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The conventional method for determining production-shipment policy is by the use of differential 
calculus and Hessian matrix equations with the need of applying the first-order and second- order 
differentiations, on the long-run average production-inventory-delivery cost. A recent paper used 
conventional procedure to solve the production-shipment problem with quality assurance. This paper 
uses an alternative approach to re-examine such a problem without using the derivatives. As a result, 
optimal lot size and number of deliveries derived by the proposed algebraic method was confirmed to 
be identical, to what was obtained by using the conventional method. A simpler expression of cost 
function was also revealed. 
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INTRODUCTION 
 
The most economical production lot known as the 
economic production quantity (EPQ) model was first 
introduced by Taft (1918) many decades ago. It 
presented an optimal replenishment quantity (lot size) to 
assist manufacturing firm in minimizing total production-
inventory costs (Tersine, 1994). The EPQ model implicitly 
assumes that, all items produced are of perfect quality. 
However, in real world manufacturing environments, due 
to many different factors, generation of nonconforming 
items seems inevitable. For this reason, during the past 
decades many studies have been carried out to address 
the imperfect production and its related issues (Mak, 
1985; Rosenblatt and Lee, 1986; Henig and Gerchak, 
1990; Cheung and Hausman, 1997; Grosfeld-Nir and 
Gerchak, 2002; Chiu and Chiu, 2006; Wee et al., 2007; 
Baten and Kamil, 2009; Chiu et al., 2010a, b; Wazed et 
al., 2010a; b).  

Another unrealistic assumption of  classic  EPQ  model,  
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is the continuous inventory issuing policy for satisfying 
the demand. However, in a vendor-buyer integrated 
production-shipment system, periodic delivery policy is 
commonly used. Schwarz (1973) first investigated a one-
warehouse N-retailer deterministic inventory system, in 
order to determine the stocking policy which minimizes 
long-run average system cost. Goyal (1977) considered 
an integrated inventory-shipment model for the single 
supplier-single customer problem. He proposed a method 
that is typically applicable to those inventory problems, 
where a product is procured by a single customer from a 
single supplier. An example with analysis was provided to 
illustrate this method. Many studies have since been 
conducted to address issues of various aspects of supply 
chain optimization (Banerjee, 1986; Goyal and Gupta, 
1989; Sarker and Parija, 1994; Viswanathan, 1998; 
Swenseth and Godfrey, 2002; Diponegoro and Sarker, 
2006; Kim et al., 2008; Chiu et al., 2009; Abolhasanpour 
et al., 2009; Chen et al., 2010). 

Chiu et al. (2010c) jointly determined economic batch 
size and optimal number of deliveries for EPQ model with 
quality assurance issue. They used  the  differential  calculus  



 
 
 
 
along with Hessian matrix equations to derive the optimal 
replenishment lot size, as well as the number of 
shipments for an imperfect EPQ model with failure in 
rework. Grubbström and Erdem (1999) presented an 
algebraic approach, to solve the economic order quantity 
(EOQ) model with backlogging, without reference to the 
use of derivatives. Similar studies used the same or 
similar method (Chiu, 2008; Lin et al., 2008). This paper 
applies the same alternative approach to a specific EPQ 
model examined by Chiu et al. (2010c). We show that, 
the optimal lot size, number of deliveries and the long-run 
average cost can all be derived without using differential 
calculus or the Hessian matrix equations (Rardin, 1998). 
 
 
METHODS 
 
An algebraic approach is adopted in this paper to re-examine Chiu 
et al.’s model (2010c), as stated earlier. Description of this 
production system is as follows. Consider a real world production 
system where process may randomly produce a portion x of 
defective items at a rate d. All items produced are screened and 
inspection cost is included in the unit production cost C. All 
nonconforming items produced are reworked at a rate of P1 and it 
starts immediately after the regular production process. A portion �1 
(where 0 < = �1 < = 1) of reworked items, fails during the reworking 
and becomes scrap. In order to avoid shortage from occurring, it is 
assumed that the constant production rate P, has to be larger than 
the sum of demand rate � and production rate of defective items d. 
That is: (P-d-�) > 0; where the production rate of defective items d, 
can be expressed as d = Px. Let d1 denote production rate of scrap 
items during the rework process, then d1 can be expressed as: d1 
= P1�1. 

Furthermore, this study considers a multi-delivery policy. It is 
assumed that the finished items can only be delivered to 
customers, if the whole lot is quality assured at the end of rework. 
Fixed-quantity, n installments of the finished batch, are delivered to 
the customer at a fixed interval of time, during production downtime, 
t3. On-hand inventory of perfect quality items of the proposed 
model is depicted in Figure 1. For the purpose of easing readability, 
this paper adopted the same notation as was used in Chiu et al. 
(2010c) as follows: 

 
Q = production lot size, to be determined for each cycle, 
n = number of fixed quantity installments of the finished batch to be 
delivered to customer, to be determined for each cycle,  
D = number of finished items (fixed quantity) distributed to customer 
per delivery, 
t1 = the production uptime for the proposed EPQ model, 
t2 = time required for reworking of defective items, 
t3 = time required for delivering all quality assured finished 
products, 
H1 = maximum level of on-hand inventory in units when regular 
production process ends, 
H = the maximum level of on-hand inventory in units when rework 
process finishes, 
tn = a fixed interval of time (between each installment of finished 
products to be delivered to customer during production downtime 
t3),  
T = cycle length, 
K = setup cost per production run, 
C = unit production cost, 
h = unit holding cost, 
K1 = fixed delivery cost per shipment, 
CR = unit rework cost, 
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h1 = holding cost for each reworked item, 
I(t) = on-hand inventory of perfect quality items at time t, 
h2 =  holding cost for each item kept by customer, 
TC(Q,n) = total production-inventory-delivery costs per cycle for 
the proposed model, 
E[TCU(Q,n)] = the long-run average costs per unit time for the 
proposed model. 
 
Once again for the purpose of easing readability, this paper adopted 
the same basic formulations, as were used in Chiu et al. (2010c). 
Total production-inventory-delivery cost per cycle TC(Q,n) consists 
of variable manufacturing cost, setup cost, variable rework cost and 
disposal cost, fixed and variable shipping cost, holding cost at the 
manufacturer’s end for items reworked and for all items produced 
during production uptime t1 and rework time t2, and holding cost for 
finished goods, kept by both manufacturer and customer during t3, 
when n fixed-quantity installments of the finished batch are 
delivered at a fixed interval of time. Using the same formulation 
procedures, one has TC(Q,n) as follows (Equation (11) in Chiu et 
al., 2010c). 
 

( ) [ ] [ ]

( ) ( )

( ) ( )

( )

1

1 2
1 1 1 2

1 1 1
1 2 3

2
3 3

R S

T

,

     1
2

1
     

2 2 2

     
2

TC Q n CQ K C xQ C x Q

P t
nK C Q x h t

H dt H H n
h t t h Ht

n

h H
t T H t

n

θ

θ

λ

= + + +
⋅

+ + − + ⋅ ⋅� �� �

+ + −� � � �+ + + � �	 

� �� �

� �+ + −	 
� �       (1) 
 
The defective rate x is assumed to be a random variable with a 
known probability density function, taking into account of the 
randomness, one can use the expected values of x in cost analysis 
and obtains E[TCU(Q,n)] as follows (Equation (12) in Chiu et al., 
2010c). 
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Production-shipment policy derived using algebraic 
derivations 
 
Algebraic approach is employed in this section for deriving the 
optimal replenishment lot size as well as optimal number of 
deliveries. Because the decision variables are Q and n,  we  identify  
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 �
 
Figure 1. On-hand inventory of perfect quality items in an integrated production- inventory-
delivery model with failure in repair (Chiu et al., 2010c). 

 
 
 
that Equation (2) has terms for the constants, Q, Q-1, nQ-1, and 
Qn-1. First let q1, q2, q3, q4 and q5 denote the following: 
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Then Equation (2) can be expressed as: 
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With further rearrangement of Equation (8), one obtains: 
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Therefore, one obtains: 
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E[TCU(Q,n)] is minimized, if the second and the fourth square 
terms in Equation (11) equal zeros. That is: 
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Substituting Equations (4) and (6) in Equation (14), with further 
derivations, one has the optimal lot size as: 
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Substituting Equations (5) and (7) in (15), one has the optimal 
number of deliveries as: 
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With further derivations, one has: 
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Substituting Equation (16) in (18) and with further derivations, one 
obtains: 
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One notes that Equation (19) is identical to the optimal number of 
deliveries n* given in Equation (20) of Chiu et al. (2010c), which is 
derived by the use of the conventional differential calculus method. 
It follows that the long-run average cost E[TCU(Q*,n*)] is: 
 

( ) 1 2 3 54*, * 2 2E TCU Q n q q q q q= + +� �� �         (20) 
 
 
RESULTS AND DISCUSSION 
 
Numerical example and verification 
 
The research results obtained previously were verified by 
using the same example as in Chiu et al. (2010c). 
Consider the annual demand rate of a manufactured item 
is 3,400 units. This product can be produced at an annual 
rate of 60,000 units. The random defective rate x, is 
assumed during production uptime, which follows a 
uniform distribution over the interval [0, 0.3]. All 
nonconforming  items  produced  are  considered   to   be  
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rework-able with a rate of rework P1 = 2,200 units per 
year. Failure in rework rate is �1 = 0.1. Other values of 
parameters are: 
 
h = $20 per item per year, 
h1 = $40 per item reworked per unit time (year), 
h2 = $80 per item kept at the customer’s end per unit 
time, 
C = $100 per item, 
K = $20,000 per production run, 
CR = $60, repaired cost for each item reworked, 
CS = $20, disposal cost for each scrap item, 
CT = $0.1 per item delivered, 
K1 = $4,350 per shipment, a fixed cost. 
 
By using Equations (19), (16) and (20), one obtains the 
optimal number of shipments n* = 2, the optimal 
production lot size Q* = 1,693, and the long-run average 
cost E[TCU(Q*,n*)] = $494,631. One notes that, these 
numbers are identical to that in Chiu et al. (2010c).  

It is also noted that, since n only takes on integer 
values, one should use Equation (2) to determine the 
optimal integer value of number of deliveries, then plug it 
into Equation (16) to derive optimal replenishment lot 
size. Finally, one uses the resulting optimal production-
shipment policy to calculate (that is, Equation (20)) the 
long-run average cost for such a specific EPQ model with 
quality assurance. 
 
 
Conclusions 
 
Chiu et al. (2010c) used differential calculus, along the 
Hessian matrix equations (that is, the conventional 
methods) to derive the economic production lot size and 
the optimal number of shipments for an EPQ model with 
failure in rework. This paper re-examines their model by 
using an alternative algebraic approach in lieu of their 
differential calculus. As a result, the optimal production-
shipment policy in terms of lot size and number of 
deliveries is derived without derivatives. Such a 
straightforward algebraic approach allows students or 
practitioners, who lack sufficient training in calculus, to 
learn or deal with the real world integrated production-
delivery systems with ease. 
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