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As the production values in the integrated circuit (IC) industry are inherently nonlinear and 
non-stationary, it is regarded as one of the most challenging tasks for practitioners and academics. This 
study proposed a hybrid methodology by combining empirical mode decomposition (EMD) and support 
vector regression (SVR) in production values forecasting. The proposed approach first uses EMD, which 
can adaptively decompose the complicated raw data into a finite set of intrinsic mode functions (IMFs) 
and a residue. After identifying the IMF components, residue are then modeled and forecasted using 
SVR. The final forecasting value can be obtained by the sum of these prediction results. Experimental 
results show that the proposed approach outperforms the SVR model without EMD preprocessing. 
 
Key words: Integrated circuit (IC) industry, production values forecasting, empirical mode decomposition, 
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INTRODUCTION 
 
The IC industry in Taiwan is one of the main factors for 
Taiwan’s economy growth. Since the strong demand from 
consumer electronics industry, the production value of 
Taiwan’s IC industry came to new Taiwan dollar 1 trillion 
768,600 million in 2010. With the change and 
globalization of the environments and rapid new 
technology development among the enterprises in the IC 
industry in Taiwan, the entire scenario has become ever 
more fierce. Forecasting of total production output in IC 
industry is useful for decision makers to prepare 
marketing strategies/production capacity planning and for  
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financial institutions to make investment decisions.  
Few forecasting models have been developed for the IC 

industry until recently. Three grey theory-based models 
have been presented to forecast the output of IC industry 
in Taiwan (Hsu, 2003; Hsu and Wang, 2007; Wang and 
Hsu, 2008). Generally, production values in the IC 
industry change over time. The changes thus can be 
treated as a time series process. However, there exist 
some specific characteristics in the IC industry, such as 
capital-intensive, short product life cycle, production 
technology rapidly changed over time and severe 
competition. Therefore, production values are inherently 
nonlinear and non-stationary in the IC industry. The 
non-stationary characteristic implies that the statistical 
properties of the data change over time. The main cause 
of  this  is  the effect of various business and economic  
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cycles while the nonlinear characteristic makes linear 
parameter models information difficult to use (Hussain et 
al., 2008; Yaser and Atiya, 1996). Therefore, production 
values forecasting is regarded as one of the most 
challenging tasks for practitioners and academics.  

Support vector machines (SVM), developed by Vapnik 
(1995), is a novel machine learning technique and is 
gaining popularity due to many attractive features and 
excellent generalization performance on a wide range of 
problems. It captures geometric characteristics of feature 
space without deriving weights of networks from the 
training data. Also, SVM embodies the structural risk 
minimization principle (SRM), which has been shown to 
be superior to traditional empirical risk minimization 
principle (ERM) employed by conventional neural 
networks. SRM minimizes an upper bound of 
generalization error as opposed to ERM that minimizes 
the error on training data. SVM guarantee global optima, 
where as neural networks face the risk of getting stuck in 
local optima and are not guaranteed to achieve global 
optima (Tay and Cao, 2001, 2003). In particular, with the 
introduction of Vapnik's ε- insensitivity loss function, the 
regression model of SVMs, called support vector 
regression (SVR), has also been receiving increasing 
attention to solve nonlinear regression estimation 
problems (Vapnik, 1995, 1999), which have been shown 
to exhibit excellent performance. Recently, SVR has been 
successfully adopted to solve forecasting problems in 
many fields such as forecast tourist arrivals, engine 
reliability prediction, wind speed prediction (Mohandes et 
al., 2004), financial time series (stocks index and 
exchange rate) forecasting (Cao, 2003; Cao and Tay, 
2001; Ince and Trafalis, 2006; Kim, 2003; Tay and Cao, 
2001, 2003; Thissen et al., 2003), electric load forecasting 
(Pai and Hong, 2005; Pai and Lin, 2005) and product 
demand forecasting (Guajardo et al., 2006). The SVR 
model has also been successfully applied to production 
value forecast of IC industry (Pai et al., 2009), it motivates 
our research work by using SVR for production value 
forecasting. 

In the modeling of output value forecasting using SVR, 
as the existing approaches would either involve cost lots 
of calculating resources or sensitive to parameter 
selection (Lu et al., 2009). Moreover, this variability 
makes it difficult for any single artificial technique to 
capture the non-stationary property of the data (Mitani et 
al., 2003). To avoid the limitations of the existing 
approach and reduce the influence of non-stationary 
property, a hybrid methodology by combining empirical 
mode decomposition (EMD) and support vector 
regression is proposed in the study for production values 
forecasting. 

Recently, a new signal analysis method, namely EMD 
proposed by Huang et al. (1998), is based on the local 
characteristic time scale of the signal and can decompose 
the complicated signal into a number of intrinsic mode 
functions  (IMFs). By  analyzing  each  resulting  IMF  
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component which involves the local characteristic of the 
signal, the characteristic information of the original signal 
can be extracted more accurately and effectively. In 
addition, the frequency components involved in each IMF 
not only relate to the sampling frequency but also change 
with the signal itself. Therefore, EMD is a self-adaptive 
signal processing method that can be applied to nonlinear 
and non-stationary time series analysis (Huang et al., 
1998; Huang et al., 1999). Due to the simplicity of its 
algorithm, the EMD method has been successfully applied 
in several fields such as ocean waves (Hwang et al., 
2003), biomedical engineering (Balocchi et al., 2004; 
Jiang and Yan, 2008; Liang et al., 2005; Su et al., 2008), 
mechanical fault diagnosis (Cheng et al., 2004; Vincent et 
al., 1999; Yu et al., 2005), signal processing 
(Blanco-Velasco et al., 2008; Guo et al., 2008; Li and 
Meng, 2006; Rai and Mohanty, 2007; Tao et al., 2005; Xie 
and Wang, 2006), wind engineering (Li and Wu, 2007), 
and earthquake engineering (Dong et al., 2008). However, 
most applications are primarily limited to the studies of 
nature science and engineering (Guo et al., 2008). 
Moreover, in existing literatures there are still few 
applications using EMD to forecast the output value. 

In this paper, we introduce EMD and SVR to forecast 
the output value. The EMD is used to adaptively 
decompose the original time series data into a finite and 
small number of oscillatory modes based on the local 
characteristic time scale to improve the performance of 
SVR. A hybrid methodology by combining EMD and SVR 
is proposed in this study for output value forecasting. 
Firstly, this approach employs EMD to decompose the 
original output value data into several IMFs and a residue. 
Secondly, the tendencies of these IMFs and the residue 
are then modeled and forecasted using SVR. Finally, 
these results prediction will be integrated to get a final 
forecasting value. The proposed approach was compared 
with the existing SVR, thus demonstrating that the 
proposed model can result in an enhancement of 
prediction accuracy and reduction of the influence of 
non-stationary property.  

The remainder of this paper is organized as follows: 
brief methodology on overviews of EMD and SVR; 
discussion on hybrid models; results of the experiment; 
the conclusion that describes the contribution of this 
paper is summarized and several future researches are 
also listed. 
 
 
METHODOLOGY  
 

This paper constructs a support vector regression (SVR) predicting 
model to mitigate the problem of production values forecast. It is 
aided by the utilization of empirical mode decomposition (EMD) 
(called EMD- SVR model). By using EMD, any complicated data can 
be decomposed into a finite and often small number of intrinsic 
mode functions (IMFs) (Huang et al., 1998). Then, a SVR, trained by 
IMFs and the corresponding demand data is used to predict these 
IMFs of the future production values. Finally, the production values 
are  forecasted  by  summing  the predicted IMFs. The detailed  
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introduction and literature review of each method can be seemed in 
the following areas.  
 
 
Empirical mode decomposition 
 
The empirical mode decomposition (EMD) technique, proposed by 
Huang et al. (1998), is a form of adaptive time series decomposition 
technique using the Hilbert–Huang transform (HHT) for nonlinear 
and non-stationary signals. The basic principle of EMD is to 
decompose a time series into a sum of oscillatory functions, namely, 
intrinsic mode functions (IMFs). In the EMD, the IMFs must satisfy 
two conditions: (1) the number of extrema (sum of maxima and 
minima) and the number of zero crossing differs only by one, and (2) 
the local average is zero. The condition that the local average is 
zero implies that envelope mean of the upper envelope and lower 
envelope is equal to zero. The first condition is similar to the 
traditional narrow band requirements for a stationary Gaussian 
process. The second condition modifies classical global requirement 
to a local one; it is necessary so that the instantaneous frequency 
will not have the unwanted fluctuations induced by asymmetric wave 
forms. The detail algorithm for EMD is shown as follows (Flandrin et 
al., 2004; Huang, 2001; Huang et al., 1998; Wu and Hu, 2006): 
 
Step 1: Identify the entire local extrema (including local maxima and 
minima), and then connect all the local maxima by a cubic spline line 
as the upper envelope. 
 
Step 2: Repeat the procedure for the local minima to produce the 
lower envelope. The upper and lower envelopes should cover all the 
data between them. 
 
Step 3: The mean of the upper and lower envelope value is 
designated as m1 (t), and the difference between the time series x (t) 
and m1 (t) is the first component, h1 (t), that is, 
 

).()()( 11 tmtxth                                            (1) 

 
Ideally, if h1 (t) is an IMF, then h1 (t) is the first component of x (t). 
 
Step 4: If h1 (t) is not an IMF, h1 (t) is treated as the original time 
series and repeats Step 1 to 3; then 
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in which, m11 (t) is the mean of the upper and lower envelope value 
of h1 (t). After repeated sifting, i.e. up to k times, h1k (t) becomes an 
IMF, that is  
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then, it is designated as 
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Here, to guarantee that the IMF components retain enough physical 
sense of both amplitude and frequency modulations, a criterion for 
stopping the sifting process is used. This is accomplished by limiting 
the size of the standard deviation, denoted as SD, which is 
calculated from two consecutive sifting results as 
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A typical value for SD can be set between 0.2 and 0.3.  
 
Step 5: Separate c1 (t) from x (t), we could get: 
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r1 (t) is treated as the original data and the above processes are 
repeated, the second IMF component c2 (t) of x (t) can be achieved. 
Let us repeat the process as described above for n times, then n- 
IMFs of time series x (t) can be got. Then, 
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The decomposition process can be stopped when rn (t) becomes a 
monotonic function from which no more IMF can be extracted. By 
summing up Equations 6 and 7, we finally obtain 
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Thus, residue rn (t) is the mean trend of x (t). The IMFs c1 (t), c2 
(t), . . . , cn (t) include different frequency bands ranging from high to 
low. The frequency components contained in each frequency band 
are different and they change with the variation of time series x (t), 
while rn (t) represents the central tendency of time series x (t). 
 
 

Support vector regression (SVR) 
 
SVR first non-linearly transforms the original input space x into a 
higher dimensional feature space. That is, in order to learn 
non-linear relations with a linear machine, it is required to select a 
set of non-linear features and to express the data in the new 
representation. This is equivalent to applying a fixed non-linear 
mapping of the data to a feature space which the linear machine can 
be used in. This transformation can be achieved by using various 
types of non-linear mapping. Non-linear regression problems in an 
input space can become linear regression problems in a feature 
space. The regression function can be formulated as follows: 
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where w  is a weight vector, b is a constant,  x denotes the 

feature of the inputs, and ( )(xw  ) describes the dot production 

in the feature space F. In SVR, the problem of nonlinear regression 
in the lower dimension input space(x) is transformed into a linear 
regression problem in a high dimension feature space F. That is, the 
original optimization problem involving a nonlinear regression is 
recast as a search for the flattest function in the feature space, not in 
the input space. 

A number of cost functions such as the Laplacian, Huber’s 
Gaussian, and  -insensitive can be used in the SVR formulation. 

Among these, the robust  -insensitive loss function ( L ) which is 

the most commonly adopted is presented as follows: 
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Where is a precision parameter representing the radius of the tube 

located around the regression function f(x). Under this loss function, 
errors below   are not penalized; we can ignore the error and say 

the predicted f (x) has no loss. 
The weight vector ( w ) and constant (b) in Equation 7 can be 

estimated by minimizing the following regularized risk function: 
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and )),(( qxfLe is the -insensitive loss function in Equation 8. 

The f (xi) and qi values are the actual and forecasting values,  
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respectively. The second term, /2
2

 is the regularization term 

which controls the trade-off between the complexity and 
approximation accuracy of the regression model to ensure that the 
model possesses an improved generalized performance; and C is 
the regularization constant used to specify the trade-off between the 

empirical risk and regularization term. Both C and  are 

user-determined parameters. Two positive slack variables, i  

and
*

i , which represent the distance between the actual values 

and the corresponding boundary values of  -tube, are introduced. 

Thus, Equation 9 is transformed into the following constrained form. 
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By applying Lagrangian multipliers and Karush-Kuhn-Tucker 
conditions to equation (4), it thus yields the dual Lagrangian form as 
Equation 11.  
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In Equation 11, i  and
*

i , are called Lagrangian multipliers. 

They satisfy the equality i
*

i = 0. After the Lagrangian 

multipliers i  and
*

i  have been calculated, the minimizing 

function can be written in the following form.  
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Herein, ),( ixxK is called the kernel function whose value equals 

the inner product of two vectors, xi and xj, in the feature space, 

 ix  and  
jx , meaning that )()(),( jiji xxxxK   . 

There are several types of kernel function. However, any function 
that satisfies Mercer’s condition by Vapnik (1995) can act as the 
kernel function. The most widely used kernel function is the 
Gaussian radial basis function (RBF) defined 

as )
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the RBF. Moreover, the RBF kernel is not only easier to implement, 
but also capable to non-linearly map the training data into an infinite 
dimensional space, thus, it is suitable to deal with non-linear 
relationship problems. Thus, the RBF is used in this work as the 
kernel function. 

 
 

The combined EMD with SVR model  
 

For the proposed hybrid forecasting method, EMD is the first applied 
to decompose the original production value data into a finite set of 
IMFs (Here the residual rn (t) also be considered as an IMF). Second, 
each IMF is modeled and forecasted using the SVR model, as is the 
residue. The step involved in SVR modeling are (1) selecting a 
suitable kernel function and kernel parameter (kernel width σ), (2) 
specifying the ‘‘ε’’ insensitive parameter, and (3) specifying the 
capacity parameter cost, ‘‘C’’.  

As mentioned earlier, the RBF kernel function is adapted in this 
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Figure 1. Variations of the monthly production values for Taiwan’s IC industry. 

 
 
 

Table 1. Performance indices and their calculations. 
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study. It is well known that the selection of these parameters, C, ε, 
and σ of a SVR model is important to the accuracy of forecasting 
(Cherkassky and Ma, 2004; Lin et al., 2003). There are no general 
rules for the choice of these parameters. The grid search proposed 
by Lin et al. (2003) is a common and straightforward method using 
exponentially growing sequences of C, ε, and σ to identify good 
parameters (for example, C=2-15, 2-13, 2-11,…, 215 ). The parameter 
set of C, ε, and σ which generate the minimum forecasting mean 
square error (MSE) is considered as the best parameter set. In this 
study, the grid search is used in each IMF to determine the best 
parameter set for training an optimal SVR forecasting model. Finally, 
the forecasting results can be obtained by the sum of the forecasts. 
 
 

EXPERIMENTAL RESULTS AND ANALYSIS 
 
Data sets 
 
To evaluate the performance of the proposed 
methodology, monthly production values of IC industry in 
Taiwan from January 1990 to December 2009 are 
selected. The collected data is divided into two sets, 
training data and testing data. This study uses 70% of the 

data from the data set as the training set. The remaining 
30% are used as the testing set. Therefore, the training 
samples are selected data from January 1990 to 
December 2005, while the data from January 2006 to 
December 2009 are used to check the prediction 
performance of the model. There are totally 240 data 
points in the dataset and the variations of the historical 
monthly data from the IC industry are shown in Figure 1. 
The plot exhibits a permanent deterministic pattern of 
long-term upward trend with short-term fluctuations that 
are independent from one time period to the next. From 
Figure 1, it can be seen that the production values of the 
Taiwanese IC industry appear to be non-stationary in that 
the mean is increasing over time. 

 
 
Evaluating indices 

 
In this study, the one-step-ahead prediction is performed 
in the experiments. Although multi-step forecasting may 
capture some system dynamics, the performance will be 
quite poor due to the accumulation of errors. In practice, 
short-term forecasting results are more useful as they 
provide timely information for the correction of forecasting 
value. 

In this study, three popular indices to measure the 
forecast are mean absolute percentage error (MAPE), 
root mean square error (RMSE) and mean absolute 
difference (MAD). MAPE, RMSE and MAD were used to 
measure the correctness of a prediction in terms of levels 
and the deviation between the actual and predicted 
values. The smaller the values, the closer the predicted 
values are to the actual values. Table 1 shows these 
performance metrics and their calculations. 
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Figure 2. EMD for production values.  

 
 
 
Forecasting results  
 
According to methodology proposed in this paper, 
observed data should be mapped into several time 
sequence domains by EMD method with the sifting 
threshold SD = 0.3. Figure 2, shows the decomposition 
results for the production values. Clearly, the data is 
decomposed into six IMFs and one residue. For the 
decomposition, it is observed that the dominant mode of 
the observed data is not any IMF but the residue. As 
Huang et al. (1998) mentioned the residue is often treated 
as the deterministic long term behavior. So, the IMFs of IC 
industry can be decomposed into the sequences including 
c1, c2, c3, c4, c5, c6, and r7, just as shown in Figure 2, which 
can be applied to train SVR, respectively.  

IMF c1 is given as training samples firstly, in the 
selection of parameters for modeling SVR, through grid 
search proposed by Lin et al. (2003), it can be obtained 
that the parameter set  (C=2

1
, ε=2

−11
)  gives  the  best 

forecasting result (minimum testing MSE). The similar 
procedures can be with other SVR models, which are 
established in the same way as for the IMF of c2, c3, c4, c5, 
c6, and r7. Then, more accurate results of forecast can be 
derived through the algebraic sum of the forecasted IMF 
c1, c2, c3, c4, c5, c6, and r7. The actual production values in 
the IC industry and predicted values from the single SVR 
and EMD-SVR models are illustrated in Figure 3. It can be 
observed from Figure 3 that the predicted values obtained 
from the proposed EMD-SVR model are closer to the 
actual values than those obtained from the single SVR 
model.  

Table 2 compares the results obtained with the 
EMD-SVR and single SVR models for production values 
in the IC industry. Table 2 depicts that the MAPE, RMSE 
and MAD of the proposed EMD-SVR model are, 
respectively, 0.44%, 640.19 and 373.10. It can be 
observed that these values are smaller than SVR model. 

This indicates that there is a smaller deviation between 
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Figure 3. Forecasted production values from different models for IC industry. 
 
 
 

Table 2. Comparison of different models for production 
values.  
 

      Models 

Metrics 
SVR EMD-SVR 

MAPE 6.77% 0.44% 

RMSE 8372.88 640.19 

MAD 6006.78 373.10 

 
 
 
the actual and predicted values using the proposed 
EMD-SVR model. Thus, the proposed EMD-SVR model 
provides a better forecasting result than the single SVR 
model based on MAPE, RMSE and MAD. 
 
 
Conclusions  
 
Due to the specific characteristics in the IC industry, 
production values are inherently nonlinear and 
non-stationary, this variability makes it difficult for a single 
model including SVR to capture such a dynamic 
input-output relationship inherent in the data. This paper 
has presented a production values forecasting model by 
integrating EMD and SVR. The main contribution of the 
paper is to propose a hybrid method as well as a simple 
approach for a stable prediction of non-stationary data. 
The proposed EMD-SVR method pre-processes the 
production values of IC industry in Taiwan and 
decomposes them into  more  stationary  and  regular 

components (IMF or residue) using the EMD technique. 
Furthermore, the corresponding SVR model for each 
divided component is easier to build. After each IMF 
components and residue are modeled and forecasted 
using the SVR model, the forecasting values are then 
summarized as the production values forecasting results. 
The experiments have evaluated the production values of 
IC industry in Taiwan.  

In this study, the EMD-SVR model is proposed to 
produce lower prediction error in the datasets. It 
outperformed the single SVR model. According to the 
experiments, it can be concluded that EMD, which can 
fully capture the local fluctuations of data, can be used as 
a pre-processor to decompose the complicated raw data 
into a finite set of IMFs and a residue. By this 
pre-processing, we can advance the simplification of SVR 
modeling based on MAPE, RMSE and MAD. Therefore, 
the proposed method is very suitable for prediction with 
nonlinear and non-stationary data, and is an efficient 
method for production values forecasting. 

The favorable results obtained in this work reveal that 
the proposed model is a valid alternative for use in high 
technological production values forecasting. Future 
studies may aim at combining EMD and other 
advancement of methods, like extreme learning machine 
(ELM) and grey theory, in evaluating the ability of the 
proposed forecasting scheme. Second, in this paper EMD 
has been introduced and issues with its application for 
production values forecasting. However, two key 
decisions in the EMD application process, the rule for 
deciding when to stop sifting for an IMF and the choice of  



 
 
 
 
cubic spline end condition rule have to be reviewed and 
discussed in detail for the future studies. Finally, results 
should be compared with other methods such as wavelet 
transform or neural network. 
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