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In this paper, we showed a simplified version of the Hodgkin-Huxley neuron model, the so called fast 
plane-phase case. We first describe the circuit model of axon membrane with four parallel branches 
described by Hodgkin and Huxley and then we apply the Kirchhoff´s laws to obtain a system ordinary 
differential equations. We obtain numerical solutions to it with the aid of Mathematica. We also study 
this simplified model from the point of view of dynamical systems. With the aid of Maple we graph the 
phase portrait corresponding to the dynamical system associated to Hodgkin-Huxley model. At the end 
we interpret the results. 
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INTRODUCTION 
 
In the study of Hodking et al. (1952A), Hodking and 
Huxley (1952 B,C,D,E) (H.H for short) were the first 
quantitative model about generation and propagation of 
action potential through excitable membrane along giant 
squid axon and their ideas have been extended and 
applied to a variety of excitable cells (Ebihara and 
Johnson, 1980; Luo and Rudy, 1994). The H.H model is 
the cornerstone of electrophysiology and has been used 
by a wide group of researchers. A simplified model 
postulated simultaneously by Fitzhugh (1969) and 
Nagumo et al. (1962) originated a new field in applied 
Mathematics. This model showed that the essentials of 
the excitable process could be understood in terms of a 
simpler model upon which Mathematical analysis could 
make some progress. There are other models in the 
literature that deals with action potential like the Connor-
Stevens model that provides an alternative description of 
action potential generation in isolated neural somata of 
marine gastropods (Connor and Stevens, 1971).  

ELECTRICAL CIRCUIT AND THE HODGKIN-HUXLEY 
MODEL 
 
Figure 1 represents an equivalent circuit model of axon 
membrane with four parallel branches described by 
Hodgkin and Huxley (1952), which shows the Na

+
, K

+
 

ionic channels and the leakage ionic channels L, which 
may include Cl

 -
 and other ion flows. Cm represents the 

thin dielectric properties of the membrane (Hille, 2001). 
For simplicity, all channels of the same type are lumped 
in one single channel each and the lipid layer is 
presented as a single capacitor. Since K

+
 has a higher 

concentration inside than outside the cell, the positive K
+
 

ions will flow outward of the membrane. The reverse 
situation prevails for positive Na

+
 ions. Namely, ions have 

a tendency to move down their concentration gradients. 
Such a tendency is denoted in the circuit by the batteries 
with voltages ENa, EK and EL. These voltages depend on 
the inside-outside  concentration  difference  in  each  ion 
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Figure 1. Equivalent circuit of axon membrane. 

 
 
 
(Hille, 2001). It was noticed in the circuit that the 
polarities of the Na

+
 and K

+
 batteries are reversed but K

+
 

and L batteries have the same polarities. 

If Nag
 and Kg are the voltage and time dependent 

conductivities of Na
+
, K

+
 channels, and Lg  represents 

the L ions leak conductance and this last one is 
considered constant, then, it is possible to write the 
following set of equations based on the aforementioned 
circuit analysis in Figure 1. Applying the Kirchhoff´s laws 
to the aforementioned circuit, the following Equations can 
be obtained: 
 

.m m K N a L

d v
I C I I I

d t
= + + +             (1) 

 

( )K K KI g v E= −                                                   (2) 

 

( ).Na Na NaI g v E= −                                                   (3)    

  

( ).L L LI g v E= −                                                   (4)

  
 

In these Equations, v  is the action potential, mI  is the 

current injected into the axon and NaE , KE  and LE  are 

the Nernst’s equilibrium potentials for each of the ions 
considered. Thus, Equation (1) may be written in the form 
of: 
 

( ) ( ) ( ).m m K K Na Na L L

dv
I C g v E g v E g v E

dt
= + − + − + −    (5) 

 

In Equation (5), Lg is considered voltage-independent 

and thus, this parameter is a  constant.  However,  it  was 

demonstrated by Hogking and Huxley (1952) in their 

study that Nag  and Kg  depends on other parameters 

related to ionic channel dynamics and they fitted these 
relations with their experimental information. The 
complete set of equations that were obtained by H.H is 
fully presented in some works by several authors Keener 
et al. (1998); Waxman et al. (1995); Edelstein et al. 
(1988); Schierwagen (1991); Scott (2002) and Doi et al. 
(2010). 

Fitzhugh’s approaches to H.H model takes into account 
the fact that some variables in this model have fast 
kinetics and other variables have slower kinetics. This is 
based on the fact that sodium m gates are activated 
quickly and as such, the membrane potential v changes 
quickly too, at least during certain time intervals. On the 
other hand, potassium n gates and sodium h gates, 

which describe the falling phase of Nag
 
presents slower 

processes (that is, Na
+
 channels are inactivated slowly, 

and K
+
 channels activated slowly). Thus, during the initial 

stages of the action potential, n and h remain essentially 
constant while m and v varies (Keener et al., 1998; 
Edelstein et al., 1988; Scott, 2002). Due to these 
statements, during start of action potential, it is possible 
to consider that n and h processes are constant and thus, 
the four differential equations of the H.H model are 
reduced to two equations which permits the making of the 
analysis in a v-m two-dimensional phase-space, named 
the fast phase-plane or reduced phase-plane (Keener et 
al., 1998; Edelstein et al., 1988). The HH model is 
reduced to: 

 

4 3

0 0

1
( ) ( ) ( ) ( ) .

(1 ( )) ( ),

k K Na Na L L

m

m m

dv
g n v E g m t h v E g v E

dt C

dm
m t m t

dt
α β


 =− − + − + − 


 = − −
       (6) 



 
 
 
 

Where Nag  and Kg  are constants that represent the 

sodium and potassium maximum conductance, 
respectively. The variables m, n and h take a 
(dimensionless) value between zero and unity, and are 
called the gate variables (Doi et al., 2010). The 

parameters 0n  and 0h  are constants that represent the 

resting states of the slow variables n  and h . In addition, 

the quantities mα  and mβ  are assumed to be voltage-

dependent and represent the dynamic opening and 
closing of gates that obey a simple process described as 
follows: 
 

1
( 40)

6510= ( )    and   ( ) 4exp .
40 18

1 exp
10

m m m m

v
v

v v
v

α α β β
+

+ 
= = = − +   − − 

      (7)

   

 
These equations allowed us to study the solutions of the 
HH simplified model and obtain, from the point of view of 
dynamical systems, the action potential dynamic results 
in the first stage, called depolarization. This simplified 
model can be most easily studied in the two-dimensional 
system, (v and m) phase-plane which provides a useful 
way to study the start of the sodium fast channels 
dynamic in the action potential generation.  
 
 
GENERAL FACTS ABOUT AUTONOMOUS SYSTEMS 
 
Equation (6) has the form: 
 

( , )

( , )

dv
F v m

dt

dm
G v m

dt


=


 =


                                                  (8)

                                                                                           
Where; 
 

( )3 4

0 0

1
( , ) ( ) ( ) ( )

Na Na K K L L

m

F v m g hm v E g n v E g v E
C

=− − + − + −   (9)  

 
and 
 

1
( 40)

6510 4 exp .
40 18

1 exp
10

( , ) (1 )G v m
v

m

v

v
m

+
+ 

− +   − − 


− −



=    (10) 

 
The next two curves are called nullclines: 
 

( , ) 0    and     ( , ) 0F v m G v m= =                       (11) 
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Any point at which these curves meet is called an 
equilibrium point. In order to find the equilibrium points, 
we must solve following system: 
 

( , ) 0.

( , ) 0.

F v m

G v m

=


=
                                                           (12)                                                                

 

Let ( , )e ev m  be an equilibrium point of system (12). The 

jacobian matrix at this point is given by: 
 

( , ) ( , )

( , ) ( , )

e e e e

e

e e e e

F F
v m v m

v m
J

G G
v m v m

v m

∂ ∂ 
 ∂ ∂

=  
∂ ∂ 
 

∂ ∂ 

                                  (13) 

 
Let: 
 

Det Det( )   and   Tr Trace( ) ( , ) ( , )e e e e e e

F G
J J v m v m

v m

∂ ∂
= = = +

∂ ∂
  (14)  

 
and 
    

2Tr 4Det.δ = −                                                 (15) 

 

Figure 2 shows the parabola 0δ = , that is 
21

Det Tr
4

=  

and the distinct possibilities for the equilibrium point 

( , )e ev m  in the so called trace-determinant plane.  

 
 
SOLUTIONS TO THE PROPOSED MODEL 
 
Equation (8) is highly non-linear. It does not admit exact 
solutions. However, we may solve it numerically with the 
aid of Mathematical, version 7. The code is given in the 
Appendix. We are going to solve it by using the following 
parameter values: 
 

2 2

0 02 2

1 , 0.3 , 54.4 , 77 ,

36 , 120 , 50 , 0.32, 0.45

m L L K

K Na Na

F mS
C g E mV E mV

cm cm

ms mS
g g E mV n h

cm cm

µ
= = =− =−

= = = = =
           

(16) 

 
The initial conditions are: 
 

(0) 66   and   (0) 0.01v m= − =                       (17) 

 
From Equation (12) and taking into account (9) and (10) 
we obtain the following equations for the nullclines (we 
solve the first equation ( , ) 0F v m =  for v  and the second 

one ( , ) 0G v m =  for m ): 
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Figure 2. The trace-determinant plane. 

 
 
 

 
 
Figure 3. The Hodgkin-Huxley phase-plane, showing the nullclines m = g(v)  and  v = f(m) with n0 =0.32 and h0 = 
0.45), four sample trajectories and three equilibrium point A,B (sink nodes) and C (saddle point). 

 
 

4 3

0 0

4 3

0 0

137 7

18 45

137 7 137 7
4

10 18 45 18 45

( ) .

(40 )
( ) .

40 40 40

L L K K N a N a

L K N a

v

v v v

E g E n g m E h g
v f m

g n g m h g

e v
m g v

e e e v

+

+ + +


 + +

= =
+ +




 +

= =
 + − +

        (18) 

 
Figure 3 shows these curves for the values given by (16). 
These curves intersect each other at the equilibrium 
points: 

A(-66.0474, 0.0467), B(-60.165, 0.0919), C(48.547, 0.9992)         (19) 

 
 

Phase-plane analysis 
 
Table 1 shows the classification of the three equilibrium 
points (22). We took into account (12), (13), (16), (17), 
(18) and Figure 2. The phase portrait near these 
equilibrium points are shown in Figures 4, 5 and 6. These 
portraits were obtained with the aid of Maple, version 15. 
The phase-planes in Figures 3 to 6 showed that there are 
three  intersections  that  are  steady  states,  two   stable 
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Table 1. Equilibrium points classification. 
 

Point Tr Det δ  Classification 

A(-66.0474, 0.0467)  -5.13 2.02 18.25 Sink Node  

B(-60.165, 0.0919)  -4.09 -2.725 27.6 Saddle 

C(48.547, 0.9992)  -63.41 483.33 2087.23  Sink Node  

 
 
 

 
 
Figure 4. Phase portrait near the steady state C. 

 
 
 
nodes A and C and one saddle point B.  
 
 
RESULTS AND DICUSSION 
 
Point A (Figures 3, 5 and 6) corresponds to the cellular 
membrane resting potential and  small  deviations  of  this 

point do not lead to the membrane depolarization, but 
rather to a gradual return to the resting potential. The 
trajectories near this point but below the saddle point B 
converge quickly to sink node A. If an impulse is larger 
than the threshold potential in the saddle point B, like it is 
shown with the sample trajectories in Figures 3, 5 and 6, 
the  fast  sodium  channels  start  their  opening  and   the 
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Figure 5. Phase portrait near the steady states A and B. 

 
 
 
membrane depolarization process is activated (influx of 
Na ions inside the membrane) due to their concentration 

gradient and the quickly opening of Na voltage-gated 
channels   will   lead   the   membrane   potential   to   the  
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Figure 6. Global Phase Portrait (points A, B and C).

 

 
 
 
depolarization state as  illustrated with the attracting point 
at sink point C (Figures 3, 4 and 6). 
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