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In this paper, we present the theory of nonstandard finite difference schemes which can be used to 
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of implementation of these methods are also discussed.  We also examine the stability properties of the 
constructed schemes. 
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INTRODUCTION  
 
It is a well known fact that finite difference scheme is one 
of the oldest and popular techniques for numerical 
solution of ordinary differential equations. In most of the 
equations in mathematical physics, engineering and in 
some physical sciences, finite difference schemes have 
been designed and investigated both from the theoretical 
point view, which is the convergence aspect, and the 
practical point of view which is the consistency and 
stability point of view (Anguelov and Lubuma, 2000). One 
may be forced to ask the question; why do we need non 
standard methods when we have numerous standard 
methods used to solve ordinary differential equations? 
One of the shortcomings of standard methods is that 
qualitative properties of the exact solution are not usually 
transferred to the numerical solution. In the consideration 
of the step-size, in practice, the limit of the step-size is 
not reached. What we obtain is the numerical solution for 
one or several values of the step-size. This shortcoming 
may create a lot of problems which may affect the 
stability properties of the standard approach.  

In the nonstandard approach, preservation of some 
essential properties of exact solution is guaranteed. The 
source of motivation for this work is that of Anguelov  and 
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Lubuma (2003). A systematic procedure based on 
nonlocal approximation is used to construct a qualitative 
stable nonstandard finite difference methods for the 
solution of a differential equations. 
 
We shall consider the initial value problem of the form; 
 
  dy   =   f(y),  y(to) = yo ,      
  dt                                                                     (1) 
 
where y(t): [to, T) → R is unknown and the function   f: IR 
→IR  is given.  We shall assume that equation (1) satisfy 
the popular Lipschitz condition. For the numerical 
approximation of (1), we shall replace the continuous 
interval [to, T) by the mesh of discrete point {tn+1 = to + nh}, 
n > 0 and h > 0 is the step-size.  We shall use  yn  to 
represent an approximation to the solution   y( tn)  at the 
point  tn  such that  yn  ∼∼∼∼ y(tn).  The numerical solution yn is 
generated by a finite difference scheme of the form 
 
 yn+1 =  F(h,yn)                                                   (2) 
 
Nonstandard difference equations of the form (2) were 
first introduced by Mickens (2000) as a powerful nume-
rical method that preserve significant properties of exact 
solution of the differential equations (Auguelov and 
Lubuma, 2003).  Nonstandard finite difference schemes 
were defined as follows using two of Micken’s rules. 
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Definition 1 
 
The difference equation (2) is called a nonstandard finite 
difference method if at least one of the following 
conditions is met. 
 
(a) In the first order discrete derivative that occurs in (2), 
the conventional  
denominator, h, is replaced by a non-negative function  
φ(h) such that  
 
        φ(h) = h + 0(h2) as h → 0                                     (3) 
 
(b) Nonlinear terms f(y) are approximated in a nonlocal 
form, that is by a suitable function of several points of 
mesh (Anguelov and Lubuma 2003). The advantages of 
nonstandard methods over the traditional methods can 
be seen in Anguelov and Lubuma (2000, 2001 and 
2003). 
 
 
Definition 2 
 
Assume that equation (1) satisfy some property P.  The 
numerical scheme is called qualitatively stable with 
respect to property   P (or P-stable) if for every value of h 
> 0 the set of solutions of (1) satisfy property P. We shall 
now state some theorems that will be of good use 
throughout this work..  For the purpose of this work, we 
shall assume that function   F(h, y) in (2) has continuous 
derivative with respect to both variables for h > o,   y∈R 
and  that 
 
F(o,y)  =  y  and   ∂F   (o,y) = f(y)    
                ∂h                                                       (4)                                         
   
It is necessary to note that consistency implies (4) if y is 
the solution of differential equation. 
 
 
Theorem 1 
 
The difference scheme (2) is stable with respect to 
monotone dependence on initial  
Value if; 
 
   ∂F   (h,y) > o, y∈IR, h > o   
  ∂y                                                              (5) 
 
The proof to this theorem can be seen in Anguelov and 
Lubuma (2003) 
 
 
Definition 3 
 
A set  G(Ω)  of  real-valued functions defined on a subset   
Ω  of [to, ∞) is said to be monotonically dependent on  the  

 
 
 
 
initial value to if for every two functions ,  y,z ∈Ω,  we 
have    
 y(to) <  z(to) � y(t) < z (t),  t∈Ω           (6) 
 
It is necessary to state at the stage that since equation 
(1) is assumed to satisfy Lipschitz condition, the set of 
solutions for equation (1) is monotonically dependent on 
the initial value at to. 

 
 
Definition 4 
 
The finite deference scheme (2) is stable with respect to 
monotonicity of solutions if for every yo∈IR, the solution yn 
of (2) is an increasing or decreasing sequence.  
 
 
Theorem 2 
 
Assume that the difference scheme (2) is stable with 
respect to monotone dependence on initial value.  
Assume also that for every h > 0, the equations 
 
 y = F(h,y), and f(y) = o                                       (7) 
 
have the same roots considered with their multiplicity, 
then the difference scheme (2) is stable with respect to 
monotonicity of solutions. The proof can also be found in 
any of the standard book on nonstandard difference 
schemes. It must be mentioned here that if the condition 
in (7) is satisfied, then the difference scheme (2) is 
elementary stable. 
 
 
Nonstandard finite difference schemes for y1 = y2, 
y(o)  = 1 
 
We shall approximate the nonlinear terms in the right 
hand side of equation  
 
 y1 = y2, y(o)  = 1             (8) 
 
in three different ways. Each of the nonlocal 
approximation will produce a nonstandard scheme which 
will be implemented. 
 
y2  ∼∼∼∼  ay2

n  + (1 – a)yn yn+1,  a∈IR 
 
y2  ∼∼∼∼  yn yn+1 
 

 y2  ∼∼∼∼  yn (yn-1 + yn+1) 
                                 2   

 
In a general form, any linear combination of the 
expressions listed above (i) – (iii) with the sum of the 
coefficients equals 1, approximate y2,  the  error  of  order  



 
 
 
 
O(h) for sufficiently y(t). It must be noted that the function 
f(y) in equation (1) may be approximated by an 
expression, which contains certain number of free 
parameters. These parameters are determined in such a 
way that the scheme satisfies qualitative stable property. 
 
 
Nonstandard scheme one 
 
Here 
 
 y2  ∼∼∼∼  ay2

n + (1 – a)yn yn+1,  a∈IR           (9) 
 
Using (8) and (9), we have 
 

yn+1 – yn  =  ay2
n  + (1 – a)yn yn+1,  a∈IR  

    ϕ(h)  
 
yn+1 – yn  =  aφ(h)y2

n  + φ(h)  – a φ(h)yn yn+1  
 
yn+1 (1– (1–a)yn φ(h)) = yn + a φ(h)y2

n 

 

yn+1   =     yn + a φ(h)y2
n 

        (1– (1–a)yn φ(h)) 
                          (10) 

      
Equation (10) is the nonstandard scheme which is a one-
step nonstandard scheme.  
 
 
Nonstandard scheme two 
 
Here we approximate    f(y) in (8) by 
 
y2  ∼∼∼∼  yn yn+1           (11) 
 
Using (8) and (11) we obtain 
 

yn+1 - yn      = yn yn+1 

    φ(h) 
 

 
�   yn+1 - yn = φ(h) yn yn+1 

  

that is, yn+1 (1– φ(h) yn) = yn 
 
This produce a nonstandard method; 
 
yn+1       yn         
 1– φ(h)yn 

            (12) 
  
Nonstandard scheme three 
  
The nonlinear term y2 is approximated non locally by 
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y2 ∼∼∼∼  yn (yn-1 + yn+1) 
2                                                (13) 

 
We use (8) and (13) to obtain 
 

yn+1 - yn     =   yn  (yn-1 + yn+1)       
    φ(h)      2  

 
�  2yn+1 - 2yn     =   yn (yn-1 + yn+1)   φ(h)  
�  2yn+1 - ynyn+1 φ(h) = φ(h) ynyn-1  + 2yn 
 
that is, 
 
(2 – yn φ(h)) yn+1 = φ(h) yn yn-1  + 2yn 
 
and this produce a nonstandard scheme 
 
   yn+1 =      φ(h) yn yn-1  + 2yn   
          2 – yn φ(h)                                        (14)                                                                       
   
Equation (14) can be written compactly as  
 
yn+2 =      φ(h)yn+1  yn + 2yn+1  
            2 – yn φ(h)         (15)
                                                                                                    
This is a two-step numerical scheme that will need two 
starting points.  We have been able to construct three 
robust nonstandard finite difference scheme for the 
solution of initial value problem (8) 
 
Some qualitative stability properties of the schemes 
 
Let us consider the first scheme (10).  Equation (10) can 
be written as  
 

  

F(h, yn) =    yn +  aφ(h)y2
n   , 

       1– (1 – a)yn φ(h)         (16)       
With : 
 
F(h, y) =    y + aφ(h)y2, 

       1– (1 – a)y φ(h) 
 

                                    (17) 
 

Here we determine 
∂F(h,y)  >  0  
  ∂y  and obtain the followings 

       
∂F(h,y)          1– (1– a)y φ(h)[1+2aφ(h)y] + [y+aφ(h)y2] [(1– a) φ(h)]  
     =                                                                                               > 0   
   ∂y           [1– (1– a)y φ(h)]2 
 

 (18)              
 
Inequality (18) is true if; 
 
[1– (1– a)y φ(h)] [1+2aφ(h)y] + [y+aφ(h)y2] [(1– a) φ(h)] > 0       (19) 
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for this to happen, a < 0. 
 
 
Theorem  3 
 
The nonstandard scheme (10) is stable with respect to 
monotone dependence on initial value and monotone of 
solutions and this, the scheme is elementary stable. 
 
Proof 
 
Let us consider 
 

F(h, y) =    y +      φ(h)y2
  

             1– (1 – a)y φ(h)  
 
On simplification, we obtain 
 

F(h, y) =    y[1– (1 – a)y φ(h)] + φ(h)y2
 

            1– (1 – a)y φ(h) 
 

=   y – φ(h)y2
 + aφ(h)y2 + φ(h)y2 

         1– (1 – a) φ(h)y 
 

=     y + aφ(h)y2  
     1– (1 – a) φ(h)y 
 

 
 
We have shown that 
 
F(h,y)  =  y +      aφ(h)y2        =    y + aφ(h)y2        =   y +  f(y)φ(h) 
           1– (1 – a)y φ(h)     1– (1 – a)φ(h)y     1– (1 – a)φ(h)  
 
The above relationship implies that if a < 0, 
 
F(h,y)  = y ⇔  f(y)  = 0.  for every  h > 0.  
 
This follow that scheme (10) is stable with respect to 
monotonicity dependence on initial value and mono- 
tonicity of solutions and hence the scheme is elementary 
stable. 
 
 
Remark 
 
It must be stated here that the function φ(h) in the 
scheme (10) remains unspecified.  It can be determined 
to guarantee additional properties of the scheme.  We 
have specified the value of   φ(h) used in our numerical 
experiments. 

We shall now proceed to show that the scheme (12) 
(14) are stable with respect to monotone dependence on 
initial value.  To show this, we must be able to prove that 
  
                       ∂F (h,y)  > 0, 
                        ∂y  
 
y∈R, h > 0, when  F(h,y) is given as; 

 
 
 
 

F(h, y) =          y   

                1– φ(h)y                                    (20) 
 
and 
  

F(h, y) =    φ(h)y2 +2y   

                 2– yφ(h)                                        (21) 
                 
For equation (21) we have 
 

  ∂F   =   [1– φ(h)y]   ∂y  - y  ∂[1– φ(h)y] 
 ∂y   ∂y         ∂y 
    [1– φ(h)y]2 

  =   1– φ(h)y  + φ(h)y    =        1             > 0 
  [1– φ(h)y]2  [1– φ(h)y]2 

 
 
Hence   ∂F    > 0 since φ(h) is positive and h > 0.    
             ∂y 

This implies that scheme (12) is stable with respect to 
monotone dependence on initial value. 

 
Let us consider equation (22) 
 
∂F(h,y),  =  [2 – yφ(h)y]    ∂    [φ(h)y2 + 2y] – [φ(h)y2 +2y]  ∂  [ 2 – y φ(h)] 
  ∂y           ∂y            ∂y     

[2– yφ(h)]2 
 
    =  [2 – yφ(h)y]  [2φ(h)y+ 2]  – [φ(h)y2 +2y] [–  φ(h)] 

[2– yφ(h)]2 
 

=  4φ(h)y + 4 – 2φ2 (h)y2  – 2φ(h)y + φ2(h)y2 + 2φ(h)y 
[2– yφ(h)]2 

 

=  4φ(h)y + 4 – φ2 (h)y2  > 0 
[2– yφ(h)]2  

 
The above inequality holds if 4 φ(h)y + y + 4 - φ2(h)y2 > 0 
 
4φ(h)y + 4 - φ2(h)y2  > 0          (22) 
 
Inequality (23) is quadratic in y and inquality (23) will hold 
if   
 
  y = φ(h) > 1/2.   
 
Therefore scheme (14) will be stable with respect to 
monotone dependence on initial value and therefore 
elementary stable if and only if y = φ(h) < 1/2.   
 
 
Numerical implementation 
 
A Fortran programme was written to implement the three 
schemes and  the  results  are  presented  in  a  graphical  
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Figure 1. Nonstandard Method One, 10 ITERATIONS, y(0)=1, 

h=0.01, a=-0.1. 
 
 

SCHEME TWO
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Figure 2. Nonstandard Method Two. 10 ITERATIONS, y(0) = 
1, phile(h)=1-exp(-h), h = 0.01 
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Figure 3. Nonstandard Method Three, 50 ITERATIONS, y(0)=1, 
y(1)=h*y(0) h = 0.01, phile(h) = 1-exp(-h) 
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Figure 4. Nonstandard Method three 10 ITERATIONS, y(0)=1, 
y(1)=h*y(0) H=0.01, phile(h)=1-exp(-h). 
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Figure 5. Nonstandard Method Three, 50 ITERATIONS, 
y(0)=1, h=0.01, Phile(h)=h 

 
 
 
 
form which are presented below. Various values of h, φ(h) 
and ‘a’ are used and one can see the consistency of the 
schemes. Scheme three present a very interesting result. 
We made use of two starting values because the scheme 
is a two-step numerical method. Applications of the 
definitions and the theorems stated in section two pointed 
to the fact that the three schemes are stable with respect 
to monotone dependence on initial value and therefore 
they are elementary stable. We also use the standard 
fourth stage Runge-Kutta method to solve the ordinary 
differential equation in question. The result of Figures 1 – 
5 shows a sense of stability in comparison with the result 
presented in Figures 6 and 7.   
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 Figure 6. The solution of the problem using fourth stage classical 
Runge Kutta method h = 0.01  a = 0 and b = 1,with 10 iterations. 
 
 
 

 
 
                Figure 7. The problem was solved with h = 0.1; a = 1; b = 1; 

10 iterations.  
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