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The effect of transverse magnetic field on the flow past an infinite vertical plate, immersed in a stably 
stratified fluid has been investigated. The non-dimensional governing equations are solved by Laplace 
transform technique. Numerical computations for velocity, temperature, plate heat flux and skin-friction 
are made for different values of the physical parameters and shown in graphs. Important observations 
due to the effect of thermal stratification is made and compared with the case of no stratification. It is 
observed that due to the application of transverse magnetic field on the flow, the steady state is 
reached at smaller times. 
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INTRODUCTION 
 
The unsteady natural convection flow of a viscous fluid 
adjacent to vertical plates is a fundam ental problem in 
fluid mechanics and heat transfer and is useful in several 
physical and engineering problems. The unsteadiness in 
the flow field is mainly caused either by time-dependent 
motion of the external stream or by impulsive motion of 
the external stream. The first closed form solutions for Pr 
= 1, in case of a step change in wall temperature with 
time was derived by Illingworth (1950) and for Pr ≠1; he 
derived the solution in integral form. Analytical solutions 
to the problem of flow past a semi infinite vertical plate 
under step change in plate temperature or plate heat flux 
was obtained by Siegel (1958), Menold and Yang (1962), 
Schetz and Eichhorn (1962) and Das et al. (1999). 
Goldstein and Briggs (1964) analytically studied the 
problem of transient free convection flow past an infinite 
vertical plate and introduced the idea of leading edge 
effect. In all these studies, pressure work and ambient 
thermal stratifications was not taken into consideration.  

Park  and  Hyun  (1998)  and  Park  (2001)  studied  the  
 
 
 
*Corresponding author. E-mail: anjanabs72@rediffmail.com. 
Tel: 09435348748. 
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one- dimensional natural convection of viscous stratified 
fluid. Shapiro and Fedorovich (2004) studied the 
unsteady convectively driven flow of a stably stratified 
fluid along a plate, taking pressure work and ambient 
thermal stratifications into account, while Magyari et al. 
(2006) restudied for a porous medium.  In their study, the 
pressure work term is included in the thermodynamic 
energy equation and makes a provision for vertical 
temperature stratifications.  

Magneto hydrodynamic (MHD) flow is related to 
engineering problems, such as plasma confinement, 
liquid-metal cooling of nuclear reactors, electromagnetic 
casting, etc. In all these applications, the presence of 
applied transverse magnetic field plays an important role. 
The effects of transversely applied uniform magnetic field 
on the flow past an  infinite vertical  oscillating plate with 
constant heat flux was analyzed by Soundalgekar et al. 
(1997). Researchers like Revankar (1983), Anwar (1998) 
and Sahoo et al. (2003) worked on MHD natural 
convection flow past vertical surfaces with different 
boundary conditions. Mixed convective MHD mass 
transfer flow past an accelerated infinite vertical porous 
plate was studied by Ramana et al. (2009). Chaudhary 
and Jain (2009) investigated MHD heat and mass 
diffusion flow by natural convection past a vertical plate in 
porous medium. Recently, effect of thermally stratified 
ambient fluid on  MHD  convective  flow  along  a  moving  
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non-isothermal vertical plate is studied by Gurminder et 
al. (2010). 

In this paper, we study the effect of transverse magnetic 
field on the flow of a convectively driven flow in a stably 
stratified fluid along a vertical plate. Here, in the 
thermodynamic energy equation, the pressure work term 
is included, taking the thermal stratification into account. 
The solutions are then obtained for Prandtl number of 
unity. The effects of parameters such as the magnetic 
parameter M, Grashof number Gr, stratification 

parameter γ and time t on velocity and temperature 
profiles are studied and shown on graphs. Effects of M, 

Gr, γ and t on other physical phenomenon like rate of 
heat transfer and the skin-friction (measure of shear 
stress) are also analyzed. 
 
 
MATHEMATICAL ANALYSIS  
 
We consider the flow of an electrically conducting, viscous fluid past 
an infinite vertical plate. The x´- axis is taken along the plate in 
vertically upward direction and y´- axis is taken normal to the plate 
in the direction of applied magnetic field. The fluid fills the region y´≥ 
0. Initially at time t´ ≤ 0, the fluid and the plate are in a stationary 
condition, that is, the fluid is quiescent until a uniform thermal 
disturbance at the plate at time t´ > 0 is imposed. Since the plate is 
considered infinite in x´ direction, hence all the physical variables 
will be dependent on y´ and time t´ only. Then the vertical equation 
of motion and energy equation are; 
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Here the term 
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advection termed as thermal stratification. Also, g/Cp is the rate of 
reversible work done on the fluid particles by compression, known 
as work of compression. As the work of compression is very small, 

the parameter γ ′  will be termed as thermal stratification parameter 

in our study. The work of compression is retained as additive one to 
thermal stratification for validating numerical models. For complete 
derivation related to thermal stratification and the work of 
compression, the readers are referred to Shapiro and Fedorovich 
(2004) and Ozisik (1994). 

The initial and boundary conditions are taken as: 
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Using quantities defined in 4 above, the Equations 1 and 2 take the 
following forms: 
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The corresponding boundary conditions are, 
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We now solve coupled linear Equations 5 and 6 for the tractable 
case of Pr = 1, subject to the initial and boundary conditions (7) by 
Laplace transform technique. The solutions are, 
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where A = 2/)4( 2
GrMM γ−+ , B =  

2/)4(
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GrMM γ−−  and ‘erfc’ is the complementary error 

function, defined by )(1)( xerfxerfc −=  with 
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The case, when pressure work is neglected and the environment 
is isothermal, is termed in our study as ‘Classical’ case for brevity, 
and then the solutions can be readily obtained from Equations 5 

and 6 using Equation 7 by setting γ = 0. The solutions 
∗∗ θ,u designated for ‘Classical’ case are then, 
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Figure 1. Variation of u ),( ty  at dimensionless distance y =1 

from the plate. Solid lines   represent   solutions   when   γ=1   

and   dotted   lines represent solutions for ‘Classical’ case (γ = 0).     
 
 
 
Steady-state solution 
 

In steady state, the time derivatives of u and θ are neglected. So, 
Equations 5 and 6 reduce to the forms, 
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Solving the above Equations subject to Condition 7, we obtain 
steady-state solutions for temperature and velocity as, 
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It can readily be seen that as ∞→t , the unsteady solutions 

given in (8) and (9) reduce to the solutions (14) and (15) above, 

using the property of complementary error function viz; erfc(−∞) =2  

and erfc(∞) = 0. 
 
 
SKIN-FRICTION  
 

Knowing the velocity field, we now study the effects of different 

parameters on the skin-friction (τ), which is the measure of shear 
stress on the wall. In non-dimensional form, it is given as, 
 

−=τ   

0=y
dy

du  

Deka and Bhattacharya          5833 
 
 
 
Using (9) we derive it as, 
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For ‘Classical’ case, skin friction is derived as, 
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The above expression shows that as t →∞, the skin-friction 
corresponding to 'Classical' case approaches a fixed value of 
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PLATE HEAT FLUX (NUSSELT NUMBER)   
 
Another physical phenomenon is the rate of heat transfer (Nusselt 
number), which in non-dimensional form is given by, 
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 From expression 8, it is obtained as, 
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  In ‘Classical’ case, Nu is given by, 
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which is independent of the magnetic field parameter M and Gr. It is 

also seen from expression 19 that, for large time as t →∞, the plate 
heat flux approaches  zero. On the other hand, in presence of 
stratification, the Nusselt number approaches a fixed value of  
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RESULT AND DISCUSSION 
 
In order to discuss the effects of various physical 
parameters on velocity field and temperature field, the 
numerical computations of the solutions, obtained in the 
preceding section have been carried out and they are 
plotted in Figures 1 to 4.  
  Figure 1 represents variation of velocity (u) against  time 
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Figure 2. Variation of ),( tyθ  at dimensionless distance y = 1 

from the plate. Solid lines represent solutions when γ = 1 and 

dotted lines represent solutions for ‘Classical’ case (γ = 0). 
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Figure 3. Velocity profiles for different values of M and Gr at time 

t = 0.5. Solid lines represent solutions  for   γ = 1 and  dotted  
lines represent  solutions  for ‘Classical’ case. 

 
 
 

t at a dimensionless distance y =1 from the plate for 
different values of M and Gr. It is observed that in the 

‘Classical’ case ( γ = 0), due to the application of 
transverse magnetic field, the velocity approaches steady 
state for larger time as the strength of the magnetic field 

decreases and Gr increases, while due to stratification (γ 
= 1), the steady state is reached earlier. Also, in absence 
of transverse magnetic field, velocity increases with time 
in ‘Classical’ case and no steady state is reached. It is to 
be noted that, in the  ‘Classical’  case,  the  expression  of  
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Figure 4. Temperature profiles for different values of M and Gr 

at time t =.5. Solid lines represent solutions for γ = 1 and dotted 
lines represent solutions for ‘Classical’ case. 

 
 
 

temperature (θ) is independent of M and Gr (Equation 
10). However, in our present study, in the presence of 
thermal stratification and pressure work, the temperature 
reaches steady state at larger time as M increases 
(Figure 2). On the other hand, temperature reaches a 
steady state at smaller time as Gr increases. Also, the 
temperature is more in ‘Classical’ case and increases 
gradually with time. The effect of M and Gr on the velocity 

profile is shown in Figure 3 for both cases of γ = 0 and γ ≠ 
0. It is observed that, velocity decreases as M increases 
and increases as Gr increases in both cases. This is 
attributed to the fact that application of transverse 
magnetic field produces a resistive type of force (Lorentz 
force), similar to drag force, thereby reducing flow 
velocity. Also, increase in Gr means buoyancy force 
dominates viscous force, thereby enhances fluid velocity. 
Furthermore, the velocity is more in the ‘Classical’ case. 
Because of the layering effect of stratification, this acts 
like a resistive force, leading to reduction in fluid velocity 
due to the presence of stratification. Figure 4 shows the 
effect of M on temperature in presence of stratification. It 
is observed that temperature increases as M increases, 
while it decreases with Gr. This happens because of the 
fact that for higher values of Gr, buoyancy force assists 
the flow by increasing fluid velocity and hence the heat is 
convected readily, thereby reducing fluid temperature. 
Again, increase in magnetic parameter decreases the 
fluid velocity; as a result, heat will not be convected 
readily. This in turn increases the fluid temperature. 

The effects of M, Gr and γ on the skin-friction are 

shown in Figure 5. It is observed that in both cases (γ = 0 
and γ ≠ 0), skin-friction increases for increasing M and 
decreasing Gr. A smaller value of Gr implies more 
prominent viscous effects causing an enhanced  frictional  
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Figure 5. Skin-friction profiles for different values of M, Gr and γ. Dotted lines 
represent solutions for ‘Classical’ case. 
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Figure 6. Nusselt number profiles for different values of M, Gr and γ. Dotted line 
represents solutions for ‘Classical’ case. 

 
 
 

force. However, in presence of transverse magnetic field, 
skin-friction decreases monotonically for smaller time and 
then approaches a finite negative value (see Equations 
16 and 17) as time progresses.   

The effect of M, Gr and γ on plate heat flux (Nusselt 
number) against time (t) is shown in Figure 6. It is 
observed that heat flux decreases gradually as time 
progresses. Also, Nusselt number decreases  (increases)  
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as M (Gr) increases. In Equation 19, it has been shown 
that for ‘Classical’ case, ‘Nu’ is independent of M and Gr. 
It is important to see that in ‘Classical’ case, plate heat 
flux decreases monotonically as time progresses. 
 
 
Conclusions 
 
We have studied the effect of the transverse magnetic 
field on the flow past an infinite vertical plate, immersed 
in a stably stratified fluid, where the energy equation is 
modified by introducing the work of compression term 
combined with thermal stratification. The solutions 
obtained in the present study are compared with the 
solutions for the ‘Classical’ case when the thermal 
stratification is absent. The conclusions of our study are 
as follows:  
Velocity decreases as M increases and increases as Gr 

increases for both the cases of  γ = 0 and γ ≠ 0. However, 
velocity is more in ‘Classical’ case as compared to the 
case of thermal stratification.   
Velocity reaches steady state at smaller time as M 
increases. 

 In presence of thermal stratification, temperature 
increases as M increases and decreases as Gr 
increases, while temperature is more in ‘Classical’ case. 
Temperature reaches steady state at smaller time when 
M is small. 
Skin-friction increases as time and M increases, but 
decreases as Gr increases. Also, skin-friction is more in 
presence of stratification. 

In presence of thermal stratification, the plate heat flux 
decreases as M increases and increases as Gr 
increases. However, in ‘Classical’ case, heat flux 
decreases monotonically as time progresses. 
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Nomenclatures: 
g

, Acceleration due to gravity (LT
-2

); 

Pr, Prandtl number; Gr, Grashof number; T ′ , 

temperature of fluid (K); rT , reference temperature; t ′ , 

dimensional time (T); u′ , dimensional velocity (LT
-1

); y′ , 

cartesian co-ordinate normal to the plate; οB , Strength of 

applied  magnetic   field;   M,   non-dimensional  magnetic  

 
 
    
 
parameter; u, dimensionless velocity; t, dimensionless 

time; ρ , density of the fluid (ML
-3

); θ , dimensionless 

temperature; ν , kinematic viscosity (L
2
T

-1
); ττττ ,  

dimensionless skin-friction; σ , electrical conductivity (L
-

2
T); α , thermal diffusivity (L

2
T

-1
); γγγγ´, stratification 

parameter (KL
-1

); γγγγ, dimensionless stratification 
parameter; Cp, specific heat at constant pressure (JKg

-1
K

-

1
). 

 
 
REFERENCES  
 
Anwar K (1998). MHD unsteady free convection flow past a vertical 

porous plate. ZAMM. 78: 255-270. 
Chaudhary RC, Jain A (2009). MHD heat and mass diffusion flow by 

natural convection past a surface embedded in a porous medium. 
Theoret. Appl. Mech. 36(1): 1-27. 

Das UN, Deka RK, Soundalgekar VM (1999). Transient free convection 
flow past an infinite vertical plate with periodic temperature variation. 
J. Heat Transfer. 121: 1091-1094. 

Goldstein RJ, Briggs DG (1964). Transient free convection about 
vertical plates and circular cylinders. Trans ASME C: J. Heat 
Transfer, 86: 490-500. 

Illingworth CR (1950). Unsteady laminar flow of a gas near an infinite 
plate. Proc. Camb. Phil. Soc., 46: 603-613. 

Magyari E, Pop I, Keller B (2006). Unsteady free convection along an 
infinite vertical flat plate embedded in a stably stratified fluid-
saturated porous medium. Transport in Porous Media, 62: 233-249. 

Menold ER, Yang KT (1962). Asymptotic solution for unsteady laminar 
free convection on a vertical plate. Trans ASME: J. Appl. Mech., 29: 
124-126. 

Ozisik MN (1994). Finite difference methods in heat transfer, CRC 
Press Inc. 

Park JS, Hyun JM (1998). Transient behavior of vertical buoyancy layer 
in a stratified fluid. Intl. J. Heat Mass Transfer, 41: 4393-4397. 

Park JS (2001). Transient buoyant flows of a stratified fluid in a vertical 
channel. KSME. Intl J. 15 : 656-664. 

Ramana Reddy GV, Ramana Murthy CV, Bhaskar Reddy N (2009). 
Mixed convection MHD flow and mass transfer past an accelerated 
infinite vertical porous plate. Math. Appl. Sci. Tech., 1(1): 65-74.  

Revankar ST (1983). Natural convection effects on MHD flow past an 
impulsively started permeable plate. Indian J. Pure Appl. Math. 14: 
530-539. 

Sahoo PK, Datta N, Biswal S (2003). Magnetohydrodynamic unsteady 
free convection flow past an infinite vertical plate with constant 
suction and heat sink. Indian J. Pure Appl. Math., 34(1): 145-155. 

Schetz JA, Eichhorn R (1962). Unsteady natural convection in the 
vicinity of a doubly infinite vertical plate. Trans ASME C: J. Heat 
Transfer, 84: 334-338. 

Shapiro A, Fedorovich E (2004). Unsteady convectively driven flow 
along a vertical plate immersed in a stably stratified fluid. J. Fluid 
Mech., 498: 333-352. 

Siegel R (1958). Transient free convection from a vertical flat plate. 
Trans. ASME., 80: 347-359. 

Gurminder S, Sharma PR, Chamkha AJ (2010). Effect of thermally 
stratified ambient fluid on MHD convective flow along a moving non-
isothermal vertical plate. Intl. J. Phy. Sci., 5(3): 208-215. 

Soundalgekar VM, Das UN, Deka RK (1997). Free convection effects 
on MHD flow past an infinite vertical oscillating plate with constant 
heat flux. Indian J. Math., 39:195-202 

 

 


