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Power System Stabilizers (PSS) are used to generate supplementary damping control signals for the 
excitation system in order to damp the low frequency oscillations (LFO) of the electric power system. 
The PSS is usually designed based on classical control approaches but this Conventional Power 
System Stabilizers (CPSS) has some problems. To overcome the drawbacks of CPSS, numerous 
techniques have been proposed in literatures. Intelligent based methods such as Fuzzy logic and 
genetic algorithms and also robust control methods such as quantitative feedback theory (QFT) have 
already been used for designing PSS. In this paper the goal is to study comparison of different methods 
used for designing PSS. For this purpose the Conventional PSS (CPSS), fuzzy based PSS (FPSS), 
genetic algorithms based PSS (GA-PSS) and also QFT based PSS (QFT-PSS) are considered for 
comparison purposes. A single machine infinite bus power system with system parametric 
uncertainties is considered as a case study and the proposed methods are evaluated against one 
another at this test system. The simulation results clearly indicate the effectiveness and validity of the 
proposed methods. 
 
Key words: Electric power system stabilizer, low frequency oscillations, genetic algorithms optimization, fuzzy 
logic, quantitative feedback theory. 

 
 
INTRODUCTION 
 
Large electric power systems are complex nonlinear 
systems and often exhibit low frequency 
electromechanical oscillations due to insufficient damping 
caused by adverse operating. These oscillations with 
small magnitude and low frequency often persist for long 
periods of time and in some cases they even present 
limitations on power transfer capability (Liu et al., 2005). 
In analyzing and controlling the power system’s stability, 
two distinct types of system oscillations are recognized. 
One is associated with generators at a generating station 
swinging with respect to the rest of the power system. 
Such oscillations are referred to as “intra-area mode” 
oscillations. The second type is associated with swinging 
of many machines in an area of the system against 
machines in other areas. This is referred to as “inter-area 
mode” oscillations. 
 
 
 
*Corresponding author. E-mail: reza.hematti@gmail.com. Tel: 
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Power System Stabilizers (PSS) are used to generate 
supplementary control signals for the excitation system in 
order to damp both types of oscillations (Liu et al., 2005). 
The widely used conventional Power System Stabilizers 
(CPSS) are designed using the theory of phase 
compensation in the frequency domain and are 
introduced as a lead-lag compensator. The parameters of 
CPSS are determined based on the linearized model of 
the power system. Providing good damping over a wide 
operating range, the CPSS� parameters should be fine 
tuned in response to both types of� oscillations. Since 
power systems are highly nonlinear systems,� with 
configurations and parameters which alter through time, 
the�CPSS design based on the linearized model of the 
power� system cannot guarantee its performance in a 
practical� operating environment. Therefore, an adaptive 
PSS which� considers the nonlinear nature of the plant 
and adapts to the�changes in the environment is required 
for the power system (Liu et al., 2005). 
�In order to improve the performance of CPSSs, 

numerous �techniques  have been proposed for designing  
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Figure 1. A single machine infinite bus power system.  

 
 
 

them, such as intelligent optimization methods (Linda and 
Nair, 2010; Yassami et al., 2010; Sumathi et al., 2007; 
Jiang et al., 2008; Sudha et al., 2009) and Fuzzy logic 
method (Hwanga et al., 2008; Dubey, 2007). Also, many 
other different techniques have been reported by 
Chatterjee et al. (2009) and Nambu and Ohsawa (1996) 
and� the application of robust control methods for 
designing PSS has been presented  by Gupta et al. 
(2005), Mocwane and Folly (2007), Sil et al. (2009) and 
Bouhamida et al. (2005). Although different methods 
have been reported for designing PSS but comparison of 
these different algorithms for obtaining the best method 
has not already been reported by researchers. 

In this paper the authors are willing to study and 
comparison of different algorithms for designing PSS. For 
this comparison purpose, the conventional PSS (CPSS), 
Fuzzy based PSS (FPSS), genetic algorithms based PSS 
(GA-PSS) and also QFT based PSS (QFT-PSS) are 
considered. To show effectiveness of the proposed 
methods, these methods are compared with one another. 
Simulation results show that the proposed methods 
guarantees robust performance under a wide range of 
operating conditions.  
 
 
System under study 
 
Figure 1 shows a single machine infinite bus power 
system. The static excitation system has been 
considered as model type IEEE – ST1A (Kundur, 1993).  
 
 
Dynamic model of the system  
 
Nonlinear dynamic model 
 
A nonlinear dynamic model of the system is derived by 
disregarding the resistances and the transients of 
generator, transformers and transmission lines (Kundur, 
1993). The nonlinear dynamic model of the system is 
given as (equation 1). 
 
 
Linear dynamic model of the system 
 
A linear  dynamic  model  of  the  system  is  obtained  by  

linearizing the nonlinear dynamic model around the 
nominal operating condition. The linearized model of the 
system is obtained as (equation 2) (Kundur, 1993). 
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Figure 2 shows the block diagram model of the system. 
This model is known as Heffron-Phillips  model (Kundur, 
1993). The model has some constants denoted by Ki. 
These constants are functions of the system parameters 
and the nominal operating condition. The nominal 
operating condition parameters are given in the appendix. 
 
 
Dynamic model of the system in the state-space form  
 
The dynamic model of the system in the state-space form 
is obtained as (equation 3) (Kundur, 1993).  
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Figure 2. Heffron-Phillips model of the electric power system. 

 
 
 

Table 1. The Eigenvalues of the closed 
loop system. 
 

-4.2797 
-46.366 
+0.1009 + j4.758 
+0.1009 - j4.758 

 
 
 
Analysis 
 
In the nominal operating condition, the Eigenvalues of the system 
are obtained using analysis of the state-space model of the system 
presented in (equation 3) and these Eigenvalues are shown in 
Table 1. It is clearly seen that the system has two unstable poles at 
the right half plane and therefore the system is unstable and needs 
to Power System Stabilizer (PSS) for stability. 
 
 
Power system stabilizer 
 
A power system stabilizer (PSS) is provided to improve the 
damping of power system oscillations. Power system stabilizer 
provides an electrical damping torque (�Tm) in phase with the 
speed deviation (��) in order to improve damping of power system 
oscillations (Kundur, 1993). As referred before, many different 
methods have been applied to design Power System Stabilizers so 
far. In this paper, the purpose is to study and compare these 
methods. 
 
 
Genetic algorithms based PSS 
 
Genetic algorithms  
 
Genetic algorithms (GA) are  global  search  techniques,  based  on  

the operations observed in natural selection and genetics (Randy 
and Sue, 2004). They operate on a population of current 
approximations-the individuals-initially drawn at random, from which 
improvement is sought. Individuals are encoded as strings 
(Chromosomes) constructed over some particular alphabet, for 
example; the binary alphabet {0.1}, so that chromosomes values 
are uniquely mapped onto the decision variable domain. Once the 
decision variable domain representation of the current population is 
calculated, individual performance is assumed according to the 
objective function which characterizes the problem to be solved. It 
is also possible to use the variable parameters directly to represent 
the chromosomes in the GA solution. 

At the reproduction stage, a fitness value is derived from the raw 
individual performance measure given by the objective function and 
used to bias the selection process. Highly fit individuals will have 
increasing opportunities to pass on genetically important material to 
successive generations. In this way, the Genetic Algorithms search 
from many points in the search space at once and yet continually 
narrow the focus of the search to the areas of the observed best 
performance. The selected individuals are then modified through 
the application of genetic operators. In order to obtain the next 
generation Genetic operators manipulate the characters (genes) 
that constitute the chromosomes directly, following the assumption 
that certain genes code, on average, for fitter individuals than other 
genes. Genetic operators can be divided into three main categories 
(Randy and Sue, 2004): Reproduction, crossover and mutation. 
 
i) Reproduction: selects the fittest individuals in the current 
population to be used in generating the next population. 
ii) Cross-over: Causes pairs, or larger groups of individuals to 
exchange genetic information with one another 
iii) Mutation: causes individual genetic representations to be 
changed according to some probabilistic rule.  
 
 
PSS tuning using genetic algorithms 
 
In this section the PSS parameters tuning based on the Genetic 
Algorithms is presented. The PSS configuration is considered as 
PID type as shown in (Equation 4). 
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Table 2. Optimal parameters of GA-PSS using genetic algorithms.  
 

GA-PSS Parameters KP KI KD 
Optimal value 63.396 9.9974 11.9952 

 
 
 

 

 
 
Figure 3. Fuzzy supplementary controller. 

 
 
 

Table 3. The linguistic variables for 	
. 
 

Big positive (BP) Medium positive (MP) Small positive (SP) Zero (ZE) 
Big negative (BN) Medium negative (MN) Small negative (SN)  
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                                 (4) 

 
The parameter 	Eref is modulated to the output of GA-PSS and 
speed deviation ∆ω is considered as input to GA-PSS. The 
optimum values of KP, KI and KD which minimize an array of 
different performance indexes are accurately computed using a 
genetic algorithms. In this study the performance index is 
considered as (equation 5). In fact, the performance index is the 
Integral of the Time multiplied Absolute value of the Error (ITAE). 
 

dt��tITAE
t

0
�=                                            (5) 

 
The parameter "t" in performance index is the simulation time. It is 
clear to understand that the controller with lower performance index 
is better than the other controllers. To compute the optimum 
parameter values, a 0.1 step change in reference mechanical 
torque (∆Tm) is assumed and the performance index is minimized 
using Genetic Algorithms. The following genetic algorithm 
parameters have been used in present research: 
 
i) Number of Chromosomes: 3; Population size: 48 
ii) Crossover rate: 0.5; Mutation rate: 0.1 
 
The optimum values of the parameters KP, KI and KD are obtained 
using continuous type Genetic Algorithms and summarized in the 
Table 2.  
 
 
Fuzzy logic based PSS 
 
In this section Fuzzy logic method is considered for designing PSS. 
Fuzzy method has three major sections as membership functions, 
rule bases and defuzzification. In the classical  Fuzzy  methods, the 

boundaries of membership functions are adjusted based on expert 
person experiences that may be with trial and error and does not 
guarantee performance of the system. To solve this problem, in this 
paper the boundaries of the membership functions are tuned by an 
optimal search for achieving the best boundaries. Therefore the 
boundaries of input and output membership functions are 
considered as uncertain and then the optimal boundaries are 
obtained by genetic algorithms (Cordon et al., 2001). Here the 
proposed Fuzzy controller block diagram is given in Figure 3. 

In fact, it is a nonlinear PI-type Fuzzy logic controller with two 
inputs and one output. In this paper 	Vref is modulated in order to 
output of Fuzzy PSS (FPSS) and the speed deviation ∆ω and its 
rate d(∆ω)/dt are considered as the inputs to the FPSS. The inputs 
are filtered by washout block to eliminate the DC components. Also 
there are three parameters denoted by Kin1, Kin2 and Kout which are 
defined over an uncertain range and then obtained by Genetic 
Algorithms optimization method. Therefore the boundaries of inputs 
and output signals are tuned on an optimal value.   

Though the Fuzzy controller accepts these inputs, it has to 
convert them into Fuzzified inputs before the rules can be 
evaluated. To accomplish this, one of the most important and critical 
blocks in the whole Fuzzy controllers should be built and it is The 
Knowledge Base. It consists of two more blocks namely the data 
base and the rule base (Rajase and Vijay, 2007). 
 
 
Data base 
 
Data Base consists of the membership function for input variables 
�� and d(��)/dt and output variable described by linguistic 
variables shown in Tables 3 to 5 (Rajase and Vijay, 2007). The 
“triangular membership functions” are used as membership 
functions for the input and output variables. The Figures 4 to 6 
illustrate these in detail indicating the range of all the variables. 
These  ranges  are defined as default and then tuned via cascade K  
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Table 4. The linguistic variables for d(∆ω)/dt. 
 

Positive (P) Negative Zero (ZE) 
 
 
 

Table 5. The linguistic variables for output. 
 
Big positive (BP) Medium positive (MP) Small positive (SP)   
Big negative (BN)    Medium negative (MN) Small negative (SN) 
Zero (ZE) Very big positive (VBP) Very big negative (VBN)    

 
 
 

 
 
Figure 4. Membership function of input 1 (∆ω). 

 
 
 

 
 
Figure 5. Membership function of input 2 (d(∆ω)/dt). 

 
 
 
parameters (Kin1, Kin2 and Kout) and adjusted on the optimal values. 
 
 
Rule base  
 
The other half of the knowledge base is the Rule Base which 
consists of all the rules formulated by the experts. It also consists of 

weights which indicate the relative importance of the rules among 
themselves and indicates the influence of a particular rule over the 
net Fuzzified output. The Fuzzy rules which are used in this scheme 
are shown in Table 6. The next section specifies the method 
adopted by the Inference Engine especially the way it uses the 
Knowledge Base consisting of the described Data Base and Rules 
Base (Rajase and Vijay, 2007). 
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Figure 6. Membership function of output. 

 
 
 

Table 6. Fuzzy Rule Bases. 
 
�� d(��)/dt BN MN SN ZE SP MP BP 
N VBN BN MN SN ZE MP BP 
ZE BN MN SN ZE SP MP BP 
P BN MN ZE SP MP BP VBP 

 
 
 
Fuzzy inference engine methodology 
 
Though many methodologies have been mentioned in evaluating 
the various expressions like Fuzzy union (OR operation), Fuzzy 
intersection (AND operation) and etc with varying degree of 
complexity. Here in Fuzzy scheme the most widely used methods 
for evaluating such expressions are used. The function used for 
evaluating OR is “MAX”, which is the maximum of the two operands 
and similarly the AND is evaluated using “MIN” function which is 
defined as the minimum of the two operands. It should be note that 
in the present research paper, the equal importance is assigned to 
all the rules in the Rules Base (Rajase and Vijay, 2007). 
 
 
Defuzzification method 
 
The defuzzification method followed in this study is the “Center of 
Area Method” or “Gravity method”. This method is discussed in 
(Rajase and Vijay, 2007). As mentioned before, in this paper the 
boundaries of the membership functions are adjusted by genetic 
algorithms. In the next section the FPSS tuning using genetic 
algorithms is presented. 
 
 
FPSS tuning using genetic algorithms 
 
In this section the membership functions of the proposed FPSS are 
tuned by K parameters (Kin1, Kin2 and Kout). These K parameters are 
obtained based on Genetic Algorithms optimization method. The 
parameter 	Eref is modulated to output of FPSS and speed 
deviation ∆ω and  its  rate  are  considered  as  input  to FPSS.  The 

optimum values of Kin1, Kin2 and Kout  which minimize an array of 
different performance indexes are accurately computed using 
Genetic algorithms. In order to this study, the performance index is 
considered as (Equation 5). To compute the optimum parameter 
values, a 0.1 step change in reference mechanical torque (∆Tm) is 
assumed and the performance index is minimized using genetic 
algorithms. The following genetic algorithm parameters have been 
used in present research: 
 
i) Number of Chromosomes: 3; Population size: 48 
ii) Crossover rate: 0.5; Mutation rate: 0.1. 
 
The optimum values of the parameters Kin1, Kin2 and Kout are 
obtained using Genetic Algorithms and summarized in the Table 7. 
The boundaries of Kin1, Kin2 and Kout for optimal search are 
presented in the appendix.  
 
 
Conventional PSS and QFT based PSS 
 
The detailed step-by-step procedure for computing the parameters 
of the classical lead-lag PSS (CPSS) using phase compensation 
technique has been presented by Kundur (1993). Here, the CPSS 
has been designed and obtained as (equation 6). 
 

( )
( )10.1S

10.3S35
CPSS

+
+=

                                            

(6) 

 
In the CPSS design, the Washout block parameter Tw = 10 and 
Damping ratio = 0.5 have been considered. Also the detailed step-
by-step procedure to design the robust PSS based on the 
quantitative  feedback  theory  (QFT-PSS)  has  been developed by 
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Table 7. Obtained parameters Kin1, Kin2 and Kout using genetic algorithms. 
  
Parameters Kin1 Kin2 Kout 
Obtained value 72.5 30.7 0.34 

 
 
 

Table 8. The calculated ITAE. 
 

Operating condition CPSS QFT-PSS FPSS GAPSS 
Nominal 5.7569×10-4 5.5686×10-4 5.5259×10-4 3.9652×10-4 
Heavy 7.2451×10-4 4.4080×10-4 5.1769×10-4 3.4632×10-4 
Very heavy 8.9021×10-4 3.4774×10-4 3.9219×10-4 2.8288×10-4 

 
 
 
Sedigh and Alizadeh (1994) and Rao and Sen (1999). The QFT-
PSS has been designed and obtained as (equation 7). In the design 
process disturbance rejection bounds are considered for designing 
PSS and for easy implementation, the order of final controller is 
reduced by model reduction technique. 
 

( )
( )10.045S

10.42S30
PSS-QFT

+
+=

                                                          

(7) 

 
 
RESULTS AND DISCUSSION 
 
The proposed PSSs are applied to control of system. In 
order to study the PSS performance under system 
uncertainties (controller robustness), three operating 
conditions are considered as follow: 
 
i. Nominal operating condition  
ii. Heavy operating condition (20% changing parameters 
from their typical values) 
iii. Very heavy operating condition (50% changing 
parameters from their typical values). 
 
In order to demonstrate the robustness performance of 
the proposed method, The ITAE is calculated following a 
10% step change in the reference mechanical torque 
(∆Tm) at all operating conditions (nominal, heavy and very 
heavy) and results are shown at Table 8. Following step 
change at ∆Tm, the optimal GA-PSS has better 
performance than the other methods at all operating 
conditions. After GAPSS, the QFT-PSS has lower ITAE 
than the other methods.  

Also the control effort signal is one of the most 
important factors to compare responses. The output of 
the PSS (�Vref) is considered as the control effort signal. 
The control effort signal is computed as (equation 8). 
 

dt�Vreft_EffortControl
t

0
�=

                       

 (8) 

 

The control effort has been calculated following a 10% 
step change in the reference mechanical torque  (∆Tm)  at 

all operating conditions (Nominal, Heavy and Very heavy) 
and results are shown at Table 9. It is clear to see that 
following step change at ∆Tm, the GA-PSS has lower 
control effort than the other method at all operating 
conditions. This means that the optimal GA-PSS damps 
power system oscillations by injecting lower control 
signal. Although the control effort and performance index 
results are enough to compare the methods, but it can be 
more useful to show responses in figures. Figure 7 shows 
�� at nominal, heavy and very heavy operating 
conditions following 10% step change in the reference 
mechanical torque (∆Tm). 

It is clear to seen that the GA-PSS has better 
performance than the other methods at all operating 
conditions. After GA-PSS the QFT-PSS can be evaluated 
as second method from view of comparison. QFT-PSS 
characteristics in the damping power system oscillations 
are in the range of acceptable. Eventually between two 
other methods, the FPSS has a very significant 
performance than CPSS. The CPSS ability in damping 
power system oscillations goes to unstable and large 
oscillations with changing system operating conditions 
and under heavy loads. 
 
 
Conclusions 
 
In this paper, different robust and intelligent methods 
such as conventional, genetic algorithms, fuzzy logic and 
QFT have been successfully proposed to design PSS. 
The proposed methods were applied to a typical single 
machine infinite bus power system containing system 
parametric uncertainties and various loads conditions. 
The simulation results demonstrated that the designed 
methods are capable of guaranteeing the robust stability 
and robust performance of the power system under a 
wide range of system uncertainties. But in view of 
comparison, the optimal GA-PSS has better performance 
rather than the other methods and after it the QFT-PSS 
can be evaluated as second method. 

The  new  PID   type   GA-PSS  which   has   the    best 
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Table 9. The calculated control effort signal. 
 

Operating condition CPSS QFT-PSS FPSS GAPSS 
Nominal 0.0327 0.0308 0.0883 0.0321 
Heavy 0.0490 0.0334 0.0813 0.0400 
Very heavy 0.0721 0.0421 0.0814 0.0359 
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Figure 7. Dynamic responses �
 following 0.1 step change in the 
reference mechanical torque (�Tm) a: Nominal operating condition b: 
Heavy operating condition c: Very heavy operating condition. 
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performance can be considered as a new methodology 
for designing PSS. This method leads to two useful 
aspects, in first it is easy to implementation for the sake 
of its PID configuration and also it obtains the robust 
performance and robust stability under system 
uncertainties. These results open the door to study the 
effect of nonlinear constraints on the power system 
damping oscillations problems. 
 
 
Nomenclature: �, Synchronous speed; �, synchronous 
angle; Pm, input mechanical power; Pe, output electrical 
power; M,  Inertia; Eq, q axis voltage, Efd, field voltage; 
E´

q, transient voltage of q axis; T´
do, transient time 

constant of q axis; Ka, excitation system gain; Ta, 
excitation system time constant; Vt, Terminals voltage; 
Vref, reference voltage of excitation system; Tm, 
mechanical torque; PSS, power system stabilizer; CPSS, 
conventional power system stabilizer; FPSS, fuzzy Power 
system stabilizer; GA-PSS, genetic algorithms power 
system stabilizer; QFT-PSS, quantitative feedback theory 
power system stabilizer; PID, proportional – Integral – 
differential; ITAE, integral of the time multiplied absolute 
value of the error.  
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APPENDIX 
 
The nominal operating condition parameters of the system are listed in Table 1. The boundaries of Kin1, Kin2 and Kout, for 
optimal search are listed in Table 2.  
 
 
 

Table 1. The nominal system parameters. 
 

M = 10 Mj/MVA T´do = 7.5 s Xd = 1.68 p.u. 
Generator 

Xq = 1.6 p.u. X´d = 0.3 p.u. D = 0 
Excitation system  Ka = 50 Ta = 0.02 s 
Transformer  Xtr = 0.1 p.u.  
Transmission lines Xte1 = 0.5 p.u. Xte2 = 0.9 p.u.  
Operating condition Vt =1.05 p.u. P=1 p.u. Q=0.2 p.u. 

 
 
 

Table 2. The boundaries of Kin1, Kin2 and Kout. 

 

Parameters 0.1Kin11000 0.1Kin21000 0.1Kout0.5 
 


