 

Recent works deal with the combination of several global 
constraints. van Hoeve et al. (2008) present some filtering 
algorithms for the sequence constraint and some 
combinations of sequence. Regin and van Hoeve (2006) 
studied the conjunction of open global cardinality 
constraints with specific restrictions. Regin and Gomes 
(2004) describes the cardinality matrix constraint which 

imposes that the same value appears  times in the 

variables of each row (of size ) and  times in the 

variables of each column (of size ). Consider some 
Alldiff constraints on the rows and columns of a matrix, 
this is a special case of the cardinality matrix constraint 

with . 
However, this constraint forces each Alldiff to be of size 

 or  while with our rules, they can be of different 
sizes. Nevertheless, these approaches require some 
specialized and complex algorithms for reducing the 
domains, while our approach allows us to simplify and 
unify the presentation of the propagation rules and 
attempts at addressing a wider range of possible 
combinations of Alldiff. 

From the modeling point of view, Simonis (2005) 
evaluate the difficulty of the Sudoku problem. To this end, 
various models using different types of constraints are 
proposed (e.g., the row/column interaction is described by 
the cardinality matrix global constraint; together with the 
row/block interaction, this should be compared to the 

application of our rule  on all intersections of a 
column and a row, and block and row (or column)). In our 
approach, we use only the classical model and do not 
change it; we only add more propagation rules. Moreover, 
our rules can be used with other problems. 
 
 
Global constraints in SAT 
 
The basic encodings of CSP into SAT have been fully 
studied (Bacchus, 2007; Bessiere et al., 2003; Gent, 
2002; Walsh, 2000; Sinz, 2005; Gavanelli, 2007; 
Dimopoulos and Stergiou, 2006; Hoos, 1999) to preserve 
consistency properties and induce efficient unit 
propagation in SAT solvers. The specific encodings of 
global constraint has also been addressed, e.g., 
cardinality (Bailleu and Boufkhad, 2003; Marques Silva 
and Lynce, 2007), among (Bacchus, 2007) or Alldiff (Gent 
and Nightingale, 2004). Our  transformation  is  based  on  
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reduction rules and extended to multiple connected Alldiff. 
As some of these works we proved it correctness with 
respect to GAC. 
 
 
CONCLUSION AND FUTURE WORK 
 

We have defined a set of consistency rules for general 
Alldiff constraints that can easily be implemented in usual 
constraint solvers. These rules have also been used to 
encode the same constraints in SAT, preserving some 
propagation properties through unit propagation. This 
work provides then a uniform framework to handle 
interleaved Alldiff and highlights the relationship between 
CSP and SAT in terms of modeling and resolution when 
dealing with global constraints. 

We now plan to investigate other rules that could be 
handled in our framework, in order to add new 
constraints. For instance, if we consider a “ring" of 3 Alldiff 
constraints having 3 non-empty intersections two by two. 

 denotes , and  now denotes the union of 

the intersections: : 
 

 

 
 

 
 

 

This rule is different from the others since it does not 
achieve any reduction, but adds a new Alldiff constraint 
over the union of the intersection of the 3 Alldiff. However, 
this new constraint will enable more reductions. 

We also plan to add a meta mechanism such as in 
Crawford et al. (2011) for computing efficient strategies 
for applying rules. 
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