
International Journal of Physical Sciences Vol. 5(10), pp. 1558-1566, 4 September, 2010
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 ©2010 Academic Journals

Full Length Research Paper

A novel secure and energy-efficient protocol for
authentication in wireless sensor networks

Farzad Nejati* and Hossein Khoshbin

Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Accepted 2 April, 2010

Wireless sensor networks (WSN) are typically deployed in an unattended environment, where the
legitimate users can login to the network and access data as and when demanded. Efficiency of WSN
depends on the correctness of the information which has been collected. Consequently, verifying
authenticity and integrity of delivered data is indispensable for security-sensitive WSNs. At the same
time, security is most important to prevent outsiders (illegitimate party) from retrieving the correct
information. However, traditional security methods are not suited for WSN because they are not efficient
from the perspective of energy, while energy conservation is a pivotal issue in WSN. This paper
proposes a user authentication mechanism to countermeasure the outside attacks. The salient feature
of the proposed technique is that it establishes shared values and transmits a clue message during a
single authentication process without using the public key cryptography. Therefore, our proposed clue
authentication scheme for WSN, provides strong authentication and shared value establishment. Our
protocol is well-suited in the resource-constrained sensor nodes; furthermore, it is more secure and
efficient compared to related security protocols in sensor networks. To standardize the evaluation, this
paper implements the authentication protocol in the platforms of SmartDust, Strong Arm chips and
Xscale. Finally, the paper analyzes its resource usage and proves its feasibility.

Key words: Authentication, hash function, security, wireless sensor networks, seed.

INTRODUCTION

Wireless sensor network (WSN) is a new network
paradigm that involves the deployment of hundreds and
even thousands of sensor nodes (Akyildiz et al., 2002).
These sensing devices are mostly self powered and well
equipped with certain computational capability. Such a
device along with a processor, a communication module
and a battery supply is called mote (Hill and Culler,
2002). The WSN can be used for a wide range of appli-
cations (Arora et al., 2004; Burne et al., 2001; Martinez et
al., 2004; Martinez et al., 2004; Polastreet al., 2002;
Szewezyk et al., 2004) including target tracking, habitat
monitoring, etc. Primary goal of the WSN is to obtain
globally meaningful information from strictly local gleaned

*Corresponding author. E-mail: farzad.nejati@gmail.com.

Abbreviations: CAP, Clue authentication protocol; SPINS,
Security protocols for sensor networks; ELK, Efficient large-
group key distribution.

by individual sensor nodes. The data collected in most of
the applications are valuable and need to maintain
security. Therefore, security measures to prevent the
unauthorized manipulating of the correct information are
most essential. We refer to such issues as outside
security issues or outside attacks. User authentication is
a basic preventive measure against such outside
attackers (Somanath and Sukumar, 2008). However, it
becomes very challenging to implement user
authentication in the WSN applications, because of the
limited resources available in sensor nodes.

The unattended nature of a sensor network makes it
vulnerable to varying forms of security attacks such as a
compromised node injecting false data reports (Karlof
and Wagner, 2003; Ye et al., 2004; Zhu et al., 2004).
Without identifying false reports, the sink node may reach
a sub-optimal or even wrong decision. In addition, routing
false reports to the sink wastes the energy of nodes
along the routing path, which reduces the lifetime of the
network. So identifying compromised nodes is critical
since these nodes can exhaust their upstream nodes even

Figure 1. Counter exchange mechanism in SNEP (16).

if the false reports are dropped en-route in just a few
hops (Ye et al., 2004; Zhu et al., 2004). Schemes have
been proposed to locate misbehaved nodes with en-
network detection approaches. Marti et al. (2000)
proposed to monitor each node by a neighboring
watchdog node. Wang et al. (2003) improved the scheme
through the collaborative decision of neighbors around a
suspicious node. Both schemes have limitations (Marti et
al., 2000) as the watchdog node maybe compromised as
well. Thus compromised nodes may not be faithfully
isolated.

Our clue authentication protocol (CAP) is proposed for
authentication in sensor networks so that sensitive data
can be protected. Sensor networks have limited
resources, so, authentication has to be re-developed.
Clue authentication provides a number of unique
advantages. It also focuses on minimizing energy
consumption and reducing risks by transmission of the
clue. CAP is developed based on hint message from ELK
(Penrig et al., 2001) and key chain in Security Protocols
for Sensor Networks (SPINS) (Adrian et al., 2002.).

Efficient large-group key distribution (ELK) (Penrig et
al., 2001) proposes a key distribution mechanism for key
updating and key recovery from hint message. The hint
message contains key verification of contribution nodes
so that received node can generate key from this
information in key updating. Key updating commences
with generating a hint message from parent nodes’ data.
A parent node provides the hint message for child nodes
to generate a new key from previous key because it
recognizes all secret keys in child nodes. When a child
node receives a hint message, it can build the new key
from hint data. To avoid malicious messages, the new
key can be verified with the hint message so that
received node can be assured that the hint message is
sent from the parent node. ELK updates joining nodes
and leaving nodes by organizing a tree hierarchy.

Although, this can be a disadvantage when imple-
mented. Since it cannot be assumed that network routing
in the sensor network is organized in a tree hierarchy,
ELK is difficult to implement. Although routing uses a tree
hierarchy, sensor networks can regularly change
structure. Therefore, updating hierarchy in one part of a
tree requires updating the key in every related node. This

Nejati and Khoshbin 1559

causes inefficiency in energy consumption which is not
suitable for sensor network. Nevertheless, the hint
message mechanism provides secure processing
because adversaries need to perform O (2n) using brute
force to reveal a key.

This is a motivation for our proposed solution which is
described in implementation of CAP. ELK uses pseudo-
random function (PRF) to generate and manage the key
tree. The PRF uses a key as input to generate four
different outputs. These outputs are key length, hint
message, encrypted update key message and update
key. On constructing the key tree, parent nodes are
required to gather all child node keys and use PRF to
compute the individual keys. To manage joining and
leaving nodes, parent nodes must update the key
corresponding to new child nodes’ keys as well as
acknowledge of every connected node. Therefore, key
tree requires a number of message exchanges, which
can drain sensor network resources.

Security Protocols for Sensor Networks (SPINS)
(Adrian et al., 2002.), is a security protocol designed for
energy constrained devices which maintain con-
fidentiality, authentication and integrity. SPINS achieves
secure communication and trust of data. It also supports
key set up in sensor network. In addition, SPINS is able
to update keys regularly. Therefore, it should be used as
a benchmark to compare it to our proposal.

SPINS contains two security algorithms: SNEP and
�TESLA. SNEP is a security mechanism for verifying
integrity and data freshness, whereas, �TESLA is an
authentication method for data broadcasting. SNEP is an
authentication protocol to protect against replay attack. A
counter adds an overhead to each packet. The counter is
synchronized in both sender and receiver before
communicating and incremented with every block of data
sent. Therefore, counter number is never repeated. In
addition, initial counter value is transmitted securely with
the master key. In each packet, overhead size is only 8
bytes. The counter exchange mechanism is shown in
Figure 1. CA and CB are counters in nodes A and B. KAB
is the shared master key among node A and B. MAC (K,
M) is the message authentication code of M. In this
mechanism, the first two steps synchronize the counter
on both parties. The last step is an acknowledgement
message to ensure that the counter has been received.
�TESLA is a modified protocol of TESLA to broadcast

and secure communication for a large number of nodes.
The mechanism uses key verification and a key chain. In
key verification, �TESLA uses symmetric cryptography
instead of digital signature in TESLA. The number of
senders is limited in �TESLA to reduce memory usage
because each sender is required to construct a new key
chain. Overhead is only per session instead of per
packet. These modifications are due to resource
constraints in sensor network. To set up the key chain, base
station broadcasts K0 to every node in the cluster. Then,
each node can generate K1, K2 … KN from K0 by using a
one-way function as shown in Figure 2. To start secure

1560 Int. J. Phys. Sci.

Figure 2. Counter exchange mechanism in SNEP (16).

communication, nodes use the key backward from the
last key KN to K0, so the adversary cannot generate this
chain key. For example, when an adversary can crack
the message and obtain K2, it can generate K3, K4 … KN.

However, the next round of broadcasting messages will
use K1 which cannot be generated by the adversary
because key chain uses one-way function, thus it only
can compute forward. However, it cannot compute
backward. Therefore, stealing current key does not affect
the rest of the key chain. �TESLA has a nonce and
verification in the overhead. Nonce is a value to ensure a
freshness of data which is similar to SNEP technique. In
the verification, receiving node can verify the correct
sender from the correct key. In addition, broadcasting
data uses key delay disclosure. This mechanism can
avoid a problem in transmission delay and enhance
security. Since data is encrypted two keys ahead, current
key can be used to verify the packet but it cannot decrypt
the data. For example, if current key uses K3, K3 is used
to encrypt a packet while K1 is used to encrypt data in the
packet. When packet is received, node decrypts the
packet with K3 and waits until K1 to decrypt data. The
benefit of this mechanism is being able to decrypt with a
correct key when there is packet loss or delay. Secondly,
encrypted data still cannot be revealed even though an
adversary can obtain the current key because the one-
way chain cannot be computed backward. Therefore,
�TESLA supports a sensor network environment with
unreliable communication and a large number of
receivers. It reduces energy consumption by using self-
authenticating keys and low overhead size in com-
munication. However, SPINS has drawbacks in verifying
compromised nodes because there is no mechanism to
determine the compromised node. Therefore, at an initial
stage, if adversary could proceed as one node in the
network, then the base station would provide the
adversary with the key.

THE ASSUMPTIONS AND MECHANISM OF CLUE
AUTHENTICATION PROTOCOL (CAP)

To develop clue authentication, our objective is to secure
communication and network. We assumed that the base station has
the highest computing capacity and is equipped with an extensive

power supply. Second, physical attack must be defended from
attacks including key and program stealing. In this paper, nodes are
assumed to be safe from physical tampering. Nodes can be
protected from tampering by implementing watermarking, tamper-
proofing and obfuscation (Collberg and Thomborson, 2002; Soo-
Chang and Yi-Chong, 2006; Feng, 2000; Clark et al., 2004). We
assumed that network routing is established before performing the
authentication. The environment is assumed to be high risk with
adversaries surrounding the network. Intruders have the ability to
intercept every message of transmission as well as high
performance computers and power supply.

In each node, principal seed (SP) is pre-installed. The principal
seed SP is an initial seed for generating the shared values. It is
used as an input for a one-way function to compute a consequence
shared value. Authentication with correct shared values ensures
authorized senders and receivers. In our clue authentication, base
station generates a clue message. In addition, the base station is
the most trusted device, so it takes the responsibility of
broadcasting and making decisions on shared value setting up and
shared value updating.

To construct a shared value, there are two kinds of operations.
Both sender and receiver contain two one-way functions F1 and F2.
These one-way functions can compute forward but they cannot
compute backward. Therefore, exposing the running shared value
(SR) does not affect the clue shared value (SC) and principal seed
(SP). Secondly, using two one-way functions instead of one in
SPINS (Adrian et al., 2002) can increase the shared value space,
so using two one-way functions makes finding the shared value
more difficult for an adversary.

IMPLEMENTATION OF CAP

Sender generates clue message which contains a hashed value of
running shared value concatenated with message M. Running
shared value SR is generated from principal seed SP and one-way
function F1 and F2. Principal seed SP is used as an input. This
shared value generating computes both F1 and F2 iteratively as
shown in Figure 3. Generating a clue shared value SC in a node can
secure the running shared value SR and simplify operations. One-
way function F1 is the first function to iteratively compute for P
rounds where P is a random number. Then, one-way function F2
begins to iterative compute for R rounds where R = 2P + 1. Both
one-way functions F1 and F2 are different functions in increasing
shared value space which increase the difficulty of finding the shared
value. In addition, using two one-way functions can eliminate the
need to re-deploy principal seed SP because changing the shared
values can be done by simply selecting new random number P.
Then, running shared value SR is changed by a new clue shared
value SC because changing number P changes the clue shared
value SC. In the implementation, the random number P in the next
round must be greater than the current number so clue shared value
SC will not be repeatedly used. In addition, more rounds of updating
shared values can increase shared value space. For example, if
random number P is in the range (1, 2, 3 … 20), after 20 rounds, the
possibility of P is in the range (20, 21, 22 … 400). Therefore, this
shared value supports a long operation lifetime in sensor networks.

To implement, sender is required to update principal seed SP
from previous computing one-way function F1 because random
number P is always added on top of previous value. Therefore, it
can reduce processing time by processing from previous data. In
addition, sender needs to prepare hashed value from hash function
H. The procedure as shown in Figure 4 begins by selecting random
number P. Then, sender performs one-way function F1 on SP
iteratively P times. After that, it finds hashed value H (M|SC) as S1.
Next, sender calculates the second number R for number of
computing one-way function F2. After completing, it computes
hashed value H (M|SR) and stores in S2. At the same time, sender

Figure 3. Procedure to find running shared value SR from
principal seed SP by using one-way function F1 and F2 where
P is a random number.

Figure 4. Generating clue procedure in CAP.

broadcasts the message M with both S1 and S2 to the network.
Receiver is pre-installed with principal seed SP, one way functions
F1 and F2 and hash function H. Updating shared value procedure in
receiver is shown in Figure 5. When updating message is received,
receiver obtains S1 and S2 from the message. Next, receiver
computes one-way function F1 with master principal seed SP as an
input. This process continues until hashed value of the computed
clue shared value concatenated with message M is equal to S1. If
the hashed value of the computed clue shared value concatenated
with message M is not equal to S1 after a threshold, namely 20 in
our protocol, the sender is not authenticated. Then, the receiver
begins computing second one-way function F2 for R times with
computed clue shared value SC as an input. The result is saved as
S. The hashed value H (M|S) is computed and compared with S2. If
they match, the sender is authenticated; otherwise the identity of
the sender is not valid. Figure 6 depicts how CAP works in sender
and receiver nodes.

Clue message is a message that provides information for
generating clue shared value SC and running shared value SR as
shown in Figure 7. The hint message contains two hashed values
which are generated from sender as shown in Figure 4. The first
hashed value allows a node to construct clue shared value SC while
the second hashed value constructs the running shared value SR. In
the node, principal seed SP is an input of the process. The principal
seed SP is computed by using the first one-way function to generate
the next shared value. The hashed value of the computed output
shared value concatenated with message M is compared to the first

Nejati and Khoshbin 1561

Figure 5. Receiver procedure in CAP.

Figure 6. CAP schematic in sender and receiver.

Figure 7. Clue message structure where 1st
Hashed value and 2nd Hashed value are
broadcasted along with the message M.

hashed value in clue message. When the result does not match,
the process re-computes the output with the first one-way function
until a threshold and re-compares the hashed value until the result
matches. After that, the second hashed value is compared to the
hashed value from the second one-way function concatenated with
message M. The output from the first one-way function is an input
for this process. Then, this second one-way function is iteratively
computed for R times. The advantage of using a clue message is
that transmitting message in shared medium does not expose a
principal seed which means it is more difficult to break the shared
values. In addition, hashed value is smaller fixed size compared to
a key sent with a message. Therefore, energy consumption in
communication can be reduced. Finally, the process is stateless for
generating running shared value and clue shared value so they can

1562 Int. J. Phys. Sci.

be constructed from any clue broadcasting. This also assists nodes
with packet loss and joining nodes to generate shared values.

Updating shared values procedure

There are two ways to perform the shared value update procedure.
First, updating both shared values is computed as shown in sender
and receiver parts. Second, updating running shared value with the
previous clue shared value is quicker and uses less energy for
short term purposes. Sender uses the same principal seed SP and
reduces random number P to compute hashed value. Receiver is
not required to compute first one-way function F1 because it uses
the previous clue shared values. To find running shared value, it
computes a shorter clue shared value chain from principal seed SP
to second one-way function F2. In the implementation, both sender
and receiver do not need to compute these one-way functions F1
and F2 because these clue shared values have been computed
previously. Therefore, sender only looks for hashed value in
previous computed clue shared values while receiver only matches
the received hashed value and the hashed value of previous
computed clue shared values concatenated with message M. As an
example, assume both sender and receiver currently use principal
seed SP and running shared value SR. To update shared values,
sender could randomly select SP-1. Since this shared value is
already computed, sender simply computes H (M|SP-1) and then
broadcasts it to the network. When receiving this message, receiver
can obtain H (M|SP-1). After that, it searches for hashing value in
memory and obtains SP-1. An advantage of this updating shared
value is reducing computation which minimizes both energy
consumption and delay. In addition, using a shared value backward
can protect against adversary computing new shared value from
previous shared value because this shared value is computed from
one-way function.

Joining node and packet loss are supported by our clue
authentication protocol. Since next round of shared value updating
contains hashed value, joining nodes can generate running shared
value from initial principal seed SP. In packet loss, next hashed
value provides sufficient information for receivers to generate
running shared value. In addition, the hashed value is unique so it
ensures the same running shared value in both senders and
receivers. The only drawback is when a joining node has been in
operation for some time in a network. So the joining node requires
more computation time which can cause a delay in communication.

Features of CAP

As clue authentication protocol is implemented with clue message,
clue shared value and shared value self-generating; it provides a
number of features which are described as follows. The number of
messages required for establishing shared value is reduced. Clue
authentication protocol uses principal seed pre-distribution and clue
message technique to construct shared values so only one
message is required. This message contains only a clue for running
shared value which is sufficient for authorized nodes to construct
the shared value. When compared with SNEP in SPINS (16), at
least three messages are required to set up a secure channel. This
can enhance system lifetime as well as reduce setting up period.

Shared values are generated in each node and not needed to be
broadcasted by the base station individually. In clue authentication
protocol, the base station gives each node a clue so running shared
value can be constructed from this clue. The clue message is the
hashed value of the running shared value concatenated with
message M. Since authorized nodes have pre-installed principal
seed, they can compute running shared value from the clue.
However, clue message does not provide enough information for
adversaries to generate shared values because a hashed value

cannot be computed backward to find the actual shared value.

Updating shared value is flexible for base stations

In clue authentication protocol, the base station can update the
shared value immediately to correspond to the situation by
broadcasting clue message. Then, every node will update their
shared value from this broadcast. Therefore, their shared value can
be updated dynamically based on the situation. In addition, the
base station can use running shared value longer in low risk
environment thus energy consumption in updating shared value can
be reduced.

In addition, clue message is very small in size so it is attached as
a part of transmission data. If the system decides to maximize
battery lifetime, base station can attach the clue to a large block of
data. Receivers can update keys immediately when the message is
received. The data is also protected with the updated shared value
in this transmission.

Protocol supports leaving nodes, joining nodes and node
failures

Since clue authentication protocol can update the shared value by
clue message, organization of tree is not necessary. In leaving
nodes and nodes failures adjusting or communicating as in ELK
(15) is not required. Joining nodes do not require special
maintenance because the hashed value in clue message has
sufficient information for new authorized nodes to generate the
shared value.

Protocol should minimize resource consumption in key
management

Clue authentication protocol uses a clue message which is very
small in size. Furthermore, the message is not needed to be
encrypted or decrypted. This also increases lifetime of the system
besides compact communication. In addition, clue authentication
protocol is stateless so it does not require a large space in memory.
The memory only stores pre-installed principal seed, clues and
running shared values.

Clue authentication protocol (CAP) evaluation

This section gives an evaluation of clue authentication protocol,
compared with ELK and SPINS. The section begins by description
of metrics, parameters and scenarios in the evaluation. Models are
then constructed. Finally, clue authentication protocol is analyzed.

Metrics of evaluation

Resource usage considers the amount of energy consumption in
communication and computation. As communication is the most
energy intensive activities in sensor networks, it must be minimized.
This metric also determines the system lifetime for the protocol
operations.

Sensor network devices have a limited resource so protocol must
use this resource efficiently. Processing time and memory are also
considered because these are limited in sensor networks.

Parameters of evaluation

In this part, parameters of the evaluation are explained. These
parameters are considered in resource usage. The number of

messages, message size and frequency are used as parameters
because they affect communication energy consumption which
consumes the most energy in sensor networks. The evaluation
uses this information to calculate an estimation of system lifetime.

Processing time is used to determine the computing capability of
Central Processing Unit (CPU). Memory size is also needed to
determine the requirements in implementing protocols because
sensor network devices have limited memory size.

Evaluation scenario

To standardize the evaluation, Smart Dust (21 - 26), Strong Arm
chips (21, 27) and Xscale (21, 28 - 31) are used as analysis
platforms. Power is supplied from 3 volts battery with capacity of
2,200 mAh. Our model sets up 10 nodes in each cluster and
sampling rate is 1 Hz with 50 Kbps bandwidth. Wireless
communication consumes 4.8 mA in receiving and 12 mA in
transmitting. In idle mode, energy consumption rate is 5 µA. In
addition, there is end-to-end data communication between node A
which is a base station of the cluster and node B which is placed in
the cluster. A path between A and B is connected along the nodes
in the same cluster as: A � n1 � n2 � … nm � B. This network
also has a routing path set up. Each node in network has a strong
physical protection. Adversaries cannot break the device to retrieve
the principal seed or data inside directly. Also, the length of
principal seed is evaluated with 40 and 128 bits. To compute the
clue message, MD5 and SHA 1 are used as clue functions (H) to
evaluate the protocols.

Adversaries have Sun UltraSparc II 440 MHz server. The
UltraSparc is 64 bits RISC based on architecture with 16 KB data
cache and 2 MB external cache. Its wireless antenna can reach the
entire network. When an adversary launches attacks, it can be
initiated from anywhere along a path. The simulator we have
programmed is a wireless network simulator for energy
consumption which is based on MATLAB. The simulator is based
on an event-driven model. The operation of nodes is developed on
an event basis. For periodic tasks, clock parameter or clock tick
could be used for assigning the task. A wireless communication is
built in the program which can adjust the parameters e.g. signal
strength and error rate. Our adversary in simulator is also
developed in this simulator with high processing capability
(UltraSparc II) and high transmitting power. Sensor network nodes
are equipped with limited capacity battery and less transmitting
power than adversary. The energy consumption varies with signal
power, message size and activities. Simulation results are exported
to MATLAB for further analysis.

Performance model

This section presents the theoretical model of ELK, SPINS and
CAP resource usage metrics.

Performance of ELK

Energy is used to compute and broadcast messages in the
established tree when nodes join or leave the network. When nodes
are joining, each node can compute individually without
broadcasting messages. To update the key, a hint message is
broadcast in order to allow new key to be constructed. The best
scenario for effective energy consumption is that each node
updates its key without broadcasting messages. This only requires
small computation and memory. In the average case, hint
messages are broadcasted so each node needs to consume power
in communication and computing new key. The hint message size
corresponds to the number of left and right contribution nodes in the

Nejati and Khoshbin 1563

tree because hint messages are generated from all keys in child
nodes. In the process of key construction, firstly a message is
decrypted and secondly to match with the hint, the key is computed.
The worst case scenarios are both setting up tree and leaving
nodes. The server begins computing a new key, which corresponds
to the current existing nodes and broadcasts the updating
message. Each node, then, computes its key. Therefore, it requires
the number of messages to verify the status of tree and broadcast
updating messages as well as computing key in each node.

As tree structure needs to be maintained, a regular
communication is required for ELK. In addition, this protocol does
not support packet loss because the consecutive packet loss can
be interpreted as leaving node and consequently tree needs to be
reconstructed. Furthermore, changing key in the child nodes
requires the entire parent nodes to be updated, which is quite
expensive. For concrete evaluation, the result is shown in next
section.

For the number of key bits n, key space is 2n. The adversary is
required to compute at least 2n-1 keys in brute force attack. To
update key, hint message is used to hide an actual key from the
adversary. In addition, the adversary has some difficulties in
obtaining the group key because a cluster contains a large number
of nodes. This is a significant advantage in sensor networks
because network size tends to be hundreds or thousands nodes.

Performance of SPINS

In SmartDust nodes, 98% of energy consumption is due to
communication and 2% of energy consumption for computation.
The energy for communication can be categorized into data
transmission with 71%, header transmission with 20% and Nonce
transmission with 7% of total energy. Computation uses only 2% of
energy cost for computing encryption as shown in Table 1.
Although most energy consumption is from communication, it is a
common behavior in sensor networks. In computing, processing
time in key set up is 3.92 ms (16). Memory uses 120 bytes for the
protocol. Therefore, SPINS demonstrates a capability of implanting
security in sensor nodes.

Key space is 2n where n is key bits, so brute force can find the
current key on average by computing 2n-1 times. Yet, decrypting
message requires two keys so brute force needs to compute at
least 2n keys. To find a key chain, key space is R·2n where R is the
maximum number of possible keys in the key chain. However,
adversaries have a difficulty in obtaining number R because it has
never been stated in any message. Therefore, adversaries require
computing all possibilities by beginning from small number of R. For
example, R·2n where R begins from 1, 2,.. . Hence, the maximum
computing time of a master key is R!·2n. When a base station
updates a new key chain, an adversary is required to re-compute
this key chain again. Therefore, a key chain is protected by security
that is higher than that for a simple key. In addition, a key chain is
regularly updated, thus the key chain is secured in a period of time.

Performance of CAP

As CAP uses the similar one-way function as SPINS, memory
usage is equal to 120 bytes. However, shared value set up requires
the comparison of clue so it requires another 80 bytes. In addition,
shared values need to be stored in memory all the times. If shared
value size is 64 bits, 80 bytes of memory is required for shared
value chain size of 10. Therefore, the total memory is approximately
280 bytes. In simulation, 400 bytes memory is reserved, but on
average it uses 220-320 bytes. In communication, energy use is
less than SPINS because the number of communication is reduced
and message size is smaller. The details are demonstrated in next
section.

1564 Int. J. Phys. Sci.

Table 1. Energy cost in SPINS (16).

Transmission Percentage
Data transmission 71
Header transmission 20
Nonce transmission (Freshness verification) 7
Encryption computation 2

Table 2. Energy cost in SPINS.

Feature SPINS CAP ELK
Regular renew key or shared value � �
Regular renew key or shared value, based on event �
Regular renew key chain or shared value � �
Regular exchange information among nodes � �
Regular verify time counter (Nonce) �

Table 3. Lifetime in communication for each protocol.

Protocol Message size (bytes) Estimated operation time (days)
ELK (best case) 23 - 38 962
ELK (average) 23 - 38 102
ELK (worst case) 23 - 38 51
SPINS 598 263
CAP 64 847

Figure 8. Protocol lifetime.

Shared value space is 2n for running shared value where n is
principal seed bits so on average 2n-1 computations is required for
brute force attack. To compute possible different running shared
values, the shared value space is R·2n where R is the maximum
number of possible running shared values, as described in the
algorithm. To find a principal seed in CAP, shared value space is
P·R·2n where P is the number of possible clue shared values, as
described in the algorithm. However, adversaries have difficulties in
obtaining numbers P and R except the node that has already
obtained all the principal seed, clue shared value and running
shared value because there is no information stated on the
numbers. Since the number of P and R could be varied from zero to
infinity, it is infeasible to calculate the maximum number of P and R

in one time. The adversary requires computing from smaller
numbers of P and R. Ideally; the adversary begins computing each
set as follows.

(P =1, R =1), (P =1, R =2) … (P =1, R = R);
(P =2, R =1), (P =2, R =2) … (P =2, R = R);
(P = R, R =1), (P =2, R =2) … (P = P, R = R).

Although the adversary could keep the previous computing
numbers P and R, it is infeasible to store the previous 2n × P × R in
UltraSparc II. Therefore, the adversary needs to re-compute
numbers P and R. As a result, the maximum computing time of
principal seed is P!·R!·2n. Therefore, principal seed is the largest
key space in CAP which is equivalent to the most secure algorithm.

EVALUATION OF RESULTS

This section evaluates ELK, SPINS and CAP in resource
usage and energy consumption. As wireless communi-
cation is the most energy consumption in sensor
networks, our simulation focuses on the message
transmission.

Table 3 is the simulation result which shows the energy
consumption in CAP, SPINS and ELK. The comparison
of results has been depicted in Figure 8. This simulation
focuses on the message size and system lifetime. The
estimated system lifetime is calculated from protocol

Nejati and Khoshbin 1565

Table 4. Energy savings feature in each protocol.

 CAP SPINS ELK
Not require re-organizing structure � �
Self-generating key or shared value � �
Support packet loss � �
Construct key or shared value from clue message � �
Not require exchanging information �

operations which neglect sensors and non-related
operations. ELK (best case) updates the key by self-
generating with the low number of messages. In ELK
(average), hint messages and tree maintenance
messages are used. ELK (worst case) needs to re-
organize tree structures frequently due to packet loss and
leaving nodes. Therefore, exchanging messages and
many key updates are required. In SPINS and CAP, the
protocols do not reflect the structure of network so
simulation uses the average scenarios.

The result shows that the expected lifetime in CAP is
almost 3.2 times greater than SPINS because SPINS
requires an authentication among the nodes before
transmitting the data. In addition, ELK (average) and ELK
(worst case) consumes more energy than CAP because
ELK uses a tree to distribute keys, which are opposed to
traditional broadcasting in CAP. Additionally, a leaving
node in lower branch of the tree in ELK requires many
messages to adjust the tree as well as update the key.
Although ELK (best case) shows the best performance, it
rarely occurs in practice because sensor networks are
unreliable and many unexpected events often occur.
SPINS demonstrates the average performance among
three protocols because it reduces the number of
communication and uses a self-generating key. CAP
shows the best energy consumption because it uses only
one broadcasting message to authenticate while joining
nodes do not need the extra communication, as next
round of shared value updating contains hashed value. In
addition, packet loss does not affect the authentication in
CAP, since next hashed value provides sufficient
information for receivers to generate running shared
value.

In computing resource, our simulation uses MD5 as a
hash function. MD5 consumes 0.59 µJ/byte, which can
be compared to 3DES computation 6.04 µJ/Byte (32). So
sensor nodes have the capability to compute this function
and are also able to perform CAP. High power processor
Strong Arm chip computes each MD5 140 µs in small
wireless network device (32). In simulation, random
number P is in the range of 1, 2, 3 … 20. On average,
MD5 is required to be computed 10 times (average 10
times for P). This equals to 1.40 ms (140 µs x 10 times).
To compute MD5 in low power CPU (Xscale in energy
safe mode), it requires 180 µs (32) for each computation
or 1.80 ms (180 µs x 10 times) per authentication. CAP
uses the similar one-way function as in SPINS.

Therefore, the total operation time is the sum of hash
function and one way function. As each one way function
uses 3.92 ms, two one way functions use average 7.84
ms. The total time in generating the message to be sent
in CAP is between 10.64 and 11.40 ms. Therefore, our
simulation ensures that computation time in CAP does
not exceed the capabilities of a sensor node. However,
this processing time is more than 3.92 ms in SPINS. In
ELK, it is the worst performance in simulation because
operations in the protocol are involved with asymmetric
cryptography. It uses up to 2 min for generating key in the
deep tree hierarchy. In summary, the highest
computation time is for ELK which is a large difference
from CAP and SPINS because ELK does not focus on
energy consumption and using asymmetric cryptography.
SPINS uses the average energy consumption while CAP
saves most energy because of the least communication
messages.

ELK uses the largest memory size because of
asymmetric cryptography. In the 10 levels tree, 6.86 MB
is used to compute a key which is infeasible for sensor
nodes. SPINS uses only 120 bytes memory for the
protocol. In addition, CAP uses 280 bytes in the memory.
Therefore, both SPINS and CAP could be implemented in
sensor nodes while SPINS is the most efficient in
memory usage.

Conclusion

In conclusion, approximately 98% of energy usage in the
protocols is from communication task as shown in Table
1.

The characteristic of the protocols are shown in Table 2
and 4. Finally, the comparisons of energy consumption in
these protocols are shown in Table 3. ELK uses an
excessive resource especially memory and CPU which
are infeasible to implement in sensor networks. The
reason is that ELK uses asymmetric cryptography and it
does not focus on minimizing the resource usage. In
SPINS, memory and CPU usages are the lowest among
three protocols followed by CAP and ELK, respectively.
In addition, CAP uses the lowest energy in operation.
Therefore, CAP can enhance the most system lifetime.
However, it still uses memory and CPU processing more
than SPINS.

1566 Int. J. Phys. Sci.

REFERENCES

Adrian P, Robert S, Tygar JD, Victor W, David EC (2002). "SPINS:

security protocols for sensor networks" Wireless Network, 8: 521-534.
Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002). Wireless

sensor networks: a survey, Comput. Networks 38(4): 393-422.
Arora A, Dutta P, Bapat S, Kulathumani V, Zhang H, Naik V, Mittal V,

Cao H, Demirbus M, Gouda M, Choi Y, Herman T, Kulkurni S,
Arumugam U, Nesternko M, Vora A, Miyastha M (2004). A line in the
send: a wireless sensor network for target detection,classi.cation and
tracking. Comput. Networks. 46(5): 605-634.

Burne RA, Buczak AL, Jamalabad VR, Kadar I, Eadan ER (2001).
Selforganizing cooperative sensor network for remote surveillance
improved target tracking results, in: Proc. SPIE. 4232: pp. 313-321.

Clark T, Jasvir N, Ram S, Charles H (2004). "Tamper-proofing software
watermarks," in Proceedings of the 2nd workshop on Australasian
information security, Data Mining and Web Intelligence and Software
Internationalisation, Dunedin, New Zealand, Australian Computer
Society, Inc.

Collberg CS, Thomborson C (2002). "Watermarking, tamper-proofing
and obfuscation - tools for software protection," IEEE Trans. on
Software Engine. 28: 735-746.

Feng B (2000). "Multimedia content protection by cryptography and
watermarking in tamper-resistant hardware," in Proceedings of the
2000 ACM Workshops on Multimedia, Los Angeles, California, United
States: ACM Press.

Hill J, Culler D (2002). Mica: a wireless platform for deeply embedded
networks, IEEE Micro., 22: 6.

Karlof C, Wagner D (2003). Secure routing in wireless sensor networks:
attacks and countermeasures. In: IEEE international workshop on
sensor network protocols and applications, pp. 113–27.

Marti S, Giuli TJ, Lai K, Baker M (2000). Mitigating routing misbehavior
in mobile ad hoc networks. In: MOBICOM.

Martinez K, Hart J, Ong R (2004). "Environmental sensor networks,"

IEEE Comput. 37: 50-56.
Martinez K, Ong R, Hart J (2004). Glacsweb: a sensor network for

hostile environments, in: Proc. IEEE SECON. pp. 81-87.
Penrig A, Song D, Tygar D (2001). "ELK, a new protocol for efficient

large-group key distribution," in Security and Privacy, Oakland, CA.
pp. 247-262.

Polastre J, Szewczyk R, Culler D, Anderson J (2002). Wireless sensor
networks for habitat monitoring, in: Proc. ACM Workshop on Wireless
Sensor Networks and Applications. 88 – 97.

Somanath T, Sukumar N (2008). “Defense against outside attacks in
wireless sensor networks,” Comput. Comm. 31: 818-826.

Soo-Chang P, Yi-Chong Z (2006). "Tamper proofing and attack
identification of corrupted image by using semi-fragile multiple-
watermarking algorithm," in Taipei, Taiwan: ACM Press. Proceedings
of the 2006 ACM Symposium on Information, Computer and
Communications Security.

Szewezyk R, Osterweil E, Polastre J, Hamilon M, Mainwaring A, Estrin
D (2004). Habitat monitoring with sensor networks, Commun. ACM.
47(6): 34-40.

Wang G, Zhang W, Cao G, Porta TL. On supporting distributed
collaboration in sensor networks. In: IEEE MILCOM, 2003.

Ye F, Luo H, Lu S, Zhang L (2004). Statistical en-route detection and
filtering of injected false data in sensor networks. In: IEEE INFOCOM
2004.

Zhu S, Setia S, Jajodia S, Ning P (2004). An interleaved hop-by-hop
authentication scheme for fltering of injected false data in sensor
networks. In: Proceedings of IEEE Symposium on Security and
Privacy, Oakland, California.

