
International Journal of the Physical Sciences Vol. 6(7), pp. 1793-1797, 4 April, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.244 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
Full Length Research Paper 
 

A new iterative method for solving absolute value 
equations 

 
Muhammad Aslam Noor1,2, Javed Iqbal1,  Sanjay  Khattri3 and    Eisa Al-Said2 

 
1Mathematics Department, COMSATS Institute of Information Technology, 

Park Road, Islamabad, Pakistan. 
2Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia. 

3Department of Engineering, Stord Hangesund University College, Norway. 
 

Accepted 2 March, 2011 
 

In this paper, we suggest and analyze a new iterative method for solving the absolute value equations 
,bxAx =−  where n nA R ×∈  is symmetric matrix, nRb∈  and nx R∈ is unknown. This method can be 

viewed as a modification of Gauss-Seidel method for solving the absolute value equations. We also 
discuss the convergence of the proposed method under suitable conditions. Several examples are 
given to illustrate the implementation and efficiency of the method. Some open problems are also 
suggested. 
 
Key words: Absolute value equations, minimization technique, Gauss-Seidel method, Iterative method. 

 
 
INTRODUCTION 
     
We consider the absolute value equations of the type 
 

,bxAx =−                                                               (1) 

 
where nnRA ×∈ is symmetric matrix nRb∈  and x will 

denote the vector in nR with absolute values of 
components of ,x  where nx R∈  is unknown. The 
absolute value Equation (1) was investigated in detail 
theoretically in Mangasarian et al (2006) and a bilinear 
program was prescribed there for the special case when 
the singular values of A are not less than one. The 
Equation (1) is a special case of the generalized absolute 
value system of equations of the type 
 

,bxBAx =+                                                             (2) 

 
which was introduced in Rohn (2004) where B is a 
square Matrix and further investigated in a more general 
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form in Mangasarian (2007, 2007a). The significance of 
the absolute value Equation (1) arises from the fact that 
linear programs, quadratic programs, bimatrix games and 
other problems can all be reduced to an linear 
complementarity problem (Cottle et al., 1992; 
Mangasarian, 1995).  Mangasarian (2007, 2009) has 
shown that the absolute value equations are equivalent to 
the linear complementarity problems. This equivalence 
formulation has been used by   Mangasarian (2007, 2009) 
to solve the absolute equation and the linear 
complementarity problem. If B is the zero matrix, then (2) 
reduces to system of linear equations ,bAx =  which 
have several applications in pure and applied sciences. 

In this paper, we suggest and analyze an iterative 
method for solving the absolute value Equations (1) using 
minimization technique. This new iterative method can be 
viewed as the modified Gauss-Seidel method for solving 
the absolute value equations (1). The modified method is 
faster than the iterative method in Noor et al. (2011). In 
the modified method, we form a sequence which updates 
two component of approximate solution at the same time. 
This method is also called the two-step method for 
solving the absolute value equations. We also give some 
examples to illustrate the implementation and efficiency 
of the new proposed iterative method. It is an open 
problem to extend this method for solving the generalized 
absolute value equations of the type (2).  This  is  another 
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direction for future research. It is well known that the 
complemetarity problems are equivalent to the variational 
inequalities. This equivalence may be used to extend the 
new iterative method for solving the variational 
inequalities and related optimization problems. The 
interested readers are advised to explore the applications 
of these new methods in different areas of pure and 
applied sciences. 

Let nR  be a finite dimension Euclidean space, whose 
inner product and norm are denoted by .,.  and .  

respectively. By 1, , n
k kx x x R∗

+ ∈ for any nonnegative 

integer ,k we denote the exact, current approximate and 
later approximate solution to (1) respectively. For 

,nRx ∈  sign(x), will denote a vector with components 
equal to 1,0,1 −  depending on whether the 
corresponding component of x is positive, zero or 
negative. The diagonal matrix ( )D x is defined as 

( ) ( ( ))D x x diag sign x= ∂ =  (Diagonal matrix 

corresponding to )(xsign ), where x∂ represent the 

generalized Jacobiean of x based on a subgradient 

(Polyak, 1987; Rockafellar, 1971). We consider A such 
that ( )kC A D x= − is positive definite.   If  , ( )kA D x  are 
symmetric matrices, then C is symmetric. For simplicity,  
we denote the following by 
 
�

1 1, , (1.3)a Cv v=                                                               (3)    
 

1 2 2 1, , , (1.4)c C v v C v v= =                                         (4) 
 

2 2, , (1.5)d C v v=
                                                              (5) 

 

�
1 1, (1.6)k kp Ax x b v= − −

                                               (6) 
 

2 2, , (1.7)k kp Ax x b v= − −
                                               (7) 

 
where  
 

1 2 ,  ( ) ( ( )) and note that ( ) , 0,1,2, .n
k k k k kv v R Dx diagsignx Dx x x k≠ ∈ = = = � 

 
We need the following Lemma of Jing et al. (2008).  
 
 
Lemma 
 
Let , ,a c d defined by Equations (1), (4) and (5) 
respectively satisfy the following conditions 

 
 
 
 

1 1 2 2, 0, , 0,a C v v d C v v= > = >  
 

then 
 

2 0.ad c− >          
 
 
NEW ITERATIVE METHOD 
 
Here, we use the technique of updating the solution in conjunction 
with minimization to suggest and analyze a new iterative method for 
solving the absolute value Equation (1), which is the main 
motivation of this paper. Using the idea and technique of Ujevic 
(2006) as extended by Noor et al. (2011), we now construct the 
iteration method.  For this purpose, we consider the function                   
 

( ) , , 2 , .f x Ax x x x b x= − −                           (8) 

 
and 
 

1 1 2.  = 0, 1, 2, ....k kx x v v kα β+ = + + for  

1 20, 0 , ,nv v R Rα β≠ ≠ ∈ ∈                                                (9) 
 
We use Equation (9) to minimize the function (8). That is, we have 
to show that  
 

1( ) ( ).k kf x f x+ ≤     
 
Now, using the Taylor series, we have 
 

 

�

( )
1 1 2

1 2 1 2 1 2

( ) ( )

1
( ), ( )( ), .

2

k k

k k k

f x f x v v

f x f x v v f x v v v v

α β

α β α β α β

+ = + +

′ ′′= + + + + +
  (10)       

 
Also, using Equation (8), we have  
 

� ( ) 2( ) (2.4)k k kf x Ax x b′ = − −                                               (11)  
 

( ) 2( ( )) 2 , (2.5)k kf x A D x C′′ = − =
                                               (12)              

 
And 
 

xxx =∂ ,  

 
From Equations (10) to (12), we have 
 
We have used the fact that ( ),kA D x−   

 
�

1 2 1 2 1 2 1 2

2
1 2 1 1

2
2 1 1 2 2 2

1 2

2 2
1 2 1 2 2 2

( ) ( ) 2 , ,

( ) 2 , 2 , ,

, , , .

( ) 2 , 2 ,

, 2 , , . (2.6)

k k k k

k k k k k

k k k k k

f x v v f x Ax x b v v Cv Cv v v

f x Ax x bv Ax x bv Cv v

Cv v Cv v Cv v

f x Ax x bv Ax x bv

Cv v Cv v Cv v

α β α β α β α β

α β α

αβ αβ β

α β

α αβ β

+ + = + − − + + + +

= + − − + − − +

+ + +

= + − − + − −

+ + +        (13) 
 
is symmetric for each  Equations k . Now from (1), (2),  (3),  (4),  (5) 



 
 
 
 
and (13), we have 
 
� 2 2

1 2 1 2( ) ( ) 2 2 2 .k kf x v v f x p p a c dα β α β α αβ β+ + = + + + + +             (14)                                                                      
 
We define the function  

2 2
1 2( , ) 2 2 2 .h p p a c dα β α β α αβ β= + + + +  To 

minimize ( , )h α β  in term of, ,α β ,   we proceed as follows 
 
�

12 2 2 0,
h

p c aβ α
α

∂ = + + =
∂                                                 (15)  

 

 
22 2 2 0.

h
p c dα β

β
∂ = + + =
∂                                                (16) 

 
Using Lemma, it is clear that ( , )h α β  assumes a minimal value 
because  
 

2 2 2
2

2 2 4( ) 0.
h h h

ad c
α βα β

� �� � � �∂ ∂ ∂− = − >� �� � � �∂ ∂∂ ∂� �� � � �
  

 
From Equations (15) and (16), we have 
 
� 2 1

2 , (2.10)
cp dp
ad c

α −=
−                                                                         (18) 

 
1 2

2 . (2.11)
cp ap
ad c

β −=
−                                                                          (19) 

 
From Equations (18), (19) and (14), we have 
 

2 2
1 2 1 2

1 2

2
( ) ( ) .k k

dp ap cp p
f x f x

ad c+
+ −− =

−
                           (20) 

 
We have to show that 1( ) ( ).k kf x f x +≥  If this is not true, then, 

for 0,a >  we have 
 

2 2
1 2 1 2

2 2 2 2
1 1 1 2

2 2
1

0 ( 2 )

( )

( ).

a dp ap cp p

adp c p cp ap

p ad c

> + −

= − + −

≥ −

 

 

This show that 2 0,ad c− <  which is impossible thus 

1( ) ( ).k kf x f x +≥  This complete the proof.  

We now suggest and analyze the iterative method for solving the 
absolute value equation.  
 
 
Algorithm 
 

Choose an initial guess nRx ∈0  to Equation (1) 
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2

2

1

For 1, 2, ,  do

1 

if 1 then  .  stop.

For 0, 1, 2, do

,

,

 do for 

Stopping criteria

 do for  .

i k k i

j k k j

j i
i

i j
i

k k i i i j

i n

j i

i j n

k

p Ax x b e

p Ax x b e

cp dp

ad c

cp ap

ad c

x x e e

i

k

α

β

α β+

=

= −

= =

=

= − −

= − −

−
=

−
−

=
−

= + +

�

�

 

 
In the algorithm, we consider ji evev == 21 , where j depends on 

, , 1, 2, , .i i j i n≠ = �  1j i= − for ,1>i  and nj =  when 

1.i = Here ji ee ,  denote the ith and jth column of identity matrix 

respectively. We now consider the convergence of the algorithm 
under the condition that 1( ) ( )k kD x D x+ = , where 

1 1( ) ( ( )), 0,1, 2, .k kD x diag sign x k+ += = �  

 
 
Theorem 1 
 

 If 1( ) ( )k kD x D x+ =  for some ,k  and f is defined by Equation 

(8), then (9) converges linearly to a solution x∗ of (1) in C-norm.   
 
 
Proof 
 
Consider 
 

2 2* * * * * *
1 1 1, ,k k k k k kC C

x x x x Cx Cx x x Cx Cx x x+ + +− − − = − − − − −  

* * * *
1 1 1 1

* * * *

1 1 1

, , , ,

, , , ,

, 2 , , 2 ,

k k k k

k k k k

k k k k k k

Cx x Cx x Cx x Cx x

Cx x Cx x Cx x Cx x

Cx x b x Cx x b x

+ + + +

+ + +

= − − + −

+ + −

= − − +
       

 

Where we have used the fact that C is symmetric and * .C x b=  
 

2 2* *
1 1 1 1 1

1

, 2 , [ , 2 , ]

( ) ( ).

k k k k k k k k k kC C

k k

x x x x Ax x x bx Ax x x bx

f x f x

+ + + + +

+

− − − = − − − − −

= −
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Table 1. Comarsion beween MGSM and IM 
 

Order 
No. of iterations (Prob. 1) No. of iterations (Prob. 2) 

MGSM IM MGSM IM 
10 3 4 4 7 
50 3 4 4 9 

100 4 5 4 8 
 

MGSM: Modified Gauss-Seidel method; IM: Iterative method. 
 
 
 
Using Equation (19), we have 
 

2 2

1 .k kC C
x x x x∗ ∗

+ − ≤ −  

 

This shows that { }kx  is a Fejer sequence. Thus we conclude the 

sequence { }kx converges linearly to ,x∗ in C -norm.                                

�  
 
In the next theorem, we compare our result with the iterative 
method of Noor et al. (2011) 
 
 
Theorem 2 
 
The rate of convergence of modified Gauss-Seidel method is better 
(at least equal) than the iterative method of Noor et al. (2011). 
 
 
Proof 
 
The iterative method (Algorithm) gives the reduction of (8) as 
  

a
p

xfxf kk

2
1

1)()( =− + .                                               (20) 

 
To compare Equations (19) and (20), subtract (20) from (19) we 
have 
 

2 2 2 2
1 1 1 2 1 1 2

2 2

2 ( )
0.

( )
dp ap cp p p cp ap

aad c a ad c
+ − −− = ≥

− −
 

 
Hence modified Gauss-Seidel method gives better than iterative 
method. In other words, the rate of convergence of modified Gauss-
Seidel method is better than iterative method.     
 

Remark: If 1 2 ,cp ap= then Algorithm 2.1 reduces to the iterative 
method of Noor et al. (2011). 
 
 
NUMERICAL RESULTS     
 
To illustrate the implementation and efficiency of the 
proposed method, we consider the following examples. 
 
 
Example 1  
 
Let A be a matrix whose diagonal elements are  500  and 

the non diagonal elements are chosen randomly from the 
interval [1, 2] such that A is symmetric. Let eIAb )( −=  
where I is the identity matrix of order n and e is 

1×n vector whose elements are all equal to unity such 

that Tx )1,,1,1( �= is the exact solution. The stopping 

criteria is 6
1 10k kx x −

+ − <  and the initial guess is 

.)0,,0,0(0
Tx �=    

 
 
Example 3.2 
 
Let the matrix A be given by 
 

, 1 1,4 , , 0.5, 1,2, , , 0,1,2, .ii i i i i i ja n a a n a i n k+ += = = = = =� �

 
Let eIAb )( −=  where I is the identity matrix of order n 
and e is 1×n vector whose elements are all equal to unity 

such that Tx )1,,1,1( �= is the exact solution. The 

stopping criteria is 6
1 10k kx x −

+ − < and the initial guess 

is equal to 0 1 2( , , , ) ,T
nx x x x= �  0.001* .ix i=  The 

numerical results are shown in Table 1. 
 
 
Conclusion 
 
In this paper, we have used the minimization technique to 
suggest an iterative method for solving the absolute value 
equations of the form .Ax x b− =  We have shown that 

the modified method is faster than the iterative method of 
Noor et al. (2011). We have also considered the 
convergence criteria of the new method under some 
suitable conditions. Some nunmerical examples are given 
to illustrate the efficiency and implementation of the new 
method for solving the absolute value equations. We 
remark that the absolute value problem is also equivalent 
to the linear variational inequalities. It is an open problem 
to extend this technique for solving the variational 
inequalities and related optimization problems. Noor 
(1988,   2004,  2009)  and  Noor  et  al.  (1993)  show  the 



 
 
 
 
recent advances in variational inequalities. 
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