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The inverted exponential distribution is studied as a prospective life distribution. A two component
mixture of inverted exponential distribution is considered in this paper. The Bayes estimators and Bayes

posterior risk for the unknown parameters 91, 6?2 and mixing weight p of the mixture model are derived

under quadratic loss function. For comparative study of these Bayes estimates uniform, improper and
informative priors are considered. The Bayes and maximum likelihood estimators and Bayes posterior
risks are viewed as a function of the test termination time. As a special case, the limiting expressions for
these estimates are derived under the condition of infinite test termination time. Finally, a mixture data is
simulated and numerical study is given to illustrate the results.
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INTRODUCTION

In a statistical perspective for a given observation and its
estimation beside what risk we can expect for it, we may
be interested in which probability the corresponding loss
is going to occur. Quadratic loss function is a simple and
meaningful function for approximating the quality loss in
most situations. Berger (1985) discussed a number of
loss functions in the literature of statistical decision
theory. To study a population that is supposed to
comprise a number of subpopulations, a finite mixture of
some suitable probability distributions mixed in an
unknown proportion can be used. Everitt and Hand
(1981) discussed finit mixture models for different
probabiltiy distribution. Saleem and Aslam (2008a)
worked out on prior selection for the mixture of Rayleigh
distribution using predictive intervals. Saleem and Aslam
(2008b) considered a two component mixture of Rayleigh
distribution using uniform and jeffrey’s priors. Saleem and
Aslam (2009) also considered Bayesian analysis of

*Corresponding author. E-mail: myounas_m@yahoo.com.

Rayleigh survival time assuming random censor time.
Singh et al. (2010) find out Bayesian estimator of inverse
Gaussian parameters under general entropy loss function
using Lindley’s approximation. Gamma, lognormal and
inverse Gaussian distributions are commonly used
models in life testing in reliability studies. One of the
mentioned distributions can be used in many applications
if the failure is mainly due to aging or the wearing out
process. Sanku Dey (2007) considered the inverted
exponential distribution as a life distribution and studied it
from a Bayesian viewpoint. We consider the two
component mixture of inverted exponential distribution.

THE POPULATION AND MODEL

We consider a two component mixture of inverted
exponential distributions with unknown parameters 6, 9,

and unknown mixing weights p and q whereq =1 —p.
1

1
Let fi®) = 29, €XP (— E) and
f-(t) = iexp (— é);el,el,t > 0 be the density functions




of two inverted exponential distributions  with
parameters 8, and 6,, respectively, then the density

function of two component mixture with mixing weights ¥
and % can be written as:

f(t) =pfi(t) +qf2(2) (1)

The corresponding distribution function of the mixture
distribution is:

F(t) = pF(t) +qF (t)

2
F(f) =ex |'.._ ;| F.(f) = ex I'.. |
Where "~ P75 and ?L7 % are the
distribution functions of two inverted exponential

distributions with parameters %: and %, respectively.
The quadratic loss function can be defined as:

Lo(8.6)

z' =,

q:.|q:.:-
\'-\_o-"'

®3)

where ¢ is the estimate of parameter §

The Bayes estimate %2 of 8 under quadratic loss is
given by:
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And the corresponding posterior risk is given by:

SAMPLING

Let ™ units from the mixture model be employed to a life
testing experiment with a test termination time * . Let the
test be conducted and it is observed that out of ™, "
units have life time in the interval (%71 and ™ =7 units
are still working when the test termination time is over.
Suppose that ™ and ™ objects are identified as the
members of subpopulation | and I, respectively such that
¥ =7+ We define T/, the failure time of the /& unit

belonging to the ith  subgroup. Where J/ = 1.2 oum;
i=12; 0= .

Foo =T
Lgj =4

The likelihood function

The likelihood function for the given mixture distribution
can be written as:

N Eg ,::1___.EI.::
O =i
L e (4)
L(6,.6,.p:t) {l_-[-—‘l pfl( r‘l }}{H-—‘l af( r" }}{l —F(T) (6)
Where © & =p e (- q| +qemp (- T| It becomes:
160 prt) 5Bl 0* (*) () (2] (2) w2 e (-2)
Where
k I
a, =1 + Kk, bl.=fr'_r—i'J_#11k=51—?, _4:.=5:—F,
A =
Sy =Z— and 5, =Z
s Ty i s
j=1 - i=1 -
It can be written as:
¥ - ] R ;{ , w1 :I.l" 1 :I.F .ﬁi.:.'
L(0,8,p;t) = Hzézt-zfzc-(_l)d( 1 ”;]?—"E“ 'f?u"(_] (_] E"P( ]EEP(_ ]
LY H: rd ".'_.l' ".E.'_.l' ".E:.l' .'_ F N E:.") (8)
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Which is the likelihood function of the above mixture
distribution where ¥ is the normalizing constant.

99 XANCEOLI Y

)

L(6,,6,,p:t) =

Partially differentiating Equation 9 with respect to
6,,08,and p, respectively and equating to zero we get the
following expressions:

Aln iy Bo.pit)

(Deea(3) () e (=%

MAXIMUM LIKELIHOOD ESTIMATES (MLEs) OF
8.8, and p

Taking log on the both sides of Equation 6, we get:

Jexe (-%)

]

[

9)

1

or gin— 1'1&{p|——q —E{pl——j'

v m‘l JE{pl-T'—EE{pI

) (12)

The maximum likelihood estimates (MLES) of 6,,6,and p

=0 ) . .
Solving 28, can be obtained by solving Equations 10, 11 and 12
simultaneously. It is not possible to solve the above
p(n—r) exp [ —=) system of equations analytically. However, they can be
e — S ’p T5: - _ solved by numerical iterative procedures.
1 g T8, 1 ¥ axp I—T_'—r.' exp (~75-)) (10)
) _ EXPRESSION FOR THE BAYES ESTIMATORS USING
Ala Ll Bypit) _ 4 UNIFORM PRIOR
Similarly solvin a8,
y g Let us assume that 6,,0,and p are uniformly distributed
q(n—r) ex f_ over(0, ). Thus, their priors are g,(6;) < k;, g,(6,) < k,
— g =2 P\ Ts, and g;(p) = 1, respectively. Assuming the independence
z . 1 g,,1 5 axp ._'T-_“{p (==} of 8,,0,and p, the joint priori can be written as
ree (11) 9(6,,6,,p) « k. Using this joint prior and the likelihood
) function of Equation 8, the expression for the joint
SlnLlf, Hx.pit) _ 0 posterior distribution of ,, 8,and p can be written as:
i gy
Similarly from . P(Ep Epiﬂ'“j o L ('91: 8. p; f)ﬂ('g-p gy p)
- — 1 G & 1 z 147z _ A An
P(8y,0:,p18) o Z225 T o1 (M 1 7) (%) o a2 (2) (2)” exp(—%2) exp (— %)
P(6y.6:.p10) = KES oD% (") (Hpor % (2)7 ()" emp (- ) e (%) 5
where, ¥ is the normalizing constant. Solving this expression for £ we get:
1
K= — T
Leor E“_f—i " |"‘En.:—1u—1- SESNGTA
zo=i=o Lok TR
So, Equation 13 will become:
FrorwR oy (T (K )tk g P2 ) (2 )P esp [ —S2k) axp (—S2L
P Ig , 5',..” F — A= =e _ " -‘\'-'_ '-'\-I. _ wEag S = _ _ 5-—_.\-_ _ 5
(s, 62.219) A [ e ST 7aeies s (14)

Where B(.,.) and I'(.) are the beta and gamma functions.
Using the marginal posterior distributions of 6,, 8,and p,
the expressions for the Bayes estimates and their

corresponding posterior risks can be obtained.
Under the quadratic loss function, the Bayes estimates
are as follows:
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from following expressions:

The expressions for the posterior risks can be obtained

—~ —
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EXPRESSION FOR THE BAYES ESTIMATORS AND (as, by) and (a,, by), respectively whereas priori of p is
THEIR POSTERIOR RISKS USING INFORMATIVE beta with hyper parameters (a, b). Under the assumption
that 8,,0, and p are independently distributed, then, the

PRIORS
joint prior can be written as:

Let us assume that the prior distributions of 8, and 0, are
inverse gamma with hyper parameters

] e, +1 apt1 B, by
98 ) cp @ () () T exp (=) exp(-3) (1)

Using this joint informative priori and the likelihood of 6,,0, and p is as follows:

function of Equation 8, the joint posterior distribution

i b L [ L Lo (o (N e
P[Ev BEJ Tﬂlf) = '-."r'-.—i-,-?c : P — Ty =
Lpmp Lzl TN T LG Blag £1) FPEY: O
LFapl  LFeld (22)
Where ap=a,+a,f,=b+bay=nr+a,a, =1+ the expressions for the Bayes estimates and their
ay, P1x = Ay + by and B, = Ay + b,. corresponding posterior risks can be obtained.
Under the quadratic loss function, the Bayes estimates

Using the marginal posterior distributions of 6,,6, and p , are as follows:

b . i T ! (e =
Lt s & L0 L T Blay i
g TRER T Lok ANES pg L, 4En
I_ —_— Ll L
1| TT—T TR . i S A T Elay £
(o, +1 e E—137 7, | = =
Z A=0—L=D* LR L i o L +ITe o g
Pk LRt (23)
- P { e Q.
el 2 S 1 Ll (L | Blay B
Silr—p S =p i AN “m .r e _— g +1
== T in ~ Il
g, |t = e
rd e . - L — P PO LI F it
(o, +1) LI FE 1™ T e
b K=o i=p ™~ b ok JSugld fm L e g __..._:+..
WWagd WPzl (24)
. W R [P I8
FI=—ryr o _qyr(RT e Blay—-2.8)
Sp=p “=pt AN IR T -
__Iali_ _— W AR W RL
- B . . [
FRoT TR R BT R Blay—2.7
Shr=pSi=p ke J\a S, ARLr, ARz
Fapd L2 (25)
Expressions for the posterior risks are:
B i . . S e ST
'_1-.—:4-—:-'-—4 — b=y ik 2 Edp
Eme - - [P Zi7i T
: . B = 5,
bl i - ke PLo— o = L
P " | TEEnTiEm = S Ay i,
= _ L I
gl ) =11 —= ST 5
- -_.-1 li_i_-:r:f‘--\-_-\, _1 " i '_\_ --'- _\_'-- _
—— —_— - L .q _._1—_-ili _l.:
i [ =]
—r—
—r - — g5k TRk NERH]
1 =0 ~i=0 U 5 =4 5. T )
— > =
LY L= 1 L 2L (26)
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EXPRESSION FOR THE BAYES ESTIMATORS AND independence of these parameters, the joint priori can be
;::E(.I)RRS POSTERIOR RISKS USING IMPROPER  \yritten as g(6,,6,,p) “ﬁ' Combining this joint prior

with the likelihood function of Equation 8, the joint
Assuming the improper priors for 6,,6, and p such that posterior distribution will be as follows:

g1 & 9_11’ g2(63) 9_12 and g;(p) = 1. Using the

W 1o — e 1Y
L= I-'_.l .nl .

Spzp S[zp- A

P(8,,6,,p|t

E'R':I:'E?:EI\—‘]_..N[

(29)

corresponding posterior risks under quadratic loss

Using the marginal posterior distributions of 6,,08, and p,
function are as follows:

the expressions for the Bayes estimates and their

N in—pn iy Blap+ibi+a
N T | ol IR | s e B
K=p=i=p- 3 Nt e Ta+i. —.Tno
ST r = L) LAl
1| - s I PR L Blay+sbi+2
(ry+ 0 ERCTEE (=077 T T ———
= * E=0 L=o* L S W _.ﬁ. T ‘.:_,é L
SELRS SIS (30)
nn ST P TE A TE Blay+1bp+1
Lp=pd= T ) Vit Ty Tg L
é h-'-' - hl'-
|I- _ L i
- -
= ; on-Tok . J<kfm-Ti kY Blagtidp+e
R I DI I S 1 b | = L O
s =R =20 o AWl T4 o+l

gt Al (31)
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n—r ek kfm—ry Elap.bp+a
D DI o Il =t —
=0 L=o~ LR Fo—2L1. Fo—4
-'\.li_ - LS8a |
P - ., e e T T Elgw—=oB+2]
LR E (T ) - ==
LBy s TR (32)
The expressions for the posterior risks can be obtained from following expressions:

- y . . I <9
pwyTRoTTE o E(mor (k) __BlagFaopea)
faTelbpmp ez T L g SN s, AT+ Tz

~ MARapt — LAgL) T
] TR-TTH k(-7 (R Bla, +1b;+1
r=0 =0 X i :.ﬁ.-.-'-.l_:.ﬁl..-_' [l
p(8ylt) =[1-7 - o Elageiisd
T (. I-,-E’-_—:-’-.—-"_ . |;" M—T % K ..-\.":+_|'.'| + 4
falraTelipopsizpl TS i Apd s, ATatZ., aTa
VoA Al T
] en—rek . gin-ryp) Eldp it J
=HZ-D=L=D - k [ LI - £
al IF- |&aq7

L b SR a1 il (33)

[ ) '.n. & e PR <
| ropay TR-TTE . HA=Tk EBlagp+sbi+z ]
R e s T et ] - K [Fre 1Tars yz4a

ASafe) “lAgp) 1
] en-rek L.k E'-“R"'i b-+1
= TREeTEEE M R M AL MAg)
p(fslt) =|1-7 : Py
- Folre+0 TR-TRE k(=T R Gpt+iap+i)
rzirz T el spsmpsizeT Y L K id e, Tar, =To+i
~ AAapt 1Ay
] TA—T T ,_,-k(M-Tk Blag+ibp+s J
“R=0D*=L=D = K 7 T4 -, =
B l&8nT
L L in SATL i (34)
B ' N o T
T TR R
|_r|:=l:"_'.=l:"' =Lk
TI—T TR o R[TT
Sh=p ==t TN B OSNLF ra
=5 — A L
e(Blt) =1 — 77— —
L TR — I":-u'._—u I
Sh=p ==Y L K
oL — T TR an k[T
Sp=p Sl=ph T T k
L L A (35)

THE LIMITING EXPRESSIONS Expression for maximum likelihood estimates

When the sample is uncensored, T — o, 1, - ny,r, > Using the likelihood function of Equation 36, the limiting
n, and r - n consequently all the observations are expression for the MLEs of 6,6, andp, respectively
incorporated in the sample thus, we get maximum becomes as follows:

information for analysis. In this case, the likelihood

function of the mixture model become:

L8y 8 pit) ocp™ ™ (o) (5-) exp(—2t)exn (- )



g, =%
e (37)
g, ==
T 38)
et (39)
where 5, = E’:";iT and S, = E.——i
And their corresponding variances are:
ar(8,) =5
my (40)
‘A 5
var|f,) ==
(6)=2 -

(42)

Expression for the Bayes estimates using uniform
prior

Assuming that 6,, 8, and p are uniformly distributed over
(0, ), the joint prior distribution of these parameters can
be written as g(0,,6;,p) < c, where ¢ is some constant.
Using this prior with likelihood of Equation 36, the joint
posterior distribution of 8,,6, and p can be written as
follows:

=kpmqn () () Tesp (5o (—3) (43)

P(6,,8,.m;:1)

P(8,,8,,p;t) = Kp“? 51 (Ei] .

where a =nq +
=5,

I.'l

1
T'(aq)T(a2)
B@ B Ggydigey @

Thus, the limiting expressions for the Bayes estimates
of 6,0, and p are, respectively as follows:

The value of normalizing constant is K =

= A
81 B @y 1 (51)
g =L

- I:':—'.I. (52)

a ,8 n, +b,a, =n; +
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Where K is the normalizing constant. Thus, the limiting
expressions for the Bayes estimates of 6,,6, and p are:

g, ==
ton (44)
g, ==
- p (45)
- n,—1
P e, (46)

And their corresponding posterior risks are:

Fy=21

p(8y) = s )
gy=21

P(62) = .
AN — 4 (n,—1)(n, +n, +1)

p(p)=1 P )

respectively.

Expression for the Bayes estimates using informative
prior

Assuming the informative priors for 6,, 8, and p such that
6, and 6, are independently distributed as inverse
gamma with hyper parameters (aq, b;) and (a,,b,),
respectively and p is distributed as beta with hyper
parameters(a, b), then, using the joint prior distribution
of 6,,0, and p from Equation 21 and the likelihood of
Equation 36, the joint posterior distribution can be written
as:

i o1 ) _i ) B
&) e (-2 e (-2)

Sy + byand f5,

p=——"
(a+p-2) (53)

And their corresponding posterior risks are:

1
&, +1 (54)

F‘(gi:' =

5 1
o(8,) = o (55)
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Table 1. Bayes estimates of [ 8)_1 and their posterior risks (in
brackets) with different sample size.

Prior
Uniform Informative Improper
n
100 11.7468 10.33069 11.4294
(0.02777) (0.02381) (0.02703)
200 11.10802 10.41245 10.95991
(0.01351) (0.01250) (0.01333)
300 10.63034 10.17922 10.53543
(0.00901) (0.00855) (0.00893)
400 10.64432 10.29881 10.57240
(0.00680) (0.00654) (0.00676)

Table 2. Bayes estimates of [ 8)_2 and their posterior risks (in
brackets) with different sample size.

Prior
Uniform Informative Improper
n
100 13.7567 12.49151 13.5383
(0.01613) (0.01449) (0.01587)
200 14.04008 13.35332 13.92686
(0.00813) (0.00769) (0.00806)
300 13.44101 13.00243 13.36953
(0.00535) (0.00515) (0.00532)
400 13.26822 12.93930 13.21494
(0.00403) (0.00392) (0.00402)
- (E—2)e+8-1)
By =1 — - 4 )
p[pj (e—1)(ae +8-2) (56)

Expression for the Bayes estimates using improper
prior

Assuming the independent improper priors

for 6,, 6, and p such that g1 X ei, g2(03) ei
1 2

and g;(p) =1, the joint priori can be written as

1
g(gl' 82! p) X E

Combining this joint prior with the likelihood of Equation

36, the joint posterior distribution of 8,,0, and p given
data can be written as:

poaflgties gt oS p Sy
n gt — = expl == expl ===
P(Bp '9:1;’5'.: f:l = — T )
Bingtlmtl =
g g e (57)

Thus, the limiting expressions for the Bayes estimates
of 6,0, and p using Equation 57 are, respectively as
follows:

6, ==
Tomnt (58
g, ==
= mghl (59)
ﬁ — n,—1

Hy Ay (60)

gy =
o(8y) g +1 61)

b 1

g.y =
P( ng+l (62)

(63)

NUMERICAL EXAMPLE
We take a random sample of size n =100 from the
mixture of two component inverted exponential

distribution truncated at T = 10. To generate a mixture
data, we make use of probabilistic mixing with probability
p and 1 —p taking p = 0.375. A uniform number v’ is
generated 1000 times and if u < p, the observation is
taken from F; (the inverted exponential distribution with
parameter 8, = 10) and from F, (the inverted exponential
distribution with parameter 6, = 13) otherwise. As one
data set does not help to clarify the performance of
method, we simulate this procedure 1000 times. Also,
different sample sizes are considered and the values of
Bayes estimates and their posterior risks are obtained. A
comparison of the estimates for
n = 100,200,300 and 400 are shown in Tables 1 to 3.

Bayes estimators with different truncation time

Different truncation times are considered as well and the
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Table 3. Bayes estimates of p and their posterior risks (in brackets) Table 5. Bayes estimates of [ 8)_2 and their posterior risks (in

with different sample size. brackets) with different truncation time T.

Prior Prior
Uniform Informative Improper Uniform Informative Improper
n T

100 0.34347 0.34295 0.34348 10 13.44102 13.00243 13.36952
(0.01825) (0.01731) (0.01825) (0.00535) (0.00516) (0.00532)
200 0.35989 0.35915 0.35990 20 13.44132 13.00271 13.36982
(0.00866) (0.00844) (0.00866) (0.00535) (0.00515) (0.00532)
300 0.36438 0.36378 0.36438 20 13.44141 13.00281 13.36992
(0.00573) (0.00563) (0.00573) (0.00535) (0.00515) (0.00532)
400 0.36074 0.36035 0.36075 20 13.44147 13.00286 13.36997
(0.00435) (0.00430) (0.00435) (0.00535) (0.00515) (0.00532)
50 13.44150 13.00289 13.37000
(0.00535) (0.00515) (0.00532)

Table 4. Bayes estimates of [ 8)_1 and their posterior risks (in
brackets) with different Truncation time T.

- 13.3021 12.8707 13.2317
Prior (0.00532) (0.00513) (0.00529)
Uniform Informative Improper
T
10 10.63034 10.17922 10.53543 Table 6. Bayes estimates of p and their posterior risks (in brackets)
(0.00901) (0.00855) (0.00893) with different truncation time T.
20 1063165  10.18046 1053673 Frior _ _
(0.00901) (0.00855) (0.00893) , Uniform Informative Improper
30 10.63210 10.18088 10.53717 10 0.36438 0.36378 0.36438
(0.00901) (0.00855) (0.00893) (0.00573) (0.00563) (0.00573)
40 10.63232 10.18109 10.53739 20 0.36431 0.36371 0.36431
(0.00901) (0.00855) (0.00893) (0.00573) (0.00563) (0.00573)
50 10.63246 10.18122 10.53752 30 0.36428 0.36368 0.36428
(0.00901) (0.00855) (0.00893) (0.00573) (0.00563) (0.00573)
10.4629 10.0241 10.3703 40 0.36427 0.36367 0.36427
(0.00893) (0.00847) (0.00885) (0.00573) (0.00563) (0.00573)
50 0.36427 0.36367 0.36427
(0.00573) (0.00563) (0.00573)
values of Bayes estimates and their posterior risks are
obtained. A comparison of .the estimates for T = 0.3700 0.36928 0.3700
10, 20, 30,40 and 50 are shown in Tables 4 to 6. ® (0.00562) (0.00553) (0.00562)
Limiting expressions for Bayes and ml estimators CONCLUSION
Numerical results for limiting expressions (that is, as In real life phenomena, the importance of mixture models

T — ) of Bayes and MLEs are shown in Tables 7 to 9. is un-deniable. In addition to the advantage of additional
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Table 7. Bayes and ML estimate of 6_1 and their posterior risks (in
brackets) with different sample size (limiting case that is, T—<).

Prior

Uniform Informative  Improper MLE
n

100 9.30329 8.28466 9.06474 9.30329
(0.02632) (0.02273) (0.02564)  (2.27766)

200 10.8184 10.1528 10.676 10.8184
(0.01333) (0.01234) (0.01316)  (1.5605)

300 10.4629 10.0241 10.3703 10.4629
(0.00893) (0.00847) (0.00885)  (0.97744)

400 10.5127 10.1789 10.4431 10.5127
(0.00667) (0.00641) (0.00662)  (0.73677)

Table 8. Bayes and ML estimate of 6_2 and their posterior risks (in
brackets) with different sample size (limiting case that is, T—).

Prior

Uniform  Informative Improper MLE
n

100 13.5314 12.2891 13.31660 13.5314
(0.01613) (0.01449) (0.01587) (2.95319)

200 13.3904 12.7485 13.2841 13.3904
(0.0080) (0.00758) (0.00794) (1.43442)

300 13.3021 12.8707 13.2317 13.3021
(0.00532)  (0.00513) (0.00529)  (0.94119)

400 13.1532 12.8299 13.1008 13.1532
(0.0040) (0.00389) (0.00398) (0.69202)

Table 9. Bayes and ML estimate of p and their posterior risks with
different sample size (limiting case that is, T—).

Prior

Uniform  Informative Improper MLE
n

100 0.3700 0.36792 0.3700 0.38000
(0.01658) (0.01580) (0.01658)  (0.00236)

200 0.3700 0.36893 0.3700 0.3750
(0.0084) (0.00820) (0.0084) (0.00117)

300 0.3700 0.36928 0.3700 0.37333
(0.00562) (0.00553) (0.00562)  (0.00078)

400 0.3725 0.37192 0.3725 0.3750
(0.00418) (0.00413) (0.00418)  (0.00059)

information provided by prior distributions in Bayesian
statistics, another advantage of Bayes estimates over the
MLEs is that they can be easily evaluated for the mixture
models. Whereas, MLE can only be obtained by some
iterative procedures for mixture models. Furthermore
from Tables 1, 2 and 3, it is clear that the Informative
priors provide more accurate and efficient Bayes
estimates than those of the uniform and improper priors.
Also, an increase in sample size provides us improved
estimates. Tables 4, 5 and 6 show that as the test
termination time is increased, estimates become closer to
the real parametric value with an increase in efficiency as
well. Which also supports the theory that as test
termination time is increased more observations are
incorporated in the sample and thus, more information
sample contains. Finally, it is also clear from Tables 7, 8
and 9 that the limiting expressions for the Bayes
estimates using Informative prior outperformed the MLEs
as well.
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