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A set of equations governing an isothermal compressible fluid flow is analytically and numerically 
analyzed. The obtained equations are written in characteristic form and resolved by a predictor-
corrector lambda scheme for the interior mesh points. The method of characteristics (MOC) is used for 
the boundaries. Advantages of explicit form of these schemes and the flexibility of the MOC are used 
for an isothermal fast transient gas flow in short pipeline. The results, obtained for a simple practical 
application agree with those of other methods. 
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INTRODUCTION 
 
Gas transients equations in pipelines can be linear or 
generally non linear. They also may be parabolic or 
hyperbolic of the first or second order. As a rule, simple 
models are an alternative which presents a reasonable 
compromise between the description accuracy and the 
cost of solution. These models are obtained by neglecting 
some terms in the basic set of equations, as a result of a 
quantitative estimation of the particular elements of the 
equations for given operating conditions of the pipeline.  

Several relatively new numerical schemes were tested 
to integrate equations of conservation. These include 
Godunov and TVD schemes (Leveque and Yee, 1990). 
These second order schemes have the advantage that 
shock waves problems and other discontinuities can be 
treated with relatively good accuracy.  

In their studies, many authors have considered fast gas 
transients employing numerical techniques as method of 
characteristics (MOC) (Kameswara and Eswaran, 1993; 
Greyvenstein, 2001) and finite differences (Greyvenstein, 

2001; Gato and Henriques, 2005), with a relatively good 
agreement each other. In the last decades Behbahani-
Nejad and Bagheri (2010a) have used transfer functions 
of a single pipeline in order to develop a mathematical 
Simulik library. Obtained results are satisfactory with the 
classical methods. 

With a reduced order modeling approach, Behbahani-
Nejad and Shekari (2010b) have compared their results 
with the conventional numerical techniques for a simple 
gas transient example. A good agreement was observed. 
By the use of time space least square spectral method 
with a technique based on hierarchical interpolations in 
space and time, on numerical examples, including fast 
gas transients, particularly in the case of severe 
conditions flowing, Dorao and Fernandino (2011) have 
successfully handled the problem of strong shock wave.  

Simulating gas transients in pipes, Ebrahimzadeha et 
al. (2012) have used an orthogonal collocated method 
technique to solve the corresponding governing equations. 
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Its performances are verified and tested for two practical 
examples corresponding to isothermal and non 
isothermal cases.  

In this work an, old idea, relative to a physically 
meaningful simples schema, have been developed by 
Moretti (1979), Zannetti and Colasurdo (1981) and 
Gabutti (1983). They are known as the lambda schemes. 
An important advantage of these schemes is related to 

the concept of non reflecting boundary condition :a 
characteristics form of the boundary conditions equations 
is applied  in order to avoid the use of the improperly 
reflecting technique. An explicit form of them is adapted 
and applied to an isothermal fast transient gas flow in 
short pipeline. 
 
 
THEORETICAL MODELING 

 
If we consider an isothermal flow in pipeline with variable cross-

sectional area in which one dimensional continuity equation is: 
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and momentum equation is given by : 
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Writing equation of state for natural gas as:    
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and taking into account  the isothermal conditions, the acoustic 
wave speed becomes: 
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In the absence of field data, steady state variable distributions 
constitute the initial conditions. These steady state initial conditions 
are obtained by the use of an appropriate analytical equation (Zhou 
and Adewumi (1996) for Z=1: 
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is implicit in  , is well suited for  iterative method to determine 

density or pressure distribution. 
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In earlier work, considering  above equation set,  two applications 
of fast and slow fluid flows have been developed by using two 
explicit finite-difference schemes (Kessal, 2000). Then, in the same 
way, a one-dimensional lambda scheme is proposed to study the 
first case.  

 
 
NUMERICAL SCHEME 

 
In order to analyze the gas transients phenomena in  short 
pipelines the characteristic method is used to convert the initial 
partial differential equation set (1) and (2) into ordinary differential 
equations (Lister, 1960). The physical interpretation is that the 
waves travel with the speed “a”, given by the relation (4), 
propagating in this way the effect of the initial boundary conditions. 
Then the transformation of Equations (1) and (2) yields: 
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These equations are associated respectively with the following 
characteristics directions: 
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Using Equations (8) and (9),  Equations (6) and (7) can be written 
as: 
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and 
 

 
0

2



































 



 VV

D

f
a

x

V

t

V
a

x

P

t

P


        (11) 

 
Adding Equations (10) and (11) and simplifying yields to: 
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  Subtracting Equation (10) from Equation (11) and simplifying, 

yields to: 
 
 Application of an explicit lambda scheme for the above equation 
set needs the following transformations.  
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Equations (12) and (13) are in so-called lambda form. Note that the 
spatial derivatives are marked with subscripts + and – to indicate 
the  characteristic  directions  along  which   these   derivatives   are  
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approximated. Predicted values of  
*
iV  and *

iP  can be obtained by 

substitution of finite-difference approximations for the time 
derivatives into Equations (12) and (13): 
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where:  
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Then, the predictor–corrector scheme applied to our equation set 
yields to the following procedure (Gabutti, 1983). The spatial 
derivatives in Equations (14) and (15) are approximated as follow: 

 
Predictor: 
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Replacing the above finite-difference approximations in Equations 

(14) and (15) yields the predicted values of *
iV and *

iP .  

 
 
Part 2 

 

The predicted values of the time derivatives 
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Corrector part  

 
By considering the following finite difference approximations and 
using V
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 Finally, the values of P and V at the unknown time level are 

determined from the following equations: 
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It can be noticed that above discretization is possible only at nodes 
3, 4,…, N-1 as it is shown by  part 2 of the predictor scheme. Then, 
a special treatment is needed at points near the boundaries.  For 
this, a one sided finite-difference approximation can be used at 
nodes 2 and N-1.  

Note that in Gabutti (1983) paper, two points finite-difference 
approximations was used at the nodes adjacent to the boundaries if 
three points were not available in the desired directions. In this 
study computational time interval was selected so that the Courant 

stability condition was satisfied at all nodes of the mesh (Streeter  
and Wylie, 1969). If necessary, the time interval can be reduced in 
some cases. 
 
 

INITIAL AND BOUNDARY CONDITIONS   
       
Initial and boundary conditions to the previous Equations (1) and (2) 

must be specified in order to obtain the appreciable solution for this 
differential equation set. Initial conditions of these systems are 
required to resolve initial pressure and velocity as a function of the 
position x along the pipeline. In this study they are given by the 
relation (8) for the pressure distribution. Boundary conditions must 
also be specified to obtain a unique solution. They depend on the 
considered cases. It is proposed in this work to treat numerically the 
two boundary conditions by the characteristics method. Then, 
integrating Equations (6) and (7) along the negative and the 
positive characteristics lines Equations (8) and (9) (Figure 1) yields 
to the following finite-difference equations: 
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Applying these equations to limit conditions yields (Figure 2): 
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A computational procedure to obtain P or V is  necessary   with  the
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Figure 1.  x, t  Grid  for method of characteristics. 

 
 

 
 

Figure 2. Characteristics at boundaries. 

 
 
 
increments t , and equal space x. Values of fluid properties at the 
previous time  are calculated  flow from mesh i-1,  i  and  i+1. The 
aforementioned stability criteria is required for: 
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RESULTS AND DISCUSSION 
 

An example concerning a gas transient in a relatively 
short pipeline with an impulse supply of gas mass flux at 
the inlet, has been simulated using the previous 
predictor-corrector scheme. This example is taken from 
Zhou and Adewumi (1996) in which solutions have been 
obtained, respectively, by using the method of 
characteristics   (MOC),   and,   a   first-order   three-point 

explicit Godunov scheme  and a source free second-
order five-point  TVD scheme. A pipeline 91.44 m long,  
0.609 m interior diameter and having initially a static 
pressure of 4136.8 kPa  (with initial velocity Vi=0)  with  a 
shut downstream extremity. At time zero, upstream inflow 
begins to increase linearly and reaches 196 Kg/s at 0.145 
s, then decreases linearly to zero again at 0.29 s, and 
then remains constant. The downstream end is closed. 
For the simulation of the above fast transient problem, 
the predictor-corrector lambda scheme adopts with the 

characteristics method, at the boundaries, the same t 
imposed by the stability Criteria (28). 

For numerical simulation of this example, the previous 

predictor-corrector scheme adopts a grid size x=0.9144 

m, t=0.811 x 10
-3

 s and C.F.L=0.312. These values can 
be compared with those used in  the  Godunov  and  TVD  
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Figure 4. Pressure response at the inlet of the pipe. 

 
 
 

Schemes (19) respectively: x=0.9144 m, t=0.09144 x 

10
-3

 s and  C.F.L=0.0348; x=0.9144 m, t=0.9 x 10
-3

 s 
and  C.F.L=0.348. Some numerical results are illustrated 
by the following figures. It shown a time evolution rate of 
the gas (Figure 3) at midpoint of the gas line (x=0.5*L), 
where our results are compared with those obtained by 
Zhou and Adewumi

 
(1996). Good agreement between 

them can  be  observed.  The  gas  flow  rate  fronts   are 

completely solved within the first 0.8 s. The behaviour of 
gas flow rate evolution at the midpoint of the pipeline is 
the result of reflected pressure impulse at the upstream 
end of the pipe.  

A comparison of the predicted pressure (by the present 
model) at the inlet of the pipeline   (x/L=0) with the 
reported data as shown in Figure 4. Again, relatively 
good agreement between the  predicted  results  and  the  
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Figure 6. Pressure response at the outlet of the pipe. 

 
 
 
reported data is obtained. It can be noticed that duration 
of the pressure pulse of the peak is the same. Pressure 
wave is maintained and captured during the first 0.80 s. 
The pressure wave fronts are reproduced during 2.4 s, 
without any loss of accuracy (Figure 5). Slight differences 
with an other methods can be due to some simplifications 
introduced by Zhou and Adewumi (1996), that is, the 
value of the friction losses coefficient. A comparison, as 
regards the pressure at  the  outlet  point  of  the  pipeline 

(x/L=1), between obtained numerical results and the 
reported data is shown in Figure 6. Good agreement can 
be noticed. At the outlet of the pipeline, the pressure 
wave fronts are completely resolved within the first 0.8 s.  

In order to check the numerical method described 
herein, the pressure evolution has been calculated for 
time close to the end of the transient phenomenon. It is 
shown in Figure 7 that agreement is satisfactory. This 
indicates  that  the  method  described   in   the   previous 
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Figure 7. Pressure response at the inlet of the pipe. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Axial transient pressure distribution
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Figure 8. Axial transient pressure distribution. 

 
 
 
sections is reliable. Also computed results show that the 
employed numerical simulation has not produced  any 
undesirable effect.  

The evolution of the pressure, corresponding to 
successive times relative to the pipeline filling, can be 
observed in Figure 8. Depending on the speed of 
propagation of sound in gas, then we note that the wave 
front (of pressure) is reflected from the downstream 
end.In Figure 9, we can observe the correspondence with 
Figures 2 and 4, namely the time change  in  pressure  at 

the inlet and outlet of the pipeline. The incident and 
reflected pressure waves are explicitly shown in this 
figure. The longitudinal evolution of the flow rate from the 
inlet of the pipe is shown in Figure 10. Nevertheless, the 
speed reflected by the downstream end takes negative 
values to the upstream end, thereby causing a 
depression waves which propagate to the upstream. 

Finally, the propagation phenomenon of the pressure 
and the flow velocity disturbances, initiated at upstream 
point  that  the  pipeline,  is  well  reproduced  by  the  two   
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Figure 9. 3D Gas transients between the inlet and outlet  
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Figure 9. 3D Gas transients between the inlet and outlet. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Axial transient velocity 
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Figure 10. Axial transient velocity. 

 
 
forms of difference schemes, that is, a second order 
scheme for the interior points and a method of 

characteristics for the extremities. The gas transients are 
contained in a very comprehensive and convenient. 
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CONCLUSION 
 
The numerical methods presented in this study allow to 
calculate the propagation of pressure or velocity 
disturbances from one boundary of a gas pipeline. We 
have shown that the explicit lambda type of finite 
difference scheme presents an acceptable computational 
time. Also, the obtained results have shown that the 
accuracy of the previous scheme is comparable to the 
one of high resolution scheme for the considered 
examples. 
 
 
Nomenclature 
 
S: cross-sectional area of pipeline, vector; a :isothermal 
speed of sound; D: pipeline diameter; fg: gas friction 
factor; g:  gravitational acceleration; N:  number of space 

intervals; :  molecular gas weight; p:  pressure; R:  

universal gas constant  or  
D

tf
R

g

2


 ; T:  time; l, L: length; 

T:  absolute gas temperature; V:  gas velocity; X:  axial 

co-ordinate , L; Z:  compressibility factor or elevation; :   

gas density;i:   inlet gas density; t:  uniform time step; 

x:  uniform grid size. 
 
Subscripts  
 
g: gas; i:   inlet, node. 
 
 
Conflict of Interests 

The author(s) have not declared any conflict of interests. 
 
 
REFERENCES 
 
Behbahani-Nejad M, Bagheri A (2010a). The Accuracy and Efficiency of 

a MATLABSimulink Library for Transient Flow Simulation of Gas 
Pipelines and Networks. J. Pet. Sci. Eng. 70:256–265. 
http://dx.doi.org/10.1016/j.petrol.2009.11.018 

Behbahani-Nejad M, Shekari Y (2010b). The accuracy and efficiency of 
a reduced-order model for transient flow analysis in gas pipelines. J. 
Pet. Sci. Eng. 73:13-19. http://dx.doi.org/10.1016/j.petrol.2010.05.001 

Dorao CA, Fernandino M (2011).Simulation of transients in natural gas 
pipelines. J. Nat. Gas Sci. Eng. 3(1):319-364. 
http://dx.doi.org/10.1016/j.jngse.2011.01.004 

Edris E, Mahdi NS, Bahamin B (2012). Simulation of transient gas flow 
using the orthogonal collocation method. Chem. Eng. Res. Des. P. 
90. 

Gabutti B (1983). On two Upwind Finite-Difference Schemes for 
Hyperbolic Equations in Non-Conservative Form. Comput. Fluids. 
11(3):207-230. http://dx.doi.org/10.1016/0045-7930(83)90031-2 

Gato LMC, Henriques JCC (2005). Dynamic behavior of high pressure 
natural gas flow in pipelines. Int. J. Heat Mass Transf. 26:817-825. 

Greyvenstein GP (2001). An implicit method for the analysis of transient 
flows in pipe networks. Int. J. Numer. Methods Eng. 53(5):1127-1143. 

http://dx.doi.org/10.1002/nme.323 
Kameswara R, Eswaran K (1993). On the Analysis of Pressure 

Transients in Pipelines., Int. J. Pres. Ves. Piping. 56:107-129. 

http://dx.doi.org/10.1016/0308-0161(93)90120-I 

 
 
 
 
Kessal M (2000). Simplified Numerical Simulation of Transients in Gas 

Networks, Chemical. Eng. Res. Design, Vol. 78, Part A. 
http://dx.doi.org/10.1205/026387600528003 

Leveque RJ, Yee HC (1990). A study of Numerical Methods for 
Hyperbolic conservation laws with stiff source terms. J. Comp. Phys. 
86:187-210. http://dx.doi.org/10.1016/0021-9991(90)90097-K 

Lister M (1960). The Numerical Solution of Hyperbolic Partial 
Differential Equations By the Method of Characteristics, in Ralston, 
A., and Wilf, H.S., Eds, Mathematical Methods for Digital Computers, 

Wiley, New York, pp.165-179. 

Moretti G (1979). The -Schemes, Computers & Fluids. 7(4):191-205. 

http://dx.doi.org/10.1016/0045-7930(79)90036-7 
Streeter VL, Wylie EB (1969). Natural gas pipeline transients, SPEJ. pp. 

357-364. 

Zannetti L, Colasurdo G (1981). Unsteady Compressible Flow: A 
Computational Method Consistent with the physical Phenomenon. 
AIAA J. 19:951-956. 

Zhou JJ, Adewumi MA (1996). Simulation of Transients in Natural Gas 
pipelines, SPEJ. pp. 202-208. 

 
 
 

http://dx.doi.org/10.1016/j.petrol.2009.11.018
http://dx.doi.org/10.1016/j.petrol.2010.05.001
http://dx.doi.org/10.1016/j.jngse.2011.01.004
http://dx.doi.org/10.1016/0045-7930(83)90031-2
http://dx.doi.org/10.1002/nme.323
http://dx.doi.org/10.1016/0308-0161(93)90120-I
http://dx.doi.org/10.1205/026387600528003
http://dx.doi.org/10.1016/0021-9991(90)90097-K
http://dx.doi.org/10.1016/0045-7930(79)90036-7

