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In this work, we construct explicit exact solutions for the non-linear Klein-Gordon equation by using a 

( )
G
G

¢  -expansion method. By means of the method, many new exact travelling wave solutions for the 

non-linear Klein- Gordon equation are successfully obtained. 
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INTRODUCTION 
 
The investigation of exact travelling wave solutions to 
nonlinear evolution equations (NLEEs) plays an important 
role in the study of nonlinear physical phenomena. In 
recent years, the exact solutions of non-linear PDEs have 
been investigated by many authors and Many powerful 
methods have been presented by those authors such as 
the homogeneous balance method (Wang, 1995; Zayed, 
2004), the hyperbolic tangent expansion method (Yang, 
2001; Zedan, 2004), the trial function method (M. Inc, 
2004), the tanh-method (Abdou, 2007; Fan, 2000; 
Malfliet, 1992; Parkes, 1996; Wang, 2005), the non-linear 
transform method (Hu, 2004), the inverse scattering 
transform (Ablowitz, 1991), the Backlund transform 
(Miura, 1978; Rogers, 1982), the Hirota’s bilinear method 
(Hirota, 1973; Hirota, 1981) and so on. The objective of 
this paper is to use a new method which is called the 

( )
G
G

¢ -expansion method (Bekir, 2008; Wang, 2008; 

Zhang, 2008; Zhang, 2008). The 
( )

G
G

¢ -expansion 

method is based on the assumptions that the travelling 
wave solutions can be expressed by a polynomial in 

( )
G
G

¢  and that ( )G G x=  satisfies a second order linear 
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ordinary differential equation (ODE). 
 
 

Description of the ( )
G
G

¢ - expansion method  

 
Considering the nonlinear partial differential equation in 
the form 
 

( , , , , , , . . . . ) 0 (1)x t t t x t x xP u u u u u u =
                     (1) 

 
Where   u =  u(x, t )  is an unknown function, P is a 

polynomial in   u =  u(x, t ) and it has various partial 
derivatives, in which the highest order derivatives and 
nonlinear terms are involved. In the following we give the 

main steps of the ( )
G
G

¢  -expansion method. 

 
Step 1: Combining the independent variables x and t into 
one variable x vtx = - , we suppose that  
 

( , ) ( ) , (2)u x t u x v tx x= = -
                (2)

 

 
The travelling  wave  variable  (2)  permits  us  to   reduce  



 
 
 
 
Equation (1) to an ODE for ( )G G x= , namely 
 

2( , , , , , , ....) 0 (3)P u vu u v u vu u¢ ¢ ¢¢ ¢¢ ¢¢- - =                 (3) 
 
Step 2: Suppose that the solution of ODE (3) can be 
expressed by a polynomial in 

( )
G
G

¢  as follows 

 

 ( ) ( ) . . . . , ( 4 )
m

G
u

G
x a

¢
= +

                             (4)
 

 
Where ( )G G x= satisfies the second order LODE in the 
form 
 

0 ( 5 )G G Gl m¢¢ ¢+ + =
                          (5)

 

 
, ...,

m
a l and mare  constants to be determined later

0
m

a ¹ , the unwritten part in (4) is also a polynomial in 

( )
G
G

¢
, but the degree of which is generally equal to or 

less than 1m - , the positive integer m  can be 
determined by considering the homogeneous balance 
between the highest order derivatives and nonlinear 
terms appearing in ODE (3). 
Step 3: By substituting (4) into Equation (3) and using the 
second order linear ODE (5), collecting all terms with the 

same order ( )
G
G

¢  together, the left-hand side of Equation 

(3) is converted into another polynomial in ( )
G
G

¢ . 

Equating each coefficient of this polynomial to zero yields 

a set of algebraic equations for , ...,
m

a l and m . 

 

Step 4: Assuming that the constants , ...,
m

a l  and  � 

can be obtained by  solving the  algebraic equations in 
step 3, since the general solutions of the second order 
LODE (5) have been well known for us, then substituting 

, ...,
m

va  and the general solutions of  Equation (5) into 

(4) we have more travelling wave  solutions of the  
nonlinear evolution Equation (1). 
 
 
Non-linear Klein-Gordon equation 
 
In this section we consider the non-linear Klein-Gordon 
equation in the following form  
 

3 0tt xxu u u ua b- + + =                                      (6)                                                                   
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The travelling wave variable below 
 

( , ) ( ),u x t u x vtx x= = -                                (7)                                           

 
Permits us converting Equation (7) into an ODE for 

( )G G x=  
 

2 3(v - 1)u +  u +  u  =  0a b¢¢                                    (8) 
 
Suppose that the solution of ODE (8) can be expressed 

by a polynomial in ( )
G
G

¢  as follows:  

 

( ) ( ) . . . . , ( 9 )
m

G
u

G
x a

¢
= +

                         (9) 
 
Where ( )G G x=  satisfies the second order LODE in 
the form

  
0 ( 1 0 )G G Gl m¢¢ ¢+ + =                            (10) 

 

1 0, ,va a  and m  are to be determined later. 

 
By using (9) and (10) and considering the homogeneous 

balance between u¢¢and 3u  in Equation(8) we required 

that 2 1m m= +  then 1m = .So we can write (9)  as 
 

1 0( ) ( ) ( 1 1 )
G

u
G

x a a
¢

= +
                             (11) 

Therefore 
 

2 2 2
1 1 0 0

3 3 3 2 2
1 1 0

2 3
1 0 0

3 2
1 1

2
1 1 1

( ) 2 ( )

( ) 3 ( )

3 ( )

2 ( ) 3 ( )

( 2 )( )

G G
u

G G
G G

u
G G

G
G

G G
u

G G
G
G

α α α α

α α α

α α α

α α λ

α λ α µ α λ µ

′ ′
= + +

′ ′
= + +

′
+

′ ′′′ = + +

′
+ +

 

 
By substituting Equation (11) and relations above into 
Equation (8) we have  
 

3 2
1 1

2 2
1 0 1

2 2 2
1 0 1 1 1

3 2
0 1 0

2 ( 1) 0

3 3 ( 1) 0

3 ( 1) ( 2 ) 0

( 1) 0

v

v

v

v

b a a

b a a a l

b a a a l a m a a

b a a l m a a

+ - =

+ - =

+ - + + =

+ - + =
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Solving the algebraic equations above, yields 
 
 
Case 1: If 
 

( )
( )

2

1 2

2 4

4

b m l a
a

b m l

-
=

-  

 
Then  
 

( )
( )

( )( )

2

0 2

2 2

2

4
,

4

4 2 4

4
v

b m l al
a

b m l

m l a m l l

m l

-
=

-

- - + -
= ±

-

 

 
By using above, expression (11) can be written as 
 

( )
( )

( )
( )

2

2

2

2

2 4
( ) ( )

4

4
( 1 2 )

4

G
u

G

b m l a
x

b m l

b m l a l

b m l

- ¢
= +

-

-

-

 

and 
( )( )2 2

2

4 2 4
.

4
x t

m l a m l l
x

m l

- - + -
=

-
m   

 
Eq (12) is the formula of a solution of Equation (8). 
Substituting the general solutions of Equation (10) as 
follows  
 

2

2 2
1 2

2 2
1 2

1
4

2
1 1

sinh 4 cosh 4
2 2( )
1 1

cosh 4 sinh 4
2 2

2

G
G

C C

C C

l m

l mx l mx

l mx l mx

l

¢
= - ´

- + -

- + -

-

 

 
Into (12) we have three types of travelling wave solutions 
of the non-linear Klein-Gordon Equation (6) as follows: 
 

When 2 4 0l m- f  

 
 
 
 

( )
( )

2 2
1 2

2 2
1 2

2

2

( )

1 1
sinh 4 cosh 4

2 2( )
1 1

cosh 4 sinh 4
2 2

4

24

i
u

C C

C C

ba
x

b

l mx l mx

l mx l mx

b m l a l l

b m l

= ´

- + -

- + -

-
+ -

-

 

 

Where 
( )( )2 2

2

4 2 4

4
x t

m l a m l l
x

m l

- - + -
=

-
m  . 

1,C  and 2,C are arbitrary constants. 

 

In particular, if 1 20, 0, 0, 0C C l m¹ = =f  

become 

 

1
( )

2 2
i i

u tgh
ba ba l

x l x
b b

= + -  

 

When 2 4 0l m- p  
 

( )
( )

2 2
1 2

2 2
1 2

2

2

( )

1 1
sin 4 cos 4

2 2( )
1 1

cos 4 sin 4
2 2

4

24

i
u

C C

C C

ba
x

b

m l x m l x

m l x m l x

b m l al l

b m l

= ´

- - + -

- + -

-
+ -

-

 

 

When 2 4 0l m- =  

( )
( )

( )( )

2
2

2
1 2

2 2

2

2 4
( ) ,

( ) 4

4 2 4

4

C
u

C C

x t

b m l a
x

x b m l

m l a m l l
x

m l

-
=

+ -

- - + -
=

-
m

 

Where 1C  and 2C  are arbitrary constants. 

, ,u



 
 
 
 
Case 2: If 
 

( )
( )

2

1 2

2 4

4

b m l a
a

b m l

-
= -

-
 

 
Then  

( )
( )

( )( )

2

0 2

2 2

2

4
,

4

4 2 4

4
v

b m l a l
a

b m l

m l a m l l

m l

-
= -

-

- - + -
= ±

-

 

 
By using the expression above and general solution of 
Equation (10) we have three type solution of Equation (6) 
as above, for example  

When  2 4 0l m- p   

( )
( )

2 2
1 2

2 2
1 2

2

2

( )

1 1
sin 4 cos 4

2 2( )
1 1

cos 4 sin 4
2 2

4

24

i
u

C C

C C

ba
x

b

m l x m l x

m l x m l x

b m l a l l

b m l

= - ´

- - + -

- + -

-
- -

-

 

 
 
Conclusion 
 

The ( )
G
G

¢  -expansion method has been successfully used 

to seek exact solutions of the non-linear Klein-Gordon 
equation. As a result, abundant new exact explicit 
solutions are obtained. It is shown that this method 
provides a very effective and powerful mathematical tool 
for solving nonlinear evolution equations in mathematical 
physics. 
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