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This paper proposed an algorithm called DE-GSA. The proposed algorithm incorporates both the 
concepts from Differential evolution algorithm (DE) and Gravitation search algorithm (GSA), updating 
particles not only by DE operators but also by GSA mechanisms. The proposed algorithm is tested on 
several benchmark functions including unimodal and multimodal test functions, multimodal test 
function with fix dimension, and some real life problems. Then, experimental results have shown that 
the proposed algorithm is both efficient and effective. 
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INTRODUCTION 
 
Optimization problems play an important role on both 
industrial application fields and the scientific research 
world. During the past decade, we have viewed 
significant progresses on tackling optimization problems. 
Different kinds of classical techniques have been 
advanced to handle optimization problems, including 
branch-and-bound (Lawler and Wood, 1996), meta-
heuristic (Glover and Kochenberger, 2003), dynamic 
programming (Bellman, 1952) and gradient-based 
methods (Snyman, 2004). Among them, Meta-heuristic 
based methods, such as simulated annealing algorithm 
(SA) (Suman, 2004), genetic algorithm (GA) (Horn et al., 
1994; Reid, 1996), artificial immune system algorithm 
(AIS) (Kalinlia and Karabogab, 2005), particle swarm 
optimization algorithm (PSO) (Bergh and Engelbrecht, 
2006; Clerc and Kennedy, 2002; Du and Li, 2008; 
Kennedy and Eberhart, 1995; Liu et al., 2007), ant colony 
algorithm (ACO) (Ahmed, 2005; Dorigo et al., 1996; 
Ellabib et al., 2007; Zhang and Li, 2007), differential 
evolution algorithm (DE) (Omran et al., 2005, 2006; Qin 
and Suganthan, 2005; Qian and Li, 2008), gravitation 
search algorithm (GSA) (Rashedi and Nezamabadi-pour, 
2009) and estimation of distribution algorithm (EDA) 
(Zhang and Muhlenbein,  2004;  Zhang  and  Sun,  2004),  

 
 
*Corresponding author. E-mail: ymh@nenu.edu.cn. Tel: +86-
0431-84536338. Fax: +86-0431-84536338. 

may be one of the most popular methods. Particularly, 
gravitation search algorithm (GSA) is a novel meta-
heuristic algorithm introduced recently. The basic idea of 
GSA is based on the law of gravity and mass interaction. 
The individuals of the population in this algorithm can be 
regarded as different masses. Using the gravitational 
force, information is shared among the individuals to 
direct the search towards the best location in the search 
space. Compared with other meta-heuristic methods like 
PSO, RGA and CFO, GSA usually provides better 
results. 

During the last decade, meta-heuristic methods have 
been proved to have superior features to other traditional 
methods, and have been widely applied in the 
optimization field. However, these meta-heuristic 
methods often suffer some limitations. In some cases, 
they may be easy to fall into the local minimum or 
converge too slowly. Recently, researchers have found 
that a skilled combination of two meta-heuristic 
techniques can improve the performance when dealing 
with real-world and large scale problems (Hendtlass, 
2001; Kim et al., 2007; Talibi Bautouche, 2004). Many 
hybrid heuristic based optimization methods have been 
investigated in the past few years. Angeline (Angeline, 
1998) proposed a new hybrid swarm integrating PSO 
with tournament selection method. Zhang and Xie (2003) 
introduced a hybrid particle swarm with differential 
operators. Shi and Liang (2005) introduced a novel 
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algorithm based on the VPGA and the particle swarm 
optimization. Omran et al. (2007) proposed a hybrid 
version combining with PSO and DE. The DE is used to 
mutate, for each particle, the attractor associated with the 
particle, defined as a weighted average of its position and 
best position. Zhang et al. (2009) proposed a novel 
algorithm for unconstrained optimization. This algorithm 
updates particles according to the DE operation and 
mechanism of PSO. Thangaraj et al. (2008) developed a 
new hybrid algorithm combining with PSO and DE. This 
proposed algorithm can preserve the strengths of both of 
the algorithms and so on. Qin (2005) and Omran et al. 
(2005) proposed a self-adaptive DE (SaDE) algorithm, in 
which both trail vector generation strategies and their 
association control parameter values are self-adaptive by 
learning from their previous experiences in generating 
promising solution. The experiment results show that the 
SaDE is more stable with the relatively small standard 
deviation, and higher success rates. Brest et al. (2006) 
proposed an efficient technique for adaptive control 
parameter setting associated with differential evolution. 
The experimental results show that the self-adaptive DE 
can obtain better solutions than other algorithms. Sun et 
al. (2004) proposed a new algorithm combining the DE 
algorithm and the EDA algorithm, which tried to guide its 
search toward a promising area by sampling new solution 
from a probability model. Liu and Lampinen (2005) 
introduced a new version of the differential evolution 
algorithm with control parameters-the fuzzy adaptive 
Differential evolution algorithm (FADE). The algorithm 
uses the fuzzy logic controllers to adapt the parameters. 
Ratnaweera et al. (2004) introduced a novel parameter 
automation strategy for the particle swarm algorithm and 
two further extensions to improve its performance after a 
predefined number of generations. Wang and Dang 
(2007) proposed a novel evolutionary algorithm (EA) for 
global optimization, an application of Latin squares leads 
to a new and effective crossover operator. Noman and 
Iba (2008) proposed a crossover-based adaptive local 
search (LS) operation for enhancing the performance of 
standard differential evolution (DE) algorithm. This 
algorithm presents a LS technique to solve this problem 
by adaptively adjusting the length of the search, using a 
hill-climbing heuristic. Zhang and Sanderson (2009) 
proposed a new differential evolution (DE) algorithm, 
JADE. The algorithm uses a new mutation strategy 
“DE/current-to-pbest” with optional external archive and 
updating control parameters in an adaptive manner. 
Jasper et al. (2009) proposed an evolutionary algorithm, 
entitled “A multialgorithm genetically adaptive method for 
single objective optimization (AMALGAM-SO)”. The 
algorithm shown that AMALGAM-SO obtained similar 
efficiencies as existing algorithms on relatively simple 
unimodal problems, but is superior for more complex 
higher dimensional multimodal optimization problems.  

 
 
 
 
Yao et al. (1999) proposed “fast EP” (FEP) which uses a 
Cauchy instead of Gaussian mutation as the primary 
search operator. Lee and Yao (2004) proposed an 
evolutionary programming algorithm using adaptive as 
well as nonadaptive Lévy mutations, which applied to 
multivariate functional optimization. However, this field of 
study is still in its early days, a large number of future 
researches are necessary in order to develop hybrid 
algorithm for optimization problems. Particularly, within 
our knowledge, there is almost no paper concerning a 
hybrid heuristic method combining GSA. 

Therefore in this paper, we propose a hybrid meta-
heuristic algorithm integrating differential evolution 
heuristic into gravitational search algorithm, as we called 
DE-GSA. Differential evolution algorithm is first proposed 
by Storn and Price (1997). This algorithm is a population-
based heuristic evolutionary algorithm that is simple to be 
implemented and has little or no parameters to be tuned. 
One of the remarkable advantages of DE is that this 
algorithm can use mutation, cross, select operators to 
increase the population diversity. In this sense, DE 
algorithm can be viewed as a complement of GSA 
algorithm, which is well known for its ability of global 
search. Therefore, combining these two methods should 
be a reasonable approach. Specifically, in this paper, the 
proposed algorithm starts from the DE process, and uses 
GSA to improve the quality of solution for the global 
population. Both processes run alternatively until the 
algorithm meets the stopping criterion. 
 
 

DIFFERENTIAL EVOLUTION ALGORITHM 
 

Differential evolution (DE) is an evolutionary algorithm 
first introduced by Storn and Price (1997). Similar to other 
evolutionary algorithms particularly genetic algorithm, DE 
uses some evolutionary operators like selection 
recombination and mutation operators. Different from 
genetic algorithm, DE uses distance and direction 
information from current population to guide the search 
process. The crucial idea behind DE is a scheme for 
producing trial vectors according to the manipulation of 
target vector and difference vector. If the trail vector 
yields a lower fitness than a predetermined population 
member, the newly trail vector will be accepted and be 
compared in the following generation. Different kinds of 
strategies of DE have been proposed based on the target 
vector selected and the number of difference vectors 
used. In this paper, we use two strategies, DE/rand/1/bin 
and DE/best/2/bin, described as follows. 

For each target vector ( )
i

x t , trail vector ( )
i

v t , i = 1, …, 

NP, let N be the dimension of target vector, and G be the 
G generation. Two mutant vectors are generated in these 
two strategies respectively: 

For DE/rand/1/bin 



  

 

 
 
 
 

, , , ,( )i G a G b G c Gv x F x x= + −                                   (1)                                             

 
For DE/best/2/bin 
 

, , , , , ,( )i G best G a G b G c G d Gv x F x x x x= + + − −              (2) 

               

Where , , , [1, , ]a b c d NP∈ LL  are randomly chosen 

integers, and a b c d i≠ ≠ ≠ ≠ . F is the scaling factor 

controlling the amplification of the differential evolution. 
The cross-over operator, implements a recombination 

of the trial vector and the parent vector to produce 
offspring. This operator is calculated as: 
 

, ,

, ,

, ,

, ( [0,1] ) ( )
    

,

j i G j rand

j i G

j i G

v rand CR or j j
u

x otherwise

≤ =
= 


   (3)                      

 

Where ],,1[ Dj L= ; [0,1]jrand ∈ ; ],,1[ Dj
rand

L=  is the 

randomly chosen index, CR is the crossover rate Gijv ,,  is 

the difference vector of the jth particle in the ith 

dimension at the Gth iteration, and Giju ,, denotes the trail 

vector of the jth particle in the ith dimension at the Gth 
iteration. Selection operator is used to choose the next 
population between the trail population and the target 
population: 
 

, , ,

, 1

,

, ( ) ( )

,

i G i G i G

i G

i G

u f u f x
x

x otherwise
+

<
= 


                      (4)                                      

 
The standard differential evolution algorithm can be 
described as the followings: 
 
Step 1: Randomized initialization population, initialize 
parameters CR, F. and set the current generation number 
G = 0. 
Step 2: Evaluate fitness for every individual. 
Step 3: According to the mutation and crossover 
operations, it can obtain a trail vector for each individual. 
Step 4: Evaluate every trail vector. 
Step 5: Selection, if the trail vector yields a lower fitness 
than a predetermined population member, the newly trail 
vector will be accepted. 
Step 6: G = G + 1; Repeat Step 3 to Step 5 until the stop 
criteria are reached. 
 
 
GRAVITATION SEARCH ALGORITHM  
 
Gravitation search algorithm is a stochastic, population-
based search method introduced by Rashedi and 
Hossein (2009). The mechanism of GSA got inspired by 
the law  of  Newtonian  gravity:   “In  the  universe,  every  

Li et al.          5963 
 
 
 
particle attracts every other particle with a force, and the 
force is directly proportional to the product of their 
masses and inversely proportional to the square of the 
distance between them.” A GSA algorithm maintains a 
population of individuals, where each individual 
represents a possible solution. For a D dimension space, 
the position of a particle can be represented as: 
 

1 2
( , , , , , )

d D

i i i i iX x x x x= L L , NPi ,,1L= . 

 
Given a specific time step ‘t’ and arbitrary two individuals 
‘i’ and ‘j’, the gravity force acting on these individuals can 
be represented as: 
 

( ) ( )
( ) ( ) ( ( ) ( ))

( )

pi ajd d d

ij j i

ij

M t M t
F t G t x t x t

R t ε

×
= −

+
         (5)                         

 
where 

ajM  is the active gravitational mass,
piM  is the 

passive gravitational mass, ( )G t is gravitational constant 

at time t,ε is a small constant, and ( )ijR t is the Euclidian 

distance between two particles: 
 

2
( ) ( ) , ( )

i j i j
R t X t X t=                                (6)                                    

 
The total force that acts on a given individual i in a 
dimension d is a randomly sum of dth components of the 
forces exerted from other agents: 
 

∑
≠=

=
NP

ijj

d

ijj

d

i tFrandF
,1

)(                   (7)                                         

 
where [0,1]jrand ∈  is a random number. 

According to the law of motion, “the current velocity of 
any mass is equal to the sum of the fraction of its 
previous velocity and the variation in the velocity or 
acceleration of any mass is equal to the force acted on 
the system divided by mass of inertia”. Consequently, the 
acceleration rate of the individual i at time t, and in the 

direction dth, denoted by ( )
d

ia t , can be calculated by: 

 

( )
( )

( )

d

d i

i

ii

F t
a t

M t
=                                           (8)                                                     

 
Where Mii is the inertial mass of individual i. 

Furthermore, the position and velocity of the individual 
can be updated as follows: 
 

( 1) ( ) ( )
d d d

i i i iv t rand v t a t+ = × +                    (9) 

                                       

( 1) ( ) ( 1)
d d d

i i ix t x t v t+ = + +                          (10)                                                
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Where [0,1]
i

rand ∈  is used to give a stochastic 

characteristic to the algorithm. 
Assuming the equality of the gravitational and inertia 

mass, the value of mass are calculated using the map of 
fitness. We update by the following equation: 
 

iiipiai MMMM === , NPi ,,1L=  

)()(

)()(
)(

tworsttbest

tworsttfit
tm i

i
−

−
=  

∑ =

=
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i j

i
i

tm

tm
tM

1
)(

)(
)(

                                         

(11)                                                

 

Where )(tfit
i

denotes the fitness value of the agent I at 

time t and )(tbest , )(tworst  are defined as follow: 

 

{ }
)(min)(

,,1
tfittbest i

NPj L∈
=  

{ }
)(max)(

,,1
tfittworst i

NPj L∈
=                               (12)                                    

 
The followings are the standard version of this algorithm: 
 
Step 1: Search space identification. 
Step 2: Randomized initialization. 
Step 3: Fitness evolution of agents. 
Step 4: Update the G, best, worst of the population. 
Step 5: Calculation of the total force in different 
directions. 
Step 6: Calculate M and a  for every agent. 
Step 7: Updating agents’ velocity and position. 
Step 8: Repeat Step 3 to Step 7 until the stop criteria are 
reached. 
 
 
PROPOSED DE-GSA ALGORITHM  
 
Here, discusses the structure and relational of this hybrid algorithm.  
Figure 1 describes the framework of the proposed DE-GSA 
algorithm. As shown, there are mainly two strategies to update the 
agent in the proposed algorithm: the DE strategy and the GSA 
strategy. For the DE updating strategy, we have discussed in 
differential evolution algorithm. For the GSA updating strategy, we 
propose a new method to restrain the most and least bounds of the 
individuals for GSA. 
   The GSA algorithm assumes that the whole population should be 
in an isolated and finite space. During the searching process, if 
there are some individuals that will move out of bounds of the 
space, the original algorithm stops them on the boundary. In other 
words, the particle will be assigned a boundary value. The 
disadvantage is that if there are too many individuals on the 
boundary, and especially when there exists some local minimum on 
the boundary, the algorithm will lose its population diversity to some 
extent. 

In order to tackle this problem, there are mainly two improvements 
made in the proposed GSA updating strategy. First, we restrict the 
speed of the particles  during  searching  process.  The  intention  is  

 
 
 
 
to avoid the individuals moving towards the boundary too fast.  

 Secondly, when the individual moves outside the boundary, we 
scatter them in a feasible region away from the boundary, instead 
of stopping them just on the boundary. The proposed GSA updating 
strategy is as following: 
 
 
Algorithm UGSA (GSA updating strategy) 

 

Input: ix [G], iv [G] ( ix [G] denotes the position of the ith agent at 

the Gth iteration, iv [G] presents the velocity of the ith agent at the 

Gth iteration) 

Outpt: ix ’ [G], iv ’ [G] ( ix ’ [G] denotes the position of the ith agent 

at the Gth iteration, iv ’ [G] presents the velocity of the ith agent at 

the Gth iteration) 

Step 1: Generate ix [G], iv [G] using Equation (9) and (10). 

Step 2: Tackle the boundary of the position and velocity. 

If ( ix [G]> maxx ) then 

maxmax *()*][' xrandcxGxi −=  

End if 

If ( ix [G] < minx ) then 

)(*()*][' minmin xrandcxGxi −+=  

End if 

If ( iv [G]> maxv ) then 

maxmax *()*2][' vrandvGvi −=  

End if 

If ( iv [G] < minv ) then 

)(*()*2][' minmin vrandvGvi −+=  

End if 
 
 
Remark 

 
c plays an important role in different test functions. If the value is 
too high, the individual will not be set in a feasible region. If it is too 
low, the algorithm will lose population diversity. Through a careful 
selection based on lots of experiments, c is set to be 0.01 in this 

paper. We set the minv is equal to the minx and the maxv is equal to 

the maxx . 

Based on the p r ev i ous  description, the algorithm of DE-GSA 
can be presented subsequently. In this proposed algorithm, DE 
process is first called. Then after the mutation operation and cross 
operation, if DE cannot generate a better solution, GSA is 
activated to update the current population. This p r o c e s s  runs 
alternatively until the stopping criterion meets. 
 
 
Algorithm DE-GSA 

 
Input: itermax (maximal number of generations) 
NP (population size) 
D (the dimension of the agent) 
 Output: bestvalue () (the best optimal solution) 

 
Step 1: Initialization. 

Generate an initial population P with NP agents. 
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Figure 1. The framework of the proposed DE-GSA algorithm. 
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Evaluate the fitness for each agent value (). Set the best position 
for the bestvalue ().Set the current iteration number G = 0. 
Step 2: stopping criterion 
If (G==itermax) then 
Output the optimal solutions bestvalue () and stop. 
End if 
Step 3: mutation and crossover. 

Select a, b, c randomly and a b c≠ ≠  

Select jrand D∈  
For i = 1 to D do 
if (rand()<CR or i = jrand) then 

, , , ,*( )i G a G bG cGu x F x x= + −  

End if 
End for 
Step 4: Selection. 
Evaluate the fitness for each trail vector for each dimension. Set the 
fitness for the tempvalue (). 
For j=1 to NP do 
If (tempvalue (j) < value (j)) then 

, ,i G i Gx u=  

Else 
GSA active. We can use GSA to find a new solutions, this solution 
is GX. 
End if 
Evaluate the fitness of GX for GXvalue (). 
If (GXvalue (j) <value (j)) then 

,i G
x GX=  

Else 

, 1,i G i Gx x −=  

End if 
End for 
Step 5: Let the best optimal solution to the bestvalue(). 
If (bestvalue () keeps fixed at consecutive L steps) then 

, , , , , ,( )i G best G a G b G c G d Gu x F x x x x= + + − −  

End if 
Step6: G=G+1; goto Step2.  

 
 
Remark 

 
An important problem that needs to be intentioned is the value of 
the CR, )1,0(∈CR . CR is the crossover rate which affects the 

diversity of population for the next generation. In our knowledge, 
hardly a good choice of the crossover rate has been proposed in 
the literature of DE. If the value of CR is too large, it is conducive to 
local search and speeds up the convergence rate. However, if the 
value of CR is too small, it is conducive to the population diversity 
and the ability of the global search. In our paper, CR is set to be 
0.1. This value can enhance the population diversity as well as the 

convergence rate. The scaling factor F ( )2,0(∈F ) is also 

important because it affects the differential variation between two 
individual. In this paper, the value of F is 0.5, for the functions of 
Table 1. Additionally, for the functions of Table 2, we will assign 
different values of F for the different functions. For the proposed 
DE-GSA algorithm, the value of the L is also quite significant, since 
it is crucial for the proposed algorithm to obtain a optimal solution. If 
we set up the value too large, the effect of the GSA will be reduced. 
On the contrary, if the value of L is too little, it will affect  the  role  of  

 
 
 
 
DE. Therefore, in this paper, the value of L is set to 15; this value 
can enhance the effect of both algorithms. The last problem is the 
G of the GSA algorithm, G is set using the equation as follows: 
 

T

t

eGtG
α−

= *)( 0
,  

 
where G0 is equal to 100, t denotes the current iteration, T 

represents the maximum iteration. The value of α is also important 

for it affects the effect of the GSA algorithm, if we set α too high, 

the stability of the algorithm will become very poor. On the other 
hand, small value will make the convergence rate slowly. Therefore, 

we set α to 20. 

 
 
EXPERIMENTAL RESULTS 
 
To evaluate the performance of our algorithm, we applied 
it to 20 standards benchmark functions and 2 real life 
problems. The first five functions are unimodal functions, 
and the following five functions are multimodal test 
functions. These ten test functions can be seen in Table 
1. Then, ten multimodal test functions with fix dimension 
are used in our experimental study. Table 3 has shown 
the details of these functions. We also use two real life 
problems, gas transmission compressor design and 
optimal capacity of gas production facilities, to validate 
the proposed algorithm. So far, these problems have 
been widely used as benchmarks for study with different 
methods by many researchers. 

The algorithm is coded in MATLAB 7.0, and 
experiments are made on a Pentium 3.0 GHz Processor 
with 1.0 GB of memory. 

For unimodal and multimodal test functions, we will do 
three kinds of experiments for F1-F10: 
 
(1) Population size = 20, dimension = 20, run = 30, 
itermax = 1000 
(2) Population size = 40, dimension = 40, run = 20, 
itermax = 2000 
(3) Population size = 80, dimension = 80, run = 15, 
itermax = 4000 
 
Here, run presents the number of times an algorithm is 
executed. 
For multimodal test function with fix dimensioning, we will 
experiment for F11 to F20: 
Population size = 60, run = 30, itermax = 500 
 
 

The results of unimodal and multimodal high–
dimension test functions 

 
Here, the performance of DE-GSA is compared with 
other well-know algorithms based on the 10 functions. 
The results are listed in Table  1.  We  apply  DE-GSA  to  
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Table 1. Unimodal and multimodal high–dimension test functions.  

 

Test function Range Optimum 

2
11( ) n

i iF x x== ∑
 

[-5.12, 5.12] 0 

   

1 12 ( ) nn
i ii iF x x x= == +∑ ∏

 
[-10, 10] 0 

   

2 2 21
13 1( ) 100( ) ( 1)n

i i i i
F X x x x−

= +
 = − + −∑    

[-30, 30] 0 

   

2

4 1
( ) ([ 0.5])

n

ii
F x x

=
= +∑  

[-100, 100] 0 

   

4

5 1
( ) [0,1]

n

ii
F X ix random

=
= +∑  

[-1.28,1.28] 0 

   

6 1
( ) sin( )

n

i ii
F X x x

=
= −∑

 
[-500,500] -418.9829*n 

   

2

7 1
( ) [ 10cos(2 ) 10]

n

i ii
F X x xπ

=
= − +∑  

[-5.12, 5.12] 0 

   

2

8 1 1

1 1
( ) 20 exp( 0.2 ) exp( cos(2 )) 20

n n

ii i
F X x e

n n
π

= =
= − − − + +∑ ∑

 
[-32, 32] 0 

   

2 2 21( ) {10sin( ) ( 1) [1 10sin ( ) ( 1) ]} ( ,10,100,4)1 19 1 1
n nF x y y y y u xi ii ii nn

π
π π−= + − + + − +∑ ∑= =+  

1
1

4

i

i

x
y

+
= +

 

( )

( , , , ) 0

( )

m

i

i

m

i

k x a

u x a k m

k x a

 −


= 


− −
i

i

i

x a

a x a

x a

>

− < <

< −

 

[-50, 50] 0 

22 2 2 2( ) 0.1{sin (3 ) ( 1) [1 sin (3 1)] ( 1) [1 sin (2 )]} ( ,5,100,4)10 1 1 1
n nF X x x x x x u x

i i n n ii i
π π π= + − + + + − + +∑ ∑= =  

[-50, 50] 0 

 
 
 
these minimization functions and compared the results 
with GA, PSO, DE, and GSA. For unimodal function F1 to 
F5, the objective of the algorithms is to improve their 
convergence rate, not just to obtain optimal solutions. 
The results are averaged at least 30 runs for 20 
dimension, 20 runs for 40 dimension, 15 runs for 80 
dimension and the averaged best-so-far solution are 
listed in Table 2. As shown in Table 2, DE-GSA usually 
provides better solutions than other four algorithms 
expect for the test function F3. Moreover, the optimal 
convergence rate of the algorithms is shown in Figures 2, 
3, and 4. From these figures, we can see that DE-GSA 
tends   to   find   the  optimal  solutions  faster  than  other  

algorithms. 
Multimode functions are more difficult to be solved than 

unimodal functions, because they have many local 
minima. For these functions, obtaining the optimal 
solutions is more important because it can reflect the 
ability of the algorithms to escape from the local minima. 
As shown in Table 3, DE-GSA can provide better results 
than other algorithms for F6 to F9. For F10, DE-GSA 
cannot adjust itself and provide a better solution. Figures 
5 and 6 have shown the optimal convergence rate of the 
algorithms. From both figures, we can find DE-GSA has a 
higher convergence rate and can generate better 
solutions than other algorithms. 
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Table 2. Minimization result of benchmark function in Table 1. 

 

F Dim GA PSO DE GSA DE-GSA 

F1 

20 
0.0862 

(0.0651) 

2.3921e-008 

(1.458e-008) 

1.1166e-016 

(7.6700e-017) 

1.9108e-016 

(1.4131e-016) 

7.2582e-018 

(1.6864e-017) 

40 
0.0750 

(0.0152) 

2.1431e-007 

(1.154e-007) 

2.4395e-020 

(5.3728e-020 

5.5061e-017 

(2.0107e-017) 

1.2268e-021 

(1.4505e-021) 

       

F2 

80 
0.0546 

(0.0131) 

1.6600e-006 

(5.200e-005) 

6.3583e-022 

(5.3732e-022 

2.3377e-017 

(2.6958e-018) 

4.4763e-025 

(1.5334e-024) 

20 
1.5415 

(0.2228) 

3.0915e-006 

(2.2590e-006) 

5.4799e-009 

(1.6384e-009 

7.5417e-008 

(6.0403e-008) 

1.4368e-009 

(1.3166e-009) 

40 
2.1713 

(0.2493) 

1.2187e-005 

(3.6595e-005 

2.5695e-011 

(2.6668e-011 

4.2746e-008 

(4.5332e009) 

8.2103e-012 

(6.8438e-013) 

 80 
2.6224 

(0.3626) 

9.5727e-004 

(3.0258e-003 

2.1804e-012 

(2.6707e-011) 

3.9757e-008 

(7.0558e-010) 

1.2316e-012 

(6.8541e-012) 

       

F3 

20 
892.2516 

(5.2561) 

28.1872 

(7.9226 

47.7445 

(19.4010) 

57.2537 

(93.6483) 

24.6655 

(3.1346) 

40 
659.3939 
(35.0295) 

88.2824 

(32.5186) 

60.3302 

(12.4921) 

34.7175 

(0.1729) 

49.6038 

(22.0396) 

80 
1757.4654 

(45.4340) 

203.9393 

(69.2797) 

77.3435 

(13.6890) 

72.0420 

(0.0439) 

75.848 

(4.218) 

       

F4 

20 
23.7364 

(10.2218) 

2.9861e-010 

(2.4076e-010) 

7.5301e-014 

(6.3810e-014) 

2.0798e-013 

(1.1161e-013) 

1.1925e-014 

(1.6710e-014) 

40 
23.1347 

(4.5841) 

6.9759e-009 

(1.200e-008) 

7.8294e-018 

(4.1231e-018) 

4.9932e-017 

(9.9231e-018) 

1.6780e-018 

(1.4098e-018) 

80 
23.0706 

(2.8393) 

2.6924e-008 

(2.6924e-008) 

2.1394e-019 

(4.1231e-019) 

2.0936e-017 

(1.0697e-019) 

1.7443e-020 

(7.5054e-021) 

       

F5 

20 
0.1431 

(0.0664) 

0.0418 

(0.0120) 

0.0224 

(0.0060) 

0.6554 

(1.5655) 

0.0113 

(0.0024) 

40 
0.1307 

(0.0518) 

0.0908 

(0.0268) 

0.0288 

(0.0075) 

0.0539 

(0.0147) 

0.0232 

(0.0070) 

80 
0.1132 

(0.0323) 

1.5212 

(0.0475) 

0.0547 

(0.0434) 

0.0549 

(0.0041) 

0.0533 

(0.0021) 

 
 
 
The results of multimodal test function with fix 
dimension  
 
Here, the performance of DE-GSA is compared with 
other algorithms based on multimodal test function with 
fix dimension listed in Table 4. A detailed description of 
these functions is shown in appendix A. For these 
functions, finding a better optimal solutions are more 
important, because it reflects the ability of the algorithms 
to locate near-global optimum of these functions. The 
averaged best-so-far solutions are listed in Table 5, from 
which we can see that DE-GSA performances better than 
the other algorithms. From Figures 7, 8 and 9, we can 

also find DE-GSA convergences faster than other 
algorithms on these functions. 
 
 
The results of real life problem 
 
The performance of DE-GSA is also compared with 
algorithm on some real life problems. In this paper, we 
use two real life problems to validate the performance of 
DE-GSA: Gas transmission compressor design problem 
and optimal capacity of gas production facilities problem. 
Gas transmission compressor design (Beightler and 
Phillips, 1976). 
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Table 3. Minimization result of benchmark function in Table 1. 
 

F Dim GA PSO DE GSA DE-GSA 

F6 

20 
-7.1444e+003 

(225.1424) 

-4.70750e+003 

(4.8669e+002) 

-8.3151e+003 

(59.9792) 

-1.9199e+003 

(320.8131) 

-8.1108e+003 

(205.7557) 

40 
-1.4285e+004 

(334.7862) 

-9.7576e+003 

(1.1116e+003) 

-1.6641e+004 

(0.0000) 

-2.9486e+003 

(498.9667) 

-1.6641e+004 

(0.0000) 

80 
-3.0304e+004 

(177.9693) 

-1.7004e+004 

(1.8959e+003) 

3.3479e+004 

( 68.4178) 

-4.3034e+003 

(751.4651) 

-3.3519e+004 

(0.0000) 

       

F7 

20 
17.3415 

(5.4070) 

28.3329 

(14.3352) 

1.6160e-009 

(1.4703e-009) 

46.9666 

(27.7972) 

1.0622e-013 

(3.4876e-013) 

40 
18.0032 

(3.0007) 

82.7479 

(34.5265) 

2.3882e-005 

(5.4991e-005) 

29.6829 

(6.9052) 

3.3810e-013 

(5.2729e-013) 

80 
27.9166 

(3.6881) 

195.4091 

(56.3481) 

145.2627 

(59.7323) 

38.3059 

(0.7035) 

78.1390 

(15.6996) 

       

F8 

20 
3.0165 

(0.0589) 

0.0127 

(0.0147) 

1.0706e-007 

(4.8870e-008) 

1.2346e-008 

(3.8539e-009) 

9.5664e-009 

(1.6838e-008) 

40 
2.9816 

(2.5227e-004) 

0.0098 

(0.0102) 

6.9785e-010 

(3.7265e-010) 

5.5114e-009 

(5.3301e-010) 

1.5410e-010 

(1.3703e-010) 

80 
2.9812 

(4.8999e-005) 

0.0012 

(0.0030) 

8.3041e-011 

(3.7348e-012) 

2.1960e-009 

(5.6204e-011) 

1.4788e-012 

(4.8736e-013) 

       

F9 

20 
0.2972 

(0.2080) 

2.2397e-004 

(3.4072e-004) 

4.2327e-015 

(3.0724e-015) 

0.0104 

(0.0402) 

2.3564e-016 

(9.1262e-016) 

40 
0.1503 

(0.1134) 

0.3458 

(0.8222) 

2.1988e-018 

(3.4942e-019) 

0.0259 

(0.0635) 

1.1779e-032 

(0.0000) 

80 
0.0171 

(8.6606e-004) 

8.2411e-004 

(8.2886e-004) 

7.2401e-019 

(2.4944e-019) 

5.3640e-020 

(4.6214e-021) 

5.8895e-033 

(0.0000) 

       

F10 

20 
0.0212 

(0.0167) 

0.3063 

(0.6793) 

-12.1253 

(0.0000) 

5.5391e-032 

(6.8897e-032) 

-12.1253 

(0.0000) 

40 
0.0027 

(6.4061e-004) 

0.5000 

(0.8927) 

-12.1253 

(0.0000) 

4.4493e-032 

(5.5703e-032) 

-1.1504 

(0.0000) 

80 
3.6692e-004 

(2.5446e-004) 

42.7568 

(47.6000) 

-12.1253 

(0.0000) 

1.4998e-032 

(1.2726e-032) 

-1.1504 

(0.0000) 

 
 
 

Min 

5 1/2 2/3 2 1/2 4

1 2 3 2 3

8 1 0.219 6 1

1 2 1

( ) 8.61 10 ( 1) 3.69 10

7.72 10 765.43 10

f x x x x x x

x x x

− −

− −

= × × − + × ×

+ × × − × ×
 

 

Subject to: 110 55x≤ ≤ , 2
1.1 2x≤ ≤ , 310 40x≤ ≤ .  

Optimal capacity of gas production facilities (Beightler 
and Phillips, 1976): 

Min

0.852
1 1

0.752
1 2

( ) 61.8 5.72 0.2623[(40 ) ln( )]
200

0.087(40 ) ln( ) 700.23
200

x
f x x x

x
x x

−

−

= + + −

+ − +

 

Subject to： 

1
17.5x ≥ ,

2
200x ≥ , 117.5 40x≤ ≤ , 2

300 600x≤ ≤
 

The experimental results of these real life problems are 
listed in Tables 6 and 7. From the tables we can draw the 
conclusion that DE-GSA usually generates better results. 
 
 
Comparison of self-adaptive DE with fuzzy adaptive 
differential evolution algorithm  
 
Liu and Lampinen (2005) introduce a new version of the 
differential evolution  algorithm  with  control  parameters
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Figure 2. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for 
minimization of F1 with NP = 40, D = 40. 
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Figure 3. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization 

of F4 with NP = 40, D = 40. 
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Figure 4. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization of F5 

with NP = 40, D = 40. 
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Figure 5. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization of F7 

with NP = 40, D = 40. 
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Figure 6.  Comparison of performance of GA, PSO, DE, GSA, DE-GSA for 
minimization of F9 with NP = 40, D = 40. 

 
 
 

Table 4. Multimodal test function with fix dimensioning. 
 

Test function Range Dimension 

25 1

11 21 6

1

1 1
( ) ( )

500 ( )
j

i iji

F X
j x a

−

=

=

= +
+ +

∑
∑  

[-65.53,65.53] 2 

22
11 1 2

12 21
3 4

( )
( ) [ ]i i

ii

i i

x b b x
F X a

b b x x=

+
= −

+ +
∑

 

[-5,5] 4 

2 4 6 2 4

13 1 1 1 1 2 2 2

1
( ) 4 2.1 4 4

3
F X x x x x x x x= − + + − +

 
[-5,5] 2 

2 2

14 2 1 1 12

5.1 5 1
( ) ( 6) 10(1 ) cos 10

84
F X x x x x

π ππ
= − + − + − +

 
[-5,10]*[0,15] 2 

2 2 2

15 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

( ) [1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

F X x x x x x x x x

x x x x x x x x

= + + + − + − + +

× + − × − + + − +
 

[-5,5] 2 

24 3

16 1 1
( ) exp( ( ) )i ij j iji j

F X c a x p
= =

= − − −∑ ∑
 

[0,1] 3 

24 6

17 1 1
( ) exp( ( ) )

i ij j iji j
F X c a x p

= =
= − − −∑ ∑

 
[0,1] 6 

15

18 1
( ) [( )( ) ]T

i i ii
F X X a X a c

−

=
= − − − +∑

 
[0,10] 4 

17

19 1
( ) [( )( ) ]T

i i ii
F X X a X a c

−

=
= − − − +∑

 
[0,10] 4 

110

20 1
( ) [( )( ) ]T

i i ii
F X X a X a c

−

=
= − − − +∑

 
[0,10] 4 
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Table 5. Minimization result of benchmark function in Table 4. 
 

F Dim GA PSO DE GSA DE-GSA 

F11 2 
0.9980 

(0.0000) 

0.9980 

(0.0000) 

0.9980 

(0.0000) 

4.5297 

(2.7184) 

0.9980 

(0.0000) 

       

F12 4 
0.0017 

(3.6960e-004) 

0.0046 

(0.0012) 

0.0014 

(4.5493e-004) 

0.0057 

(0.0024) 

7.1010e-004 

(1.8186e-004) 

       

F13 2 
-1.0316 

(0.0000) 

-1.0316 

(0.0000) 

-1.0316 

(0.0000) 

-1.0316 

(0.0000) 

-1.0316 

(0.0000) 

       

F14 2 
0.3981 

(3.8806e-004) 

0.3979 

(0.0000) 

0.3979 

(0.0000) 

0.3979 

(0.0000) 

0.3979 

(0.0000) 

       

F15 2 
3.0036 

(0.0028) 

3.0000 

(0.0000) 

3.0222 

(0.0014) 

3.0000 

(0.0000) 

3.0000 

(0.0000) 

       

F16 3 
-3.8620 

(0.0018) 

-3.8628 

(0.0000) 

-3.8628 

(0.0000) 

-3.7989 

(0.1406) 

-3.8628 

(0.0000) 

       

F17 6 
-3.2744 

(0.0651) 

-3.2657 

(0.5732) 

-3.3220 

(0.0000) 

-2.4750 

(0.7890) 

-3.3220 

(0.0000) 

       

F18 4 
-6.5630 

(3.4866) 

-5.0551 

(0.0000) 

-9.9104 

(0.5209) 

-5.0552 

(0.0000) 

-10.1532 

(0.0000) 

       

F19 4 
-6.4789 

(3.1670) 

-5.0876 

(2.1503e-007) 

-10.1182 

(0.3283) 

-9.3399 

(2.2007) 

-10.4029 

(0.0000) 

       

F20 4 
-10.5280 

(0.0038) 

-5.1284 

(0.0000) 

-10.2201 

(0.3967) 

-10.5364 

(0.0000) 

-10.5364 

(0.0000) 
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Figure 7. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for 
minimization of F12 with NP = 40, D = 40. 
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Figure 8. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization 
of F17 with NP = 40, D = 40. 
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Figure 9. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization 

of F18 with NP = 40, D = 40. 
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Table 6. Gas transmission compressor design. 

 

Item DE GSA DE-GSA (Beightler and Phillips, 1976) 

1x
 

52.3966 53.0547 53.5080 55 

2x
 

1.1875 1.1919 1.1901 1.195 

3x
 

24.6997 24.5070 24.7624 25.026 

f(x) 2.96443e+006 2.96449e+006 2.96437e+006 2.96455e+006 

 
 
 

Table 7. Gas transmission compressor design. 
 

Item DE GSA DE-GSA (Beightler and Phillips, 1976) 

1x
 

17.5 17.5 17.5 17.5 

2x
 

600 600 600 465 

f(x) 169.844 169.844 169.844 173.76 

 
 
 

Table 8. Comparison of self-adaptive DE with fuzzy adaptive differential evolution algorithm. 
 

F #Gen 
Fuzzy adaptive DE 

Mean best (Std Dev.) 

DE-GSA 

Mean best (Std Dev.) 

F1 5000 2.35e-10(2.97e-21) 1.0945e-43(1.1289e-43) 

F3 7000 4.16e+1(1.82e-2) 4.441e+1 (6.125e-1) 

F4 5000 0(0) 0(0) 

F5 5000 1.9e+1(2.92e-1) 0(0) 

F7 10000 2.58e+2(9.17e+1) 0(0) 

F8 5000 5.9e-2(1.23e-6) 7.9936e-15(0) 

F12 100 0.9980(2.5e-26) 0.9980(1.0368e-13) 

F15 50 3.0001(3.35e-7) 3.000(0) 

 
 
 
The fuzzy adaptive differential evolution algorithm. The 
algorithm uses the fuzzy logic controllers to adapt the 
parameters. 

From the paper, the algorithm is tested with a set of 
standard test functions, where it outperforms the original 
DE when the dimensionality of the problem is high. The 
following parameters are the same with the paper (Liu 
and Lampinen, 2005): dimension = 50; population size = 
10* dimension, itermax: 5000 for F1, F4, F5, F8  and  
7000  for  5,  F3, 10000  for  F7, are listed on Table 8. 

As shown in Table 8, The DE-GSA algorithm can 
perform better than the FADE algorithm for the functions 
expect the F3. Base on the experimental results, we can 
find that DE-GSA outperforms the FADE for the high 
dimension function. For lower dimension function, the 
DE-GSA algorithm has the similar solution with the FADE 
algorithm. 

Comparison of FEP and CEP algorithms  
 

Here, we will compare our algorithm with the FEP and 
CEP algorithms (Yao and Liu, 1999). We set the 
parameters as in Yao and Liu (1999), the following 
parameters are used in our paper: population size = 100, 
dimension: 30 for F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, 
2 for F11, F13, F14, F15, 4 for F12, F18, F19, F20, 3 for 
F16, 6 for F17. itermax: 1500 for F1, F4, F8, F9, F10, 
2000 for F2, 20000 for F3, 3000 for F5, 5000 for F7 and 
100 for F11, F13, F14, F15, F18, F19, F20, 4000 for F12. 
Therefore, in our paper, we set the same population size 
and the same iteration as in Yao and Liu (1999), runs = 
50 replications are conducted for each function. The 
averaged best-so-far solutions are listed in Table 9. Form 
Table 9, we can find the DE-GSA obtain better results 
than   the  FEP  and  CEP  algorithm.  For  unimodal  and  
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Table 9. Comparison of FEP and CEP algorithms. 

 

F #Gen 
FEP 

Mean best (Std Dev.) 

CEP 

Mean best (Std Dev.) 

DE-GSA 

Mean best (Std Dev.) 

F1 1500 5.7e-4(1.3e-4) 2.2e-4(5.9e-4) 1.1130e-17(8.6734e-18) 

F2 2000 8.1e-3(7.7e-4) 2.6e-3(1.7e-4) 8.2379e-15(4.4905e-15) 

F3 20000 5.06(5.87) 6.17(13.61) 0(0) 

F4 1500 0(0) 577.76(1125.76) 1.5978e-17(9.2810e-18) 

F5 3000 7.6e-3(2.6e-3) 1.8e-3(6.4e-3) 0(0) 

F7 5000 4.6e-2(1.2e-2) 89.0(23.1) 0(0) 

F8 1500 1.8e-2(2.1e-3) 9.2(2.8) 1.2150e-13(1.5632e-13) 

F9 1500 9.2e-6(3.6e-6) 1.76(2.4) 9.3668e-10(4.0617e-10) 

F10 1500 1.6e-4(7.3e-5) 1.4(3.7) 1.1930e-18(3.7725e-18) 

F11 100 1.22(0.56) 1.66(1.19) 0.9980(1.0951e-12) 

F12 4000 5.0e-4(3.2e-4) 4.7e-4(3.0e-4) 3.0749e-04(1.2122e-19) 

F13 100 -1.03(4.9e-7) -1.03(4.9e-7) -1.0316(4.3205e-09) 

F14 100 0.398(1.5e-7) 0.398(1.5e-7) 0.3979(2.9893e-06) 

F15 100 3.02(0.11) 3.0(0) 3.000(0) 

F18 100 -5.52(1.59) -6.86(2.67) -10.1532(4.6389e-5) 

F19 100 -5.52(2.12) -8.27(2.95) -10.4029 (9.5130e-8) 

F20 100 -6.57(3.14) -9.10(2.92) -10.5364(8.8497e-12) 
 
 
 

multimodal function, the DE-GSA algorithm can gives 
better solution than FEP and CEP for all functions. 
Especially, for the multimodal function, the final results 
are more important because of this function can reflect 
the algorithm’s ability to escape form poor local optima 
and obtain the near-global optimum. 
 
 
Comparison of DEPSO and BBDE algorithms 
 

Here, compares the performance of the DE-GSA with the 
DEPSO algorithm (Zhang and Xie, 2003) and BBDE 
algorithm (Omran et al., 2007). The DEPSO provides the 
bell-shaped mutations with consensus on the population 
diversity along with the evolution, while keeps the self-
organized particle swarm dynamics. The DEPSO is 
shown to outperform the PSO and DE for a set of 
benchmark functions. The BBDE presents a new 
population-based algorithm, as a hybrid of the barebones 
particle swarm optimizer (PSO) and differential evolution 
(DE). The particle position update is changed to 
probabilistically base a new position on a mutation of the 
particle attractor, or a randomly selected best position. 
The BBDE does not make use of the standard PSO 
parameters and also removes the DE scale parameter. 
The only parameter is the probability of recombination, 
for which it was shown empirically that the BBDE is 
insensitive. In the experiment, we used the same function 
set and the parameter as in Omran et al. (2007), the 
results reported here are the average and the deviations 
for 30 independent runs. In Omran et al. (2007), 13 test 

functions were used, and 7 of them are the same as the 
benchmark function in Omran et al. (2007) and in our 
paper, population size is 30 and iteration is 100000 
function evaluations. The experimental results are listed 
in Table 10. As shown in Table 10, the DE-GSA performs 
better than the DEPSO and BBDE. It can conclusion that 
the DE-GSA combines the DE algorithm and GSA is very 
meaningful. For F10, The DEGSA algorithm cannot give 
the optimal solution than other algorithm, but based on 
the result, the robustness of the DEGSA is very good. 
 
 

Comparison of adaptive LEP and best lévy algorithm  
 

Here, we will compare our algorithm with the adaptive 
LEP and best lévy algorithm (Lee and Yao, 2004). We set 
the parameters as in Lee and Yao (2004), the following 
parameters were used in our paper: population size = 
100, dimension: 30 for F1, F3, F7, F8, F9, F10, 2 for F13, 
F15, 4 for F18, F19, F20. itermax: 1500 for F1, F3, F7, 
F8, F9, F10, 30 for F13, F15, 100 for F18, F19, F20. The 
experimental results are listed in Table 11, From Table 
11, for the unimodal function F1 and F3, the DE-GSA can 
gives the better solution than adaptive LEP and best lévy 
algorithm. For multimodal functions F7 to F10 with many 
local minima, the final results are more important 
because of this function can reflect the algorithm’s ability 
to escape form poor local optima and obtain the near-
global optimum. The DE-GSA provided better solutions 
than other algorithms. For F13 and F15, the dimension of 
the function is very  small.  Therefore,  all  the  algorithms
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Table 10. Comparison of DEPSO and BBDE algorithms. 
 

F #Gen 
DEPSO 

Mean Best (Std Dev.) 

BBDE 

Mean Best (Std Dev.) 

DE-GSA 

Mean best (Std Dev.) 

F1 100000 0.339409e-10(0.255639e-10) 0(0) 0(0) 

F3 100000 30.243866(3.11839) 14.295707(0.948028) 0.1511(0.0589) 

F4 100000 0.692243e-9(0.278905e-9) 0(0) 0(0) 

F5 100000 0.436603e-14(0.348727e-12) 0(0) 0(0) 

F7 100000 40.970572(2.021865) 72.185823(3.018019) 0(0) 

F8 100000 13.435463(0.550129) 2.136173(0.159471) 4.4409e-15(0) 

F11 100000 0(0) 0(0) 0.9980(0) 

 
 
 

Table 11. Comparison of adaptive LEP and best lévy algorithm. 
 

F #Gen 
Adaptive LEP 

Mean best (Std dev) 

Best levy 

Mean best (Std dev) 

DE-GSA 

Mean best (Std dev) 

F1 1500 6.32e-4(7.6e-5) 6.59e-4(6.4e-5) 1.1130e-17(8.6734e-18) 

F3 1500 43.40(31.52) 57.75(41.60) 30.1137(5.8759) 

F7 1500 5.85(2.07) 12.50(2.29) 1.2150e-13(1.5632e-13) 

F8 1500 1.9e-2(1.0e-3) 3.1e-2(2.0e-3) 9.3668e-10(4.0617e-10) 

F9 1500 6.0e-6(1.0e-6) 3.0e-5(4.0e-6) 1.1930e-18(3.7725e-18) 

F10 1500 9.8e-5(1.2e-5) 2.6e-4(3.0e-5) -7.4218(5.8663) 

F13 30 -1.031(0.0) -1.031(0.0) -1.0316(4.2308e-07) 

F15 30 3.000(0) 3.000(0) 3.0000(0) 

F18 100 -9.54(1.69) -9.95(0.99) -10.1532(4.6389e-5) 

F19 100 -10.30(0.74) -10.40(1.0e-4) -10.4029 (9.5130e-8) 

F20 100 -10.54(4.9e-5) -10.54(3.1e-3) -10.5364(8.8497e-12) 

 
 
 
find optimal solutions for these two functions. For F18 to 
F20, The DE-GSA can provide all the optimal solution. 
The algorithm performs superiorly better than adaptive 
LEP and best lévy algorithm. 

 
 
Comparison of MPSO-TVAC and HPSO-TVAC 
algorithms  
 
Ratnaweera et al. (2004) introduced a novel parameter 
automation strategy for the particle swarm algorithm and 
two further extensions to improve its performance after a 
predefined number of generations. Firstly, time-varying 
acceleration coefficients (TVAC) are introduced in 
addition to the time-varying inertia weight factor in particle 
swarm optimization (PSO) to efficiently control the local 
search and convergence to the global optimum solution, 
the concept of “mutation” is introduced to the particle 
swarm optimization along with TVAC (MPSO-TVAC), 
Secondly, we introduce a novel particle swarm concept 
“self-organizing hierarchical particle swarm optimizer with 
TVAC (HPSO-TVAC).” This algorithm selected modulus 

of the velocity vector of a random particle by predefined 
probability which added a small perturbation to it 
randomly. In the experiment, we used the same function 
set and the parameter as in Ratnaweera et al. (2004), the 
results reported here are the average and the deviations 
for 50 independent runs. 

In Ratnaweera et al. (2004), 5 test functions were used, 
and 3 of them are the same as the benchmark function in 
Ratnaweera et al. (2004) and in our paper, the following 
parameters were used in our experimental: population 
size is 40, dimension: 10, 20, 30 for the functions. The 
iterations are listed in Table 12, all functions have the 
global optimal value of 0.0. The stopping criteria are 
setting to 0.01. For F1, all algorithms can convergence to 
0.01 for the 50 runs. For F3, The DE-GSA can give better 
solution than the MPSO-TVAC and HPSO-TVAC for 10 
and 20 dimensions. For 30 dimensions, the algorithm 
gives the worst solution. For F7, the DE-GSA algorithms 
can convergence to 0.01 for three different dimensions. 
The experimental results show that the DE-GSA performs 
superiorly better than the MPSO-TVAC and HPSO-
TVAC.
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Table 12. Comparison of MPSO-TVAC and HPSO-TVAC algorithms.  

 

F Dimension #Gen 
Mean best (Std dev) 

MPSO-TVAC HPSO-TVAC DE-GSA 

F1 

10 1000 0.01 0.01 0.01 

20 2000 0.01 0.01 0.01 

30 3000 0.01 0.01 0.01 

      

F3 

10 3000 4.247(7.961) 12.967(11.538) 0.0222(0.0225) 

20 4000 17.7148(60. 306) 14.093(9.641) 3.0755(0.5737) 

30 5000 18.633(25.122) 13.666(11.006) 52.5691(28.2315) 

      

F7 

10 3000 0.01(0.0033) 0.01 0.01 

20 4000 0.3415(0.588) 0.01 0.01 

30 5000 2.050(1.910) 0.044(0.196) 0.01 

 
 
 
CONCLUSION  
 
This paper presented a hybrid differential evolution 
with gravitation search algorithm called DE-GSA. The 
proposed algorithm is tested on several benchmark 
functions including unimodal and multimodal test 
functions, multimodal test function with fix dimension, 
and some real life problems. We have compared the 
performance of DE-GSA with other evolution algorithm. 
Experimental results have shown that the proposed 
algorithm is more effective in obtaining better quality 
solution, which are more robust with the relatively 
smaller standard deviation.  
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Appendices  

 

Table A.1. 
ija in

14
F

 
 

32, 16,0,16,32, 32 ,0,16,32
( )

32, 32, 32, 32, 16, ,32,32,32
ij

a
− − − 

=  
− − − − − 

L

L
 

 
 
 

Table A.2. 
i

a and 
i

b in
15

F  

 

i 1 2 3 4 5 6 7 8 9 10 11 

i
a

 
0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0342 0.0235 0.0246 

1

ib
−

 
0.25 0.5 1 2 4 6 8 10 12 14 16 

 
 
 

Table A.3.   
ija  and 

i
c in

19
F    

 

i ija
,j = 1, 2, 3 i

c
 

1 3 10 30 1 

2 0.1 10 35 1.2 

3 3 10 30 3 

4 0.1 10 35 3.2 
 
 
 

Table A.4. 
ijp in 

19
F  

 

i ijp
,j = 1, 2, 3 

1 0.3689 0.1170 0.2673 

2 0.4699 0.4387 0.7470 

3 0.1091 0.8732 0.5574 

4 0.0315 0.5743 0.8828 
 
 
 

Table A.5. The planning and control components. 

 

i ija
,j = 1, 2, 3, 4, 5, 6 i

c
 

1 10 3 17 3.5 1.7 8 1 

2 0.05 10 17 0.1 8 14 1.2 

3 3 3.5 1.7 10 17 8 3 

4 17 8 0.05 10 0.1 14 3.2 

 

 

Table A.6. 
ijp in

20
F

 
 

i ijp
,j  = 1, 2, 3 

1 0.131 0.169 0.556 0.012 0.828 0.588 

2 0.232 0.413 0.830 0.373 0.100 0.999 

3 0.234 0.141 0.352 0.288 0.304 0.665 

4 0.404 0.882 0.873 0.574 0.109 0.038 
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Table A.7. 
ija  and 

i
c in

21 22 23
, ,F F F

.
 

 

i ija
,j = 1, 2, 3, 4 i

c
 

1 4 4 4 4 0.1 

2 1 1 1 1 0.2 

3 8 8 8 8 0.2 

4 6 6 6 6 0.4 

5 3 7 3 7 0.4 

6 2 9 2 9 0.6 

7 5 5 5 5 0.3 

8 8 1 8 1 0.7 

9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 

 
 
 


