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The inverted exponential distribution is studied as a prospective life distribution. A two component 
mixture of inverted exponential distribution is considered in this paper. The Bayes estimators and Bayes 

posterior risk for the unknown parameters 1 , 2  and mixing weight p  of the mixture model are derived 

under quadratic loss function. For comparative study of these Bayes estimates uniform, improper and 
informative priors are considered. The Bayes and maximum likelihood estimators and Bayes posterior 
risks are viewed as a function of the test termination time. As a special case, the limiting expressions for 
these estimates are derived under the condition of infinite test termination time. Finally, a mixture data is 
simulated and numerical study is given to illustrate the results.  
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INTRODUCTION 
 
In a statistical perspective for a given observation and its 
estimation beside what risk we can expect for it, we may 
be interested in which probability the corresponding loss 
is going to occur. Quadratic loss function is a simple and 
meaningful function for approximating the quality loss in 
most situations. Berger (1985) discussed a number of 
loss functions in the literature of statistical decision 
theory. To study a population that is supposed to 
comprise a number of subpopulations, a finite mixture of 
some suitable probability distributions mixed in an 
unknown proportion can be used. Everitt and Hand 
(1981) discussed finit mixture models for different 
probabiltiy distribution. Saleem and Aslam (2008a) 
worked out on prior selection for the mixture of Rayleigh 
distribution using predictive intervals. Saleem and Aslam 
(2008b) considered a two component mixture of Rayleigh 
distribution using uniform and jeffrey’s priors. Saleem and 
Aslam   (2009)   also   considered   Bayesian  analysis  of 
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Rayleigh survival time assuming random censor time. 
Singh et al. (2010) find out Bayesian estimator of inverse 
Gaussian parameters under general entropy loss function 
using Lindley’s approximation. Gamma, lognormal and 
inverse Gaussian distributions are commonly used 
models in life testing in reliability studies. One of the 
mentioned distributions can be used in many applications 
if the failure is mainly due to aging or the wearing out 
process. Sanku Dey (2007) considered the inverted 
exponential distribution as a life distribution and studied it 
from a Bayesian viewpoint. We consider the two 
component mixture of inverted exponential distribution. 
 
 
THE POPULATION AND MODEL 
 
We consider a two component mixture of inverted 
exponential distributions with unknown parameters   ,     

and unknown mixing weights   and   where      . 

Let       
 

    
     

 

   
  and 

       
 

    
     

 

   
 ;          be  the  density  functions 



 
 
 
 
of two inverted exponential distributions with 
parameters    and   , respectively, then the density 

function of two component mixture with mixing weights  

and  can be written as: 
 

                                           (1)   
 
The corresponding distribution function of the mixture 
distribution is: 
 

   (2) 
 

Where  and  are the 
distribution functions of two inverted exponential 

distributions with parameters and , respectively. 
The quadratic loss function can be defined as: 
 

    (3) 
 

where  is the estimate of parameter   

The Bayes estimate  of θ under quadratic loss is 
given by: 
 

                                                        (4)  
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And the corresponding posterior risk is given by: 
 

         (5)  
 
 
SAMPLING 
 

Let  units from the mixture model be employed to a life 

testing experiment with a test termination time . Let the 

test be conducted and it is observed that out of ,  

units have life time in the interval  and  units 
are still working when the test termination time is over. 

Suppose that  and objects are identified as the 
members of subpopulation I and II, respectively such that

. We define , the failure time of the unit 

belonging to the  subgroup. Where ;

 
 
 
The likelihood function 
 
The likelihood function for the given mixture distribution 
can be written as: 
 
    

                                (6)
 
 

Where  
 
 

 
 
It becomes:  
 
 

         (7) 
 
 
Where 
 

 
 
It can be written as:  
 

)       (8)
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Which is the likelihood function of the above mixture 

distribution where  is the normalizing constant. 
 
 

 

 
 
 
 
MAXIMUM LIKELIHOOD ESTIMATES (MLEs) OF 

 
 

Taking log on the both sides of Equation 6, we get: 

           (9) 
 
 

Partially differentiating Equation 9 with respect to 
          ,

 
respectively and equating to zero we get the 

following expressions: 

 

Solving  

 

          (10) 

 

Similarly solving  
 

  (11) 

 

Similarly from  
 
 
 

 

(12) 
 
The maximum likelihood estimates (MLEs) of            
can be obtained by solving Equations 10, 11 and 12 
simultaneously. It is not possible to solve the above 
system of equations analytically. However, they can be 
solved by numerical iterative procedures.  
 
 

EXPRESSION FOR THE BAYES ESTIMATORS USING 
UNIFORM PRIOR 
 
Let us assume that            are uniformly distributed 

over     . Thus, their priors are          ,           

and        , respectively. Assuming the independence 
of           , the joint priori can be written as 

            . Using this joint prior and the likelihood 
function of Equation 8, the expression for the joint 
posterior distribution of            can be written as: 
 

 
 

 
 

          (13) 
 
 

where,  is the normalizing constant. 
 

Solving this expression for  we get: 

 
 

So, Equation 13 will become: 
 

         (14) 
 

 

Where                 are the beta and gamma functions.  

Using the marginal posterior distributions of           , 
the   expressions   for   the   Bayes   estimates   and  their 

corresponding posterior risks can be obtained. 
Under the quadratic loss function, the Bayes estimates 

are as follows: 
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            (15) 
 

                    (16) 
 

                   (17) 
 
 
The expressions for the posterior  risks  can  be  obtained from following expressions: 
 
 

   (18) 
 

   (19) 
 

          (20)
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EXPRESSION FOR THE BAYES ESTIMATORS AND 
THEIR POSTERIOR RISKS USING INFORMATIVE 
PRIORS 
 
Let us assume that the prior distributions of           are 
inverse gamma with hyper parameters 

 
 
 
 
                     , respectively whereas priori of   is 

beta with hyper parameters      . Under the assumption 

that             are independently distributed, then, the 
joint prior can be written as: 

 

                                   (21) 
 
Using this joint informative priori and the likelihood 
function  of   Equation  8,   the  joint  posterior  distribution 
 
 

of             is as follows: 
 

         (22) 
 
Where                                 
                            .  
 
Using the marginal posterior distributions of             ,  
 
 

 
the expressions for the Bayes estimates and their 
corresponding posterior risks can be obtained. 

Under the quadratic loss function, the Bayes estimates 
are as follows: 
 

           (23) 
 

            (24) 
 

                       (25) 
 
Expressions for the posterior risks are: 
 
 

 (26) 
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 (27) 
 

(28) 
 
 
EXPRESSION FOR THE BAYES ESTIMATORS AND 
THEIR POSTERIOR RISKS USING IMPROPER 
PRIORS 
 
Assuming the improper priors for             such that 

   
 

  
,        

 

  
 and          Using the  

 

independence of these parameters, the joint priori can be 

written as            
 

    
. Combining this joint prior 

with the likelihood function of Equation 8, the joint 
posterior distribution will be as follows: 
 

 
 

         (29) 
 
 
Using the marginal posterior distributions of              , 
the expressions for the Bayes estimates and their  

 
 
corresponding posterior risks under quadratic loss 
function are as follows: 

 
 

             (30) 
 
 
       

        (31) 
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                      (32) 
 
              
The expressions for the posterior risks can be obtained  
 

 
from following expressions: 
 

 

(33) 
 

(34) 
 

(35)

 

 
 
THE LIMITING EXPRESSIONS 
 
When the sample is uncensored,     ,          
            consequently all the observations are 
incorporated in the sample thus, we get maximum 
information for analysis. In this case, the likelihood 
function of the mixture model become: 
 

Expression for maximum likelihood estimates 
 
Using the likelihood function of Equation 36, the limiting 
expression for the MLEs of              , respectively 
becomes as follows: 
 
 

 
 

 (36)



 
 
 
 

   (37)  
 

     38) 
 

   (39) 
 

  
 
And their corresponding variances are: 
 

    (40) 
 

     (41) 
 

   (42) 
 
 
Expression for the Bayes estimates using uniform 
prior 
 
Assuming that             are uniformly distributed over 
     , the joint prior distribution of these parameters can 

be written as             , where   is some constant. 
Using this prior with likelihood of Equation 36, the joint 
posterior distribution of             can be written as 
follows: 
 

  (43) 
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Where   is the normalizing constant. Thus, the limiting 

expressions for the Bayes estimates of              are: 
 

    (44)  
 

   (45) 
 

   (46) 
 

And their corresponding posterior risks are: 
 

    (47)  
 

     (48) 
 

  (49) 
 

respectively. 
 
 
Expression for the Bayes estimates using informative 
prior 
 
Assuming the informative priors for              such that 

            are independently distributed as inverse 

gamma with hyper parameters                       , 
respectively and  

 
is distributed as beta with hyper 

parameters     , then, using the joint prior distribution 

of             from Equation 21 and the likelihood of 
Equation 36, the joint posterior distribution can be written 
as: 

(50) 
 

 
 
 

The value of normalizing constant is   
 

        
          

    
      

  

 

Thus, the limiting expressions for the Bayes estimates 
of             are, respectively as follows: 
 

                                           (51) 
 

                                         (52) 

          (53) 

 
And their corresponding posterior risks are: 

 

               (54) 

 

   (55) 
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Table 1. Bayes estimates of 〖 θ〗_1 and their posterior risks (in 
brackets) with different sample size. 
 

    Prior 

 

n 

Uniform Informative Improper 

100 
11.7468 

(0.02777) 

10.33069 

(0.02381) 

11.4294 

(0.02703) 

    

200 
11.10802 

(0.01351) 

10.41245 

(0.01250) 

10.95991 

(0.01333) 

    

300 
10.63034 

(0.00901) 

10.17922 

(0.00855) 

10.53543 

(0.00893) 

    

400 
10.64432 

(0.00680) 

10.29881 

(0.00654) 

10.57240 

(0.00676) 

 
 
 
Table 2. Bayes estimates of 〖 θ〗_2 and their posterior risks (in 
brackets) with different sample size. 
 

Prior 

 

n 

Uniform Informative Improper 

100 
13.7567 

(0.01613) 

12.49151 

(0.01449) 

13.5383 

(0.01587) 

    

200 
14.04008 

(0.00813) 

13.35332 

(0.00769) 

13.92686 

(0.00806) 

    

300 
13.44101 

(0.00535) 

13.00243 

(0.00515) 

13.36953 

(0.00532) 

    

400 
13.26822 

(0.00403) 

12.93930 

(0.00392) 

13.21494 

(0.00402) 

 
 
 

  (56) 

 
 
Expression for the Bayes estimates using improper 
prior 

 
Assuming the independent improper priors 

for             such that     
 

  
,        

 

  
  

and         , the joint priori can be written as 

           
 

    
. 

 
Combining this joint prior with the  likelihood  of  Equation 

 
 
 
 
36, the joint posterior distribution of             given 
data can be written as: 
 

(57) 
 
Thus, the limiting expressions for the Bayes estimates 
of             using Equation 57 are, respectively as 
follows: 
 

     (58 
 

     (59) 
 

     (60) 
 
And their corresponding posterior risks are: 
 

     (61) 
 

     (62) 
 

   (63) 

 
 
NUMERICAL EXAMPLE 

 
We take a random sample of size        from the 
mixture of two component inverted exponential 
distribution truncated at      . To generate a mixture 
data, we make use of probabilistic mixing with probability 
  and     taking         . A uniform number     is 

generated      times and if    ,
 
the observation is 

taken from    (the inverted exponential distribution with 
parameter      ) and from    (the inverted exponential 

distribution with parameter      ) otherwise. As one 
data set does not help to clarify the performance of 
method, we simulate this procedure      times. Also, 
different sample sizes are considered and the values of 
Bayes estimates and their posterior risks are obtained. A 
comparison of the estimates for 
                      are shown in Tables 1 to 3. 

 
 
Bayes estimators with different truncation time 

 
Different truncation times are considered  as  well and the 



 
 
 
 
Table 3. Bayes estimates of p and their posterior risks (in brackets) 
with different sample size.  
 

Prior 

 

n 

Uniform Informative Improper 

100 
0.34347 

(0.01825) 

0.34295 

(0.01731) 

0.34348 

(0.01825) 

    

200 
0.35989 

(0.00866) 

0.35915 

(0.00844) 

0.35990 

(0.00866) 

    

300 
0.36438 

(0.00573) 

0.36378 

(0.00563) 

0.36438 

(0.00573) 

    

400 
0.36074 

(0.00435) 

0.36035 

(0.00430) 

0.36075 

(0.00435) 

 
 
 
Table 4. Bayes estimates of 〖 θ〗_1 and their posterior risks (in 
brackets) with different Truncation time T. 
 

Prior 

 

  

Uniform Informative Improper 

10 
10.63034 

(0.00901) 

10.17922 

(0.00855) 

10.53543 

(0.00893) 

    

20 
10.63165 

(0.00901) 

10.18046 

(0.00855) 

10.53673 

(0.00893) 

    

30 
10.63210 

(0.00901) 

10.18088 

(0.00855) 

10.53717 

(0.00893) 

    

40 
10.63232 

(0.00901) 

10.18109 

(0.00855) 

10.53739 

(0.00893) 

    

50 
10.63246 

(0.00901) 

10.18122 

(0.00855) 

10.53752 

(0.00893) 

    

∞ 
10.4629 

(0.00893) 

10.0241 

(0.00847) 

10.3703 

(0.00885) 

 
 
 
values of Bayes estimates and their posterior risks are 
obtained. A comparison of the estimates for   
                   are shown in Tables 4 to 6. 

 
 
Limiting expressions for Bayes and ml estimators 

 
Numerical results for limiting expressions (that is, as 
   ) of Bayes and MLEs are shown in Tables 7 to 9.  
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Table 5. Bayes estimates of 〖 θ〗_2 and their posterior risks (in 
brackets) with different truncation time T. 

 

Prior 

 

  

Uniform Informative Improper 

10 
13.44102 

(0.00535) 

13.00243 

(0.00516) 

13.36952 

(0.00532) 

    

20 
13.44132 

(0.00535) 

13.00271 

(0.00515) 

13.36982 

(0.00532) 

    

30 
13.44141 

(0.00535) 

13.00281 

(0.00515) 

13.36992 

(0.00532) 

    

40 
13.44147 

(0.00535) 

13.00286 

(0.00515) 

13.36997 

(0.00532) 

    

50 
13.44150 

(0.00535) 

13.00289 

(0.00515) 

13.37000 

(0.00532) 

    

∞ 
13.3021 

(0.00532) 

12.8707 

(0.00513) 

13.2317 

(0.00529) 
 
 
 

Table 6. Bayes estimates of p and their posterior risks (in brackets) 
with different truncation time T. 
 

Prior 

 

  

Uniform Informative Improper 

10 
0.36438 

(0.00573) 

0.36378 

(0.00563) 

0.36438 

(0.00573) 

    

20 
0.36431 

(0.00573) 

0.36371 

(0.00563) 

0.36431 

(0.00573) 

    

30 
0.36428 

(0.00573) 

0.36368 

(0.00563) 

0.36428 

(0.00573) 

    

40 
0.36427 

(0.00573) 

0.36367 

(0.00563) 

0.36427 

(0.00573) 

    

50 
0.36427 

(0.00573) 

0.36367 

(0.00563) 

0.36427 

(0.00573) 

    

∞ 
0.3700 

(0.00562) 

0.36928 

(0.00553) 

0.3700 

(0.00562) 
 
 
 

CONCLUSION 
 
In real life phenomena, the importance of mixture models 
is un-deniable. In addition to the advantage  of  additional 



1434          Int. J. Phys. Sci. 
 
 
 
Table 7. Bayes and ML estimate of θ_1 and their posterior risks (in 
brackets) with different sample size (limiting case that is, T→∞). 
 

  Prior 

 

n 

Uniform Informative Improper MLE 

100 
9.30329 

(0.02632) 

8.28466 

(0.02273) 

9.06474 

(0.02564) 

9.30329 

(2.27766) 

     

200 
10.8184 

(0.01333) 

10.1528 

(0.01234) 

10.676 

(0.01316) 

10.8184 

(1.5605) 

     

300 
10.4629 

(0.00893) 

10.0241 

(0.00847) 

10.3703 

(0.00885) 

10.4629 

(0.97744) 

     

400 
10.5127 

(0.00667) 

10.1789 

(0.00641) 

10.4431 

(0.00662) 

10.5127 

(0.73677) 
 
 
 

Table 8. Bayes and ML estimate of θ_2  and their posterior risks (in 
brackets) with different sample size (limiting case that is,  T→∞). 

 

  Prior 

 

n 

Uniform Informative Improper MLE 

100 
13.5314 

(0.01613) 

12.2891 

(0.01449) 

13.31660 

(0.01587) 

13.5314 

(2.95319) 

     

200 
13.3904 

(0.0080) 

12.7485 

(0.00758) 

13.2841 

(0.00794) 

13.3904 

(1.43442) 

     

300 
13.3021 

(0.00532) 

12.8707 

(0.00513) 

13.2317 

(0.00529) 

13.3021 

(0.94119) 

     

400 
13.1532 

(0.0040) 

12.8299 

(0.00389) 

13.1008 

(0.00398) 

13.1532 

(0.69202) 
 
 
 

Table 9. Bayes and ML estimate of p and their posterior risks with 
different sample size (limiting case that is,  T→∞). 

 

   Prior 

 

n 

Uniform Informative Improper MLE 

100 
0.3700 

(0.01658) 

0.36792 

(0.01580) 

0.3700 

(0.01658) 

0.38000 

(0.00236) 
     

200 
0.3700 

(0.0084) 

0.36893 

(0.00820) 

0.3700 

(0.0084) 

0.3750 

(0.00117) 
     

300 
0.3700 

(0.00562) 

0.36928 

(0.00553) 

0.3700 

(0.00562) 

0.37333 

(0.00078) 
     

400 
0.3725 

(0.00418) 

0.37192 

(0.00413) 

0.3725 

(0.00418) 

0.3750 

(0.00059) 

 
 
 
 
information provided by prior distributions in Bayesian 
statistics, another advantage of Bayes estimates over the 
MLEs is that they can be easily evaluated for the mixture 
models. Whereas, MLE can only be obtained by some 
iterative procedures for mixture models. Furthermore 
from Tables 1, 2 and 3, it is clear that the Informative 
priors provide more accurate and efficient Bayes 
estimates than those of the uniform and improper priors. 
Also, an increase in sample size provides us improved 
estimates. Tables 4, 5 and 6 show that as the test 
termination time is increased, estimates become closer to 
the real parametric value with an increase in efficiency as 
well. Which also supports the theory that as test 
termination time is increased more observations are 
incorporated in the sample and thus, more information 
sample contains. Finally, it is also clear from Tables 7, 8 
and 9 that the limiting expressions for the Bayes 
estimates using Informative prior outperformed the MLEs 
as well. 
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