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Efficient numerical validation of solution to nonlinear systems of equations using the Hansen-Sengupta 
method is the main focus of our studies. An extremely fast method due to (Uwamusi, 2007) is used to 
accelerate basic characteristic convergence of the method. This is not surprising because the 
midpoints and radii of the convergent interval vectors obtained are coupled sequence via the inclusion 
isotonicity of interval arithmetic which satisfied the filter net condition of a fixed point operator. We 
compare our results with those obtained using traditional real floating point of Newton method. The 
emphasis is on the rigor of the bounds. 
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INTRODUCTION  
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It is a common problem that given  
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are a box, we rigorously can verify that there exists a 
unique XX ∈∗ such that  
 

0)( =∗XF ,                                                                (1.1)                    
 
with a high yield of mathematical certainty.   

The basic mathematical tools used are the contraction 
mapping theorem, Brouwer fixed point theorem, and the 
Miranda’s theorem; see e.g., (Kearfott, 1998).  

To describe this we review the well known Miranda’s 
theorem: Miranda’s theorem asserts that if ,nIRX ∈  and 
that the faces of X be represented by  
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extension for f defined on X ID⊆ . Given that 
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For each ni ≤≤1 , then there is an 
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Central to the above, we review the following theorem 
due to (Kearfott, 1998): 
 
 
Theorem 1.1(Kearfortt, 1998) 
 

Assuming f is any natural extension of f, and x ∈ IR  is 
contained within the domain of f, then f(x) contains the 
range )(xf u  of f over x. 

Usually Newton’s method is often used to provide 
functional iterative steps to bound all solutions in a given 
domain of a mathematical problem even in the presence 
of nonlinearities, round off errors and uncertainty in the 
data. 

Interval Newton’s method as a gate way to many other 
numerical methods for nonlinear system abstractly can 
be written in the general form; 
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iteration;  
 

(^

X  is the newly estimated bound of x at the k-th iteration; 

The term )( )(kxF ′  is an interval extension of the 

Jacobian matrix 
i

i

x
xf

∂
∂ )(

 . 

Setting A= )(/ xF  where ��
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−=′′ AAA is the radius. The interval vector b can 

similarly be defined. We characterize the solution set of 
resulting linear interval system (1.2) by the interval hull. 
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Assuming that A is a regular interval matrix. 

The set 
 ),( bA  is generally not often an interval 

vector and need not even be convex, see e.g., 
(Neumaier, 1990). Thus 
 ),( bA  possesses a very 

 
 
 
 
complicated structure. Regularity of interval matrix A 
implies that every matrix AA ∈′ has rank n. 

The terms A′  and b′  vary over the bounded intervals 

such that ],[
−

−
∈′ AAA  and ],[

−

−
∈′ bbb  respectively. 

Let us note that computation of system (1.3) is always 
very expensive. Frequently used method is the Hansen –
Sengupta operator due to (Hansen and Gupta, 1981). 
The above expository discussion formed the basis of our 
research. 

The remaining sections in the paper are arranged as 
follows: In the section below, we give a review of circular 
interval arithmetic. 
 
 
THE CIRCULAR INTERVAL ARITHMETIC AND THE 
HANSEN-SENGUPTA METHOD 
 
We aim to accelerate the basic convergence 
characteristic of Hansen and Sengupta method earlier 
mentioned at the beginning of this paper. The idea is 
based on a fast interval method due to Uwamusi (2007). 

Here we shall adopt the approach to solve the Hansen-
Sengupta method. The improvement of this method is 
also our main focus of study. 
We consider two intervals ],[][ aaa ′′′=  and 

],[][ bbb ′′′=  where  a′  is the centre of [a] and a ′′  is the 
radius of [a].  The same explanation goes for interval [b]. 
The basic arithmetic operations for intervals are as follow: 
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We assumed that .0 D∉  
The inclusion isotonicity of ])([ aF is given as 

{ }.:])([])([ AaaFaf ∈⊇ given that 

])([ aF is a circular interval extension of a closed 
complex function over a disk 
A ])([ aFradAmidA ≤−∋ ])([])([ aradFAmidF +≤  

for all Aa ∈  and that ])([])([ aFaf ∈ . The disk to be 
inverted in the form of circular interval matrix 
[ ] { , }a a rij = ′ , where ′ >a r  is defined in an analogous 

manner due to Carstensen and Petkovic (1994): 
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The inverse operation above is bounded by the equations 
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We introduce the Hansen-Sengupta operator in a manner 
analogous to Hansen and Sengupta (1981) see also, 
(Goldsztejn, 2007) as follows: 
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Where for instance  
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is defined by 
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The hull of interval (Gauss-Siedel) is given by  
 

{ } ])[],[],([)(][()][(][ xbAbAxbbAAxxS Γ⊆=∈∃∈∈=         (2.6) 
 
This has wide ranging applications for instance in 
electrical Engineering, see e.g. (Nakaya et al., 2006) 
 
 
CONVERGENCE 
 
In what follows we state a theorem showing how Hansen-
Sengupta method can be used to improve the enclosure 
and existence of solutions. 
 
 
Theorem 3.1 (Goldsztejn, 2008) 
 

Let [x], [y], [z] ][, xxIRn ∈∈
−

 and nnIRA ×∈][  such that 
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(2.5), then  
 

(1) ][xx ∈  , and f(x) = 0 implies ][ /xx∈ . 

(2) If ⊆≠ ][ /xφ int[x] then f has a unique zero in ][ /x  . 
 
 
Definition 3.1 
 

A sequence ...),2,1,0()( =kx k  satisfying the inclusion  
( ) ( ) ( ) ( ) ...... 110 ⊇⊇⊇⊇⊇= +kk xxxxx  such that 
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0)(, =∈ ∗∗ xfxx , implies that ( ) ( ) 0≥∀∈∗ kxx k  is 

called strongly convergent if ( ) 0≠∞x  and this implies 

that ( ) 0)( =∞xrad  and ( ) 0)( =∞xf . 
Following Neumaier (1990) the convergence analysis 

of Hansen-Sengupta is implied by the following 
consideration; we first note that regularity of HA is implied 
by the identity 

ViAradHIBHA ]1,1[)(]1,1[ −+=−+==  centered 

about an identity matrix I, where V is defined by 
0)( ≥= AradHV . The matrix ],[ VIVIB +−=  is not 

only diagonally dominant but inverse positive and 
bounded below by a null matrix. Furthermore, the 
spectral radius is given as 1)( <Vρ . There exists a 

vector 0≥x  for which xxBrad ≥)(  for some x>0. It 

follows that xxBRadBBxVII <=−′=−+− )(]1,1[( .  

In addition, HA is an M-matrix which is regular since all 
M- matrices are regular. 

It follows from the system (2.3), that 
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the aforementioned facts, it is also valid that 
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−⊆∈ xHFHAz T  since the matrix THA)(  is thin 
and regular too. 

We have to show that the sequence generated by 
Hansen-Sengupta method satisfies the Cauchy condition. 
Let XXT →:  be a contraction map. There exist a 
constant η  such that 0<η <1. Let any positive number 

1≥k  be given and for any generated intervals: 
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Mathematical induction verifies that:  
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Moreover the generated interval sequence from Hansen-
Sengupta operator is also a completion for the sequence 
of interval vectors and in addition sum ably bounded by a 
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Table 1. Showing results for Hansen-Sengupta method with error bounds. 
 
Iterations Results 

Mid( kX ), Rad( kX ) 
∞

−
)( kXF  

0.358937022, 1.7095978 × 10-2 
0.600208287, 1.63819889 × 10-2 1 

0.808328540, 8.809388 × 10-3 
2.6257369 × 10-2 

0.336461223, 3.350353 × 10-3 
0.585636548,  2.417562 × 10-3 2 
0.801816087, 8.112458  × 10-3 

3.351703 × 10-3 

0.337953381, 3.4978 × 10-5 
0.585355878, 3.4033 × 10-5 3 
0.801709854, 1.5718 × 10-5 

2.18688 × 10-4 

0.337917117, 3.6264 × 10-5 
0.585289640, 6.6708 × 10-5 4 
0.801634504, 4.15 × 10-7 

3.1 × 10-8 

0.337917117, 4 × 10-9 
0.585289640, 7.305 × 10-12 5 
0.801634504, 1.9341 × 10-12 

0 

0.337917117, 0 
0.585289640, 0 6 
0.801634504, 0 

0 

 
 
 

Table 2. Showing results obtained by Neumaier 
(2001) when Newton method in point arithmetic 
is used. 
 

Iteration Results kX  
∞

)( kXF  

0.358333 
0.60000000 1 
0.8083333 

3.2× 10-2 

0.3386243 
0.5856949 2 
0.8018015 

1.09 × 10-3 

0.3379180 
0.5852901 3 
0.8016347 

1.57 × 10-06 

0.3379171 
0.5852896 4 
0.8016345 

2.84 × 10-12 

0.3379171 
0.5852896 5 
0.8016345 

5.55× 10-16 

0.3379171 
0.5852896 6 
0.8016345 

5.00 × 10-16 

 
 
 

Therefore we have that 
∞→k

lim 0)( =
−

kxHF  and, 

filter net condition of Cauchy sequence is satisfied. 
 
 
PRACTICAL EXAMPLE 
 
Consider the nonlinear system of equations: 
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Results are presented in Table 1 showing computed 
values for Hansen-Sengupta method. 
 
 
Conclusion 
 
We have obtained a method to accelerate the basic 
convergence behavior of Hansen-Sengupta method. We 
achieved this using the method of Uwamusi (2007). The 
results computed formed a coupled sequence converging 
to a fixed point as the width of the radii tends to zero. 
This convergence behavior is due to inclusion isotonicity 
enjoyed by interval arithmetic. This is ably represented in 
Table 1. In Table 2, we showed results obtained by 
Neumaier (2001) where in, he used ordinary floating point 
arithmetic of Newton method. Our results showed valida-
ted worst case error bounds for the solution of the 
nonlinear system of equations. 
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