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Wireless sensor networks (WSN) are typically deployed in an unattended environment, where the 
legitimate users can login to the network and access data as and when demanded. Efficiency of WSN 
depends on the correctness of the information which has been collected. Consequently, verifying 
authenticity and integrity of delivered data is indispensable for security-sensitive WSNs. At the same 
time, security is most important to prevent outsiders (illegitimate party) from retrieving the correct 
information. However, traditional security methods are not suited for WSN because they are not efficient 
from the perspective of energy, while energy conservation is a pivotal issue in WSN. This paper 
proposes a user authentication mechanism to countermeasure the outside attacks. The salient feature 
of the proposed technique is that it establishes shared values and transmits a clue message during a 
single authentication process without using the public key cryptography. Therefore, our proposed clue 
authentication scheme for WSN, provides strong authentication and shared value establishment. Our 
protocol is well-suited in the resource-constrained sensor nodes; furthermore, it is more secure and 
efficient compared to related security protocols in sensor networks. To standardize the evaluation, this 
paper implements the authentication protocol in the platforms of SmartDust, Strong Arm chips and 
Xscale. Finally, the paper analyzes its resource usage and proves its feasibility. 
 
Key words: Authentication, hash function, security, wireless sensor networks, seed. 

 
 
INTRODUCTION  
 
Wireless sensor network (WSN) is a new network 
paradigm that involves the deployment of hundreds and 
even thousands of sensor nodes (Akyildiz et al., 2002). 
These sensing devices are mostly self powered and well 
equipped with certain computational capability. Such a 
device along with a processor, a communication module 
and a battery supply is called mote (Hill and Culler, 
2002). The WSN can be used for a wide range of appli-
cations (Arora et al., 2004; Burne et al., 2001; Martinez et 
al., 2004; Martinez et al., 2004; Polastreet al., 2002; 
Szewezyk et al., 2004) including target tracking, habitat 
monitoring, etc. Primary goal of the WSN is to obtain 
globally meaningful information from strictly local gleaned  
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by individual sensor nodes. The data collected in most of 
the applications are valuable and need to maintain 
security. Therefore, security measures to prevent the 
unauthorized manipulating of the correct information are 
most essential. We refer to such issues as outside 
security issues or outside attacks. User authentication is 
a basic preventive measure against such outside 
attackers (Somanath and Sukumar, 2008). However, it 
becomes very challenging to implement user 
authentication in the WSN applications, because of the 
limited resources available in sensor nodes. 

The unattended nature of a sensor network makes it 
vulnerable to varying forms of security attacks such as a 
compromised node injecting false data reports (Karlof 
and Wagner, 2003; Ye et al., 2004; Zhu et al., 2004). 
Without identifying false reports, the sink node may reach 
a sub-optimal or even wrong decision. In addition, routing 
false reports to the sink wastes the energy of nodes 
along the routing path, which reduces the lifetime of the 
network. So identifying compromised nodes is critical 
since these nodes can exhaust their upstream nodes even 



 
 
 
 

 
 
Figure 1. Counter exchange mechanism in SNEP (16). 
 
 
 
if the false reports are dropped en-route in just a few 
hops (Ye et al., 2004; Zhu et al., 2004). Schemes have 
been proposed to locate misbehaved nodes with en-
network detection approaches. Marti et al. (2000) 
proposed to monitor each node by a neighboring 
watchdog node. Wang et al. (2003) improved the scheme 
through the collaborative decision of neighbors around a 
suspicious node. Both schemes have limitations (Marti et 
al., 2000) as the watchdog node maybe compromised as 
well. Thus compromised nodes may not be faithfully 
isolated. 

Our clue authentication protocol (CAP) is proposed for 
authentication in sensor networks so that sensitive data 
can be protected. Sensor networks have limited 
resources, so, authentication has to be re-developed. 
Clue authentication provides a number of unique 
advantages. It also focuses on minimizing energy 
consumption and reducing risks by transmission of the 
clue. CAP is developed based on hint message from ELK 
(Penrig et al., 2001) and key chain in Security Protocols 
for Sensor Networks (SPINS) (Adrian et al., 2002.). 

Efficient large-group key distribution (ELK) (Penrig et 
al., 2001) proposes a key distribution mechanism for key 
updating and key recovery from hint message. The hint 
message contains key verification of contribution nodes 
so that received node can generate key from this 
information in key updating. Key updating commences 
with generating a hint message from parent nodes’ data. 
A parent node provides the hint message for child nodes 
to generate a new key from previous key because it 
recognizes all secret keys in child nodes. When a child 
node receives a hint message, it can build the new key 
from hint data. To avoid malicious messages, the new 
key can be verified with the hint message so that 
received node can be assured that the hint message is 
sent from the parent node. ELK updates joining nodes 
and leaving nodes by organizing a tree hierarchy. 

Although, this can be a disadvantage when imple-
mented. Since it cannot be assumed that network routing 
in the sensor network is organized in a tree hierarchy, 
ELK is difficult to implement. Although routing uses a tree 
hierarchy, sensor networks can regularly change 
structure. Therefore, updating hierarchy in one part of a 
tree requires updating the key in every related node. This  
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causes inefficiency in energy consumption which is not 
suitable for sensor network. Nevertheless, the hint 
message mechanism provides secure processing 
because adversaries need to perform O (2n) using brute 
force to reveal a key. 

This is a motivation for our proposed solution which is 
described in implementation of CAP. ELK uses pseudo-
random function (PRF) to generate and manage the key 
tree. The PRF uses a key as input to generate four 
different outputs. These outputs are key length, hint 
message, encrypted update key message and update 
key. On constructing the key tree, parent nodes are 
required to gather all child node keys and use PRF to 
compute the individual keys. To manage joining and 
leaving nodes, parent nodes must update the key 
corresponding to new child nodes’ keys as well as 
acknowledge of every connected node. Therefore, key 
tree requires a number of message exchanges, which 
can drain sensor network resources.  

Security Protocols for Sensor Networks (SPINS) 
(Adrian et al., 2002.), is a security protocol designed for 
energy constrained devices which maintain con-
fidentiality, authentication and integrity. SPINS achieves 
secure communication and trust of data. It also supports 
key set up in sensor network. In addition, SPINS is able 
to update keys regularly. Therefore, it should be used as 
a benchmark to compare it to our proposal. 

SPINS contains two security algorithms: SNEP and 
�TESLA. SNEP is a security mechanism for verifying 
integrity and data freshness, whereas, �TESLA is an 
authentication method for data broadcasting. SNEP is an 
authentication protocol to protect against replay attack. A 
counter adds an overhead to each packet. The counter is 
synchronized in both sender and receiver before 
communicating and incremented with every block of data 
sent. Therefore, counter number is never repeated. In 
addition, initial counter value is transmitted securely with 
the master key. In each packet, overhead size is only 8 
bytes. The counter exchange mechanism is shown in 
Figure 1. CA and CB are counters in nodes A and B. KAB 
is the shared master key among node A and B. MAC (K, 
M) is the message authentication code of M. In this 
mechanism, the first two steps synchronize the counter 
on both parties. The last step is an acknowledgement 
message to ensure that the counter has been received. 
�TESLA is a modified protocol of TESLA to broadcast 

and secure communication for a large number of nodes. 
The mechanism uses key verification and a key chain. In 
key verification, �TESLA uses symmetric cryptography 
instead of digital signature in TESLA. The number of 
senders is limited in �TESLA to reduce memory usage 
because each sender is required to construct a new key 
chain. Overhead is only per session instead of per 
packet. These modifications are due to resource 
constraints in sensor network. To set up the key chain, base 
station broadcasts K0 to every node in the cluster. Then, 
each node can generate K1, K2 … KN from K0 by using a 
one-way function as shown in Figure  2.  To  start  secure 
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Figure 2. Counter exchange mechanism in SNEP (16). 
 
 
 
communication, nodes use the key backward from the 
last key KN to K0, so the adversary cannot generate this 
chain key. For example, when an adversary can crack 
the message and obtain K2, it can generate K3, K4 … KN. 

However, the next round of broadcasting messages will 
use K1 which cannot be generated by the adversary 
because key chain uses one-way function, thus it only 
can compute forward. However, it cannot compute 
backward. Therefore, stealing current key does not affect 
the rest of the key chain. �TESLA has a nonce and 
verification in the overhead. Nonce is a value to ensure a 
freshness of data which is similar to SNEP technique. In 
the verification, receiving node can verify the correct 
sender from the correct key. In addition, broadcasting 
data uses key delay disclosure. This mechanism can 
avoid a problem in transmission delay and enhance 
security. Since data is encrypted two keys ahead, current 
key can be used to verify the packet but it cannot decrypt 
the data. For example, if current key uses K3, K3 is used 
to encrypt a packet while K1 is used to encrypt data in the 
packet. When packet is received, node decrypts the 
packet with K3 and waits until K1 to decrypt data. The 
benefit of this mechanism is being able to decrypt with a 
correct key when there is packet loss or delay. Secondly, 
encrypted data still cannot be revealed even though an 
adversary can obtain the current key because the one-
way chain cannot be computed backward. Therefore, 
�TESLA supports a sensor network environment with 
unreliable communication and a large number of 
receivers. It reduces energy consumption by using self-
authenticating keys and low overhead size in com-
munication. However, SPINS has drawbacks in verifying 
compromised nodes because there is no mechanism to 
determine the compromised node. Therefore, at an initial 
stage, if adversary could proceed as one node in the 
network, then the base station would provide the 
adversary with the key. 
 
 
THE ASSUMPTIONS AND MECHANISM OF CLUE 
AUTHENTICATION PROTOCOL (CAP) 
 
To develop clue authentication, our objective is to secure 
communication and network. We assumed that the base station has 
the highest computing capacity and is equipped  with  an  extensive  

 
 
 
 
power supply. Second, physical attack must be defended from 
attacks including key and program stealing. In this paper, nodes are 
assumed to be safe from physical tampering. Nodes can be 
protected from tampering by implementing watermarking, tamper-
proofing and obfuscation (Collberg and Thomborson, 2002; Soo-
Chang and Yi-Chong, 2006; Feng, 2000; Clark et al., 2004). We 
assumed that network routing is established before performing the 
authentication. The environment is assumed to be high risk with 
adversaries surrounding the network. Intruders have the ability to 
intercept every message of transmission as well as high 
performance computers and power supply. 

In each node, principal seed (SP) is pre-installed. The principal 
seed SP is an initial seed for generating the shared values. It is 
used as an input for a one-way function to compute a consequence 
shared value. Authentication with correct shared values ensures 
authorized senders and receivers. In our clue authentication, base 
station generates a clue message. In addition, the base station is 
the most trusted device, so it takes the responsibility of 
broadcasting and making decisions on shared value setting up and 
shared value updating. 

To construct a shared value, there are two kinds of operations. 
Both sender and receiver contain two one-way functions F1 and F2. 
These one-way functions can compute forward but they cannot 
compute backward. Therefore, exposing the running shared value 
(SR) does not affect the clue shared value (SC) and principal seed 
(SP). Secondly, using two one-way functions instead of one in 
SPINS (Adrian et al., 2002) can increase the shared value space, 
so using two one-way functions makes finding the shared value 
more difficult for an adversary. 
 
 
IMPLEMENTATION OF CAP 
 
Sender generates clue message which contains a hashed value of 
running shared value concatenated with message M. Running 
shared value SR is generated from principal seed SP and one-way 
function F1 and F2. Principal seed SP is used as an input. This 
shared value generating computes both F1 and F2 iteratively as 
shown in Figure 3.  Generating a clue shared value SC in a node can 
secure the running shared value SR and simplify operations. One-
way function F1 is the first function to iteratively compute for P 
rounds where P is a random number. Then, one-way function F2 
begins to iterative compute for R rounds where R = 2P + 1. Both 
one-way functions F1 and F2 are different functions in increasing 
shared value space which increase the difficulty of finding the shared 
value. In addition, using two one-way functions can eliminate the 
need to re-deploy principal seed SP because changing the shared 
values can be done by simply selecting new random number P. 
Then, running shared value SR is changed by a new clue shared 
value SC because changing number P changes the clue shared 
value SC. In the implementation, the random number P in the next 
round must be greater than the current number so clue shared value 
SC will not be repeatedly used. In addition, more rounds of updating 
shared values can increase shared value space. For example, if 
random number P is in the range (1, 2, 3 … 20), after 20 rounds, the 
possibility of P is in the range (20, 21, 22 … 400). Therefore, this 
shared value supports a long operation lifetime in sensor networks.  

To implement, sender is required to update principal seed SP 
from previous computing one-way function F1 because random 
number P is always added on top of previous value. Therefore, it 
can reduce processing time by processing from previous data. In 
addition, sender needs to prepare hashed value from hash function 
H. The procedure as shown in Figure 4 begins by selecting random 
number P. Then, sender performs one-way function F1 on SP 
iteratively P times. After that, it finds hashed value H (M|SC) as S1. 
Next, sender calculates the second number R for number of 
computing one-way function F2. After completing, it computes 
hashed value H (M|SR) and stores in S2. At  the  same time, sender  



 
 
 
 

 
 
Figure 3. Procedure to find running shared value SR from 
principal seed SP by using one-way function F1 and F2 where 
P is a random number. 

 
 
 

 
 
Figure 4. Generating clue procedure in CAP. 

 
 
 
broadcasts the message M with both S1 and S2 to the network. 
Receiver is pre-installed with principal seed SP, one way functions 
F1 and F2 and hash function H. Updating shared value procedure in 
receiver is shown in Figure 5. When updating message is received, 
receiver obtains S1 and S2 from the message. Next, receiver 
computes one-way function F1 with master principal seed SP as an 
input. This process continues until hashed value of the computed 
clue shared value concatenated with message M is equal to S1. If 
the hashed value of the computed clue shared value concatenated 
with message M is not equal to S1 after a threshold, namely 20 in 
our protocol, the sender is not authenticated. Then, the receiver 
begins computing second one-way function F2 for R times with 
computed clue shared value SC as an input. The result is saved as 
S. The hashed value H (M|S) is computed and compared with S2. If 
they match, the sender is authenticated; otherwise the identity of 
the sender is not valid. Figure 6 depicts how CAP works in sender 
and receiver nodes. 

Clue message is a message that provides information for 
generating clue shared value SC and running shared value SR as 
shown in Figure 7. The hint message contains two hashed values 
which are generated from sender as shown in Figure 4. The first 
hashed value allows a node to construct clue shared value SC while 
the second hashed value constructs the running shared value SR. In 
the node, principal seed SP is an input of the process. The principal 
seed SP is computed by using the first one-way function to generate 
the next shared value. The hashed value of the computed output 
shared value concatenated with message M is compared to the first  
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Figure 5. Receiver procedure in CAP. 

 
 
 

 
 
Figure 6. CAP schematic in sender and receiver. 
 
 
 

 
 
Figure 7. Clue message structure where 1st 
Hashed value and 2nd Hashed value are 
broadcasted along with the message M. 

 
 
 
hashed value in clue message. When the result does not match, 
the process re-computes the output with the first one-way function 
until a threshold and re-compares the hashed value until the result 
matches. After that, the second hashed value is compared to the 
hashed value from the second one-way function concatenated with 
message M. The output from the first one-way function is an input 
for this process. Then, this second one-way function is iteratively 
computed for R times. The advantage of using a clue message is 
that transmitting message in shared medium does not expose a 
principal seed which means it is more difficult to break the shared 
values. In addition, hashed value is smaller fixed size compared to 
a key sent with a message. Therefore, energy consumption in 
communication can be reduced. Finally, the process is stateless for 
generating running shared value and clue shared value so they can  
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be constructed from any clue broadcasting. This also assists nodes 
with packet loss and joining nodes to generate shared values. 
 
 
Updating shared values procedure 
 
There are two ways to perform the shared value update procedure. 
First, updating both shared values is computed as shown in sender 
and receiver parts. Second, updating running shared value with the 
previous clue shared value is quicker and uses less energy for 
short term purposes. Sender uses the same principal seed SP and 
reduces random number P to compute hashed value. Receiver is 
not required to compute first one-way function F1 because it uses 
the previous clue shared values. To find running shared value, it 
computes a shorter clue shared value chain from principal seed SP 
to second one-way function F2. In the implementation, both sender 
and receiver do not need to compute these one-way functions F1 
and F2 because these clue shared values have been computed 
previously. Therefore, sender only looks for hashed value in 
previous computed clue shared values while receiver only matches 
the received hashed value and the hashed value of previous 
computed clue shared values concatenated with message M. As an 
example, assume both sender and receiver currently use principal 
seed SP and running shared value SR. To update shared values, 
sender could randomly select SP-1. Since this shared value is 
already computed, sender simply computes H (M|SP-1) and then 
broadcasts it to the network. When receiving this message, receiver 
can obtain H (M|SP-1). After that, it searches for hashing value in 
memory and obtains SP-1. An advantage of this updating shared 
value is reducing computation which minimizes both energy 
consumption and delay. In addition, using a shared value backward 
can protect against adversary computing new shared value from 
previous shared value because this shared value is computed from 
one-way function. 

Joining node and packet loss are supported by our clue 
authentication protocol. Since next round of shared value updating 
contains hashed value, joining nodes can generate running shared 
value from initial principal seed SP. In packet loss, next hashed 
value provides sufficient information for receivers to generate 
running shared value. In addition, the hashed value is unique so it 
ensures the same running shared value in both senders and 
receivers. The only drawback is when a joining node has been in 
operation for some time in a network. So the joining node requires 
more computation time which can cause a delay in communication. 
 
 
Features of CAP 
 
As clue authentication protocol is implemented with clue message, 
clue shared value and shared value self-generating; it provides a 
number of features which are described as follows. The number of 
messages required for establishing shared value is reduced. Clue 
authentication protocol uses principal seed pre-distribution and clue 
message technique to construct shared values so only one 
message is required. This message contains only a clue for running 
shared value which is sufficient for authorized nodes to construct 
the shared value. When compared with SNEP in SPINS (16), at 
least three messages are required to set up a secure channel. This 
can enhance system lifetime as well as reduce setting up period. 

Shared values are generated in each node and not needed to be 
broadcasted by the base station individually. In clue authentication 
protocol, the base station gives each node a clue so running shared 
value can be constructed from this clue. The clue message is the 
hashed value of the running shared value concatenated with 
message M. Since authorized nodes have pre-installed principal 
seed, they can compute running shared value from the clue. 
However, clue message does not provide enough information for 
adversaries to generate  shared  values  because  a  hashed  value  

 
 
 
 
cannot be computed backward to find the actual shared value. 
 
 
Updating shared value is flexible for base stations 
 
In clue authentication protocol, the base station can update the 
shared value immediately to correspond to the situation by 
broadcasting clue message. Then, every node will update their 
shared value from this broadcast. Therefore, their shared value can 
be updated dynamically based on the situation. In addition, the 
base station can use running shared value longer in low risk 
environment thus energy consumption in updating shared value can 
be reduced. 

In addition, clue message is very small in size so it is attached as 
a part of transmission data. If the system decides to maximize 
battery lifetime, base station can attach the clue to a large block of 
data. Receivers can update keys immediately when the message is 
received. The data is also protected with the updated shared value 
in this transmission. 
 
 
Protocol supports leaving nodes, joining nodes and node 
failures 
 
Since clue authentication protocol can update the shared value by 
clue message, organization of tree is not necessary. In leaving 
nodes and nodes failures adjusting or communicating as in ELK 
(15) is not required. Joining nodes do not require special 
maintenance because the hashed value in clue message has 
sufficient information for new authorized nodes to generate the 
shared value. 
 
 
Protocol should minimize resource consumption in key 
management 
 
Clue authentication protocol uses a clue message which is very 
small in size. Furthermore, the message is not needed to be 
encrypted or decrypted. This also increases lifetime of the system 
besides compact communication. In addition, clue authentication 
protocol is stateless so it does not require a large space in memory. 
The memory only stores pre-installed principal seed, clues and 
running shared values. 
 
 
Clue authentication protocol (CAP) evaluation 
 
This section gives an evaluation of clue authentication protocol, 
compared with ELK and SPINS. The section begins by description 
of metrics, parameters and scenarios in the evaluation. Models are 
then constructed. Finally, clue authentication protocol is analyzed. 
 
 
Metrics of evaluation 
 
Resource usage considers the amount of energy consumption in 
communication and computation. As communication is the most 
energy intensive activities in sensor networks, it must be minimized. 
This metric also determines the system lifetime for the protocol 
operations. 

Sensor network devices have a limited resource so protocol must 
use this resource efficiently. Processing time and memory are also 
considered because these are limited in sensor networks. 
 
 
Parameters of evaluation 
 
In this part, parameters of the evaluation are explained. These 
parameters  are  considered  in  resource  usage.  The   number   of  



 
 
 
 
messages, message size and frequency are used as parameters 
because they affect communication energy consumption which 
consumes the most energy in sensor networks. The evaluation 
uses this information to calculate an estimation of system lifetime. 

Processing time is used to determine the computing capability of 
Central Processing Unit (CPU). Memory size is also needed to 
determine the requirements in implementing protocols because 
sensor network devices have limited memory size. 
 
 
Evaluation scenario 
 
To standardize the evaluation, Smart Dust (21 - 26), Strong Arm 
chips (21, 27) and Xscale (21, 28 - 31) are used as analysis 
platforms. Power is supplied from 3 volts battery with capacity of 
2,200 mAh. Our model sets up 10 nodes in each cluster and 
sampling rate is 1 Hz with 50 Kbps bandwidth. Wireless 
communication consumes 4.8 mA in receiving and 12 mA in 
transmitting. In idle mode, energy consumption rate is 5 µA. In 
addition, there is end-to-end data communication between node A 
which is a base station of the cluster and node B which is placed in 
the cluster. A path between A and B is connected along the nodes 
in the same cluster as: A � n1 � n2 � … nm � B. This network 
also has a routing path set up. Each node in network has a strong 
physical protection. Adversaries cannot break the device to retrieve 
the principal seed or data inside directly. Also, the length of 
principal seed is evaluated with 40 and 128 bits. To compute the 
clue message, MD5 and SHA 1 are used as clue functions (H) to 
evaluate the protocols. 

Adversaries have Sun UltraSparc II 440 MHz server. The 
UltraSparc is 64 bits RISC based on architecture with 16 KB data 
cache and 2 MB external cache. Its wireless antenna can reach the 
entire network. When an adversary launches attacks, it can be 
initiated from anywhere along a path. The simulator we have 
programmed is a wireless network simulator for energy 
consumption which is based on MATLAB. The simulator is based 
on an event-driven model. The operation of nodes is developed on 
an event basis. For periodic tasks, clock parameter or clock tick 
could be used for assigning the task. A wireless communication is 
built in the program which can adjust the parameters e.g. signal 
strength and error rate. Our adversary in simulator is also 
developed in this simulator with high processing capability 
(UltraSparc II) and high transmitting power. Sensor network nodes 
are equipped with limited capacity battery and less transmitting 
power than adversary. The energy consumption varies with signal 
power, message size and activities. Simulation results are exported 
to MATLAB for further analysis. 
 
 
Performance model 
 
This section presents the theoretical model of ELK, SPINS and 
CAP resource usage metrics. 
 
 
Performance of ELK 
 
Energy is used to compute and broadcast messages in the 
established tree when nodes join or leave the network. When nodes 
are joining, each node can compute individually without 
broadcasting messages. To update the key, a hint message is 
broadcast in order to allow new key to be constructed. The best 
scenario for effective energy consumption is that each node 
updates its key without broadcasting messages. This only requires 
small computation and memory. In the average case, hint 
messages are broadcasted so each node needs to consume power 
in communication and computing new key. The hint message size 
corresponds to the number of left and right contribution nodes in the  
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tree because hint messages are generated from all keys in child 
nodes. In the process of key construction, firstly a message is 
decrypted and secondly to match with the hint, the key is computed. 
The worst case scenarios are both setting up tree and leaving 
nodes. The server begins computing a new key, which corresponds 
to the current existing nodes and broadcasts the updating 
message. Each node, then, computes its key. Therefore, it requires 
the number of messages to verify the status of tree and broadcast 
updating messages as well as computing key in each node. 

As tree structure needs to be maintained, a regular 
communication is required for ELK. In addition, this protocol does 
not support packet loss because the consecutive packet loss can 
be interpreted as leaving node and consequently tree needs to be 
reconstructed. Furthermore, changing key in the child nodes 
requires the entire parent nodes to be updated, which is quite 
expensive. For concrete evaluation, the result is shown in next 
section. 

For the number of key bits n, key space is 2n. The adversary is 
required to compute at least 2n-1 keys in brute force attack. To 
update key, hint message is used to hide an actual key from the 
adversary. In addition, the adversary has some difficulties in 
obtaining the group key because a cluster contains a large number 
of nodes. This is a significant advantage in sensor networks 
because network size tends to be hundreds or thousands nodes. 
 
 
Performance of SPINS 
 
In SmartDust nodes, 98% of energy consumption is due to 
communication and 2% of energy consumption for computation. 
The energy for communication can be categorized into data 
transmission with 71%, header transmission with 20% and Nonce 
transmission with 7% of total energy. Computation uses only 2% of 
energy cost for computing encryption as shown in Table 1. 
Although most energy consumption is from communication, it is a 
common behavior in sensor networks. In computing, processing 
time in key set up is 3.92 ms (16). Memory uses 120 bytes for the 
protocol. Therefore, SPINS demonstrates a capability of implanting 
security in sensor nodes. 

Key space is 2n where n is key bits, so brute force can find the 
current key on average by computing 2n-1 times. Yet, decrypting 
message requires two keys so brute force needs to compute at 
least 2n keys. To find a key chain, key space is R·2n where R is the 
maximum number of possible keys in the key chain. However, 
adversaries have a difficulty in obtaining number R because it has 
never been stated in any message. Therefore, adversaries require 
computing all possibilities by beginning from small number of R. For 
example, R·2n where R begins from 1, 2,.. . Hence, the maximum 
computing time of a master key is R!·2n. When a base station 
updates a new key chain, an adversary is required to re-compute 
this key chain again. Therefore, a key chain is protected by security 
that is higher than that for a simple key. In addition, a key chain is 
regularly updated, thus the key chain is secured in a period of time. 
 
 
Performance of CAP 
 
As CAP uses the similar one-way function as SPINS, memory 
usage is equal to 120 bytes. However, shared value set up requires 
the comparison of clue so it requires another 80 bytes. In addition, 
shared values need to be stored in memory all the times. If shared 
value size is 64 bits, 80 bytes of memory is required for shared 
value chain size of 10. Therefore, the total memory is approximately 
280 bytes. In simulation, 400 bytes memory is reserved, but on 
average it uses 220-320 bytes. In communication, energy use is 
less than SPINS because the number of communication is reduced 
and message size is smaller. The details are demonstrated in next 
section.  
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Table 1. Energy cost in SPINS (16). 
 
Transmission Percentage 
Data transmission 71 
Header transmission 20 
Nonce transmission (Freshness verification) 7 
Encryption computation 2 

 
 
 

Table 2. Energy cost in SPINS. 
 
Feature SPINS CAP ELK 
Regular renew key or shared value � �  
Regular renew key or shared value, based on event   � 
Regular renew key chain or shared value � �  
Regular exchange information among nodes �  � 
Regular verify time counter (Nonce) �   

 
 

Table 3. Lifetime in communication for each protocol. 
 
Protocol Message size (bytes) Estimated operation time (days) 
ELK (best case) 23 - 38 962 
ELK (average) 23 - 38 102 
ELK (worst case) 23 - 38 51 
SPINS 598 263 
CAP 64 847 

 
 
 

 
 
Figure 8. Protocol lifetime. 

 
 
 
Shared value space is 2n for running shared value where n is 
principal seed bits so on average 2n-1 computations is required for 
brute force attack. To compute possible different running shared 
values, the shared value space is R·2n where R is the maximum 
number of possible running shared values, as described in the 
algorithm. To find a principal seed in CAP, shared value space is 
P·R·2n where P is the number of possible clue shared values, as 
described in the algorithm. However, adversaries have difficulties in 
obtaining numbers P and R except the node that has already 
obtained all the principal seed, clue shared value and running 
shared value because there is no information stated on the 
numbers. Since the number of P and R could be varied from zero to 
infinity, it is infeasible to calculate the maximum number of P and R 

in one time. The adversary requires computing from smaller 
numbers of P and R. Ideally; the adversary begins computing each 
set as follows. 
 
(P =1, R =1), (P =1, R =2) … (P =1, R = R); 
(P =2, R =1), (P =2, R =2) … (P =2, R = R); 
(P = R, R =1), (P =2, R =2) … (P = P, R = R). 
 
Although the adversary could keep the previous computing 
numbers P and R, it is infeasible to store the previous 2n × P × R in 
UltraSparc II. Therefore, the adversary needs to re-compute 
numbers P and R. As a result, the maximum computing time of 
principal seed is P!·R!·2n. Therefore, principal seed is the largest 
key space in CAP which is equivalent to the most secure algorithm. 
 
 
EVALUATION OF RESULTS 
 
This section evaluates ELK, SPINS and CAP in resource 
usage and energy consumption. As wireless communi-
cation is the most energy consumption in sensor 
networks, our simulation focuses on the message 
transmission. 

Table 3 is the simulation result which shows the energy 
consumption in CAP, SPINS and ELK. The comparison 
of results has been depicted in Figure 8. This simulation 
focuses on the message size and system lifetime. The 
estimated system lifetime is calculated from protocol
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Table 4. Energy savings feature in each protocol. 
 
 CAP SPINS ELK 
Not require re-organizing structure � �  
Self-generating key or shared value � �  
Support packet loss � �  
Construct key or shared value from clue message �  � 
Not require exchanging information �   

 
 
 
operations which neglect sensors and non-related 
operations. ELK (best case) updates the key by self-
generating with the low number of messages. In ELK 
(average), hint messages and tree maintenance 
messages are used. ELK (worst case) needs to re-
organize tree structures frequently due to packet loss and 
leaving nodes. Therefore, exchanging messages and 
many key updates are required. In SPINS and CAP, the 
protocols do not reflect the structure of network so 
simulation uses the average scenarios. 

The result shows that the expected lifetime in CAP is 
almost 3.2 times greater than SPINS because SPINS 
requires an authentication among the nodes before 
transmitting the data. In addition, ELK (average) and ELK 
(worst case) consumes more energy than CAP because 
ELK uses a tree to distribute keys, which are opposed to 
traditional broadcasting in CAP. Additionally, a leaving 
node in lower branch of the tree in ELK requires many 
messages to adjust the tree as well as update the key. 
Although ELK (best case) shows the best performance, it 
rarely occurs in practice because sensor networks are 
unreliable and many unexpected events often occur. 
SPINS demonstrates the average performance among 
three protocols because it reduces the number of 
communication and uses a self-generating key. CAP 
shows the best energy consumption because it uses only 
one broadcasting message to authenticate while joining 
nodes do not need the extra communication, as next 
round of shared value updating contains hashed value. In 
addition, packet loss does not affect the authentication in 
CAP, since next hashed value provides sufficient 
information for receivers to generate running shared 
value. 

In computing resource, our simulation uses MD5 as a 
hash function. MD5 consumes 0.59 µJ/byte, which can 
be compared to 3DES computation 6.04 µJ/Byte (32). So 
sensor nodes have the capability to compute this function 
and are also able to perform CAP. High power processor 
Strong Arm chip computes each MD5 140 µs in small 
wireless network device (32). In simulation, random 
number P is in the range of 1, 2, 3 … 20. On average, 
MD5 is required to be computed 10 times (average 10 
times for P). This equals to 1.40 ms (140 µs x 10 times). 
To compute MD5 in low power CPU (Xscale in energy 
safe mode), it requires 180 µs (32) for each computation 
or 1.80 ms (180 µs x 10 times) per authentication. CAP 
uses the similar one-way function as in SPINS. 

Therefore, the total operation time is the sum of hash 
function and one way function. As each one way function 
uses 3.92 ms, two one way functions use average 7.84 
ms. The total time in generating the message to be sent 
in CAP is between 10.64 and 11.40 ms. Therefore, our 
simulation ensures that computation time in CAP does 
not exceed the capabilities of a sensor node. However, 
this processing time is more than 3.92 ms in SPINS. In 
ELK, it is the worst performance in simulation because 
operations in the protocol are involved with asymmetric 
cryptography. It uses up to 2 min for generating key in the 
deep tree hierarchy. In summary, the highest 
computation time is for ELK which is a large difference 
from CAP and SPINS because ELK does not focus on 
energy consumption and using asymmetric cryptography. 
SPINS uses the average energy consumption while CAP 
saves most energy because of the least communication 
messages. 

ELK uses the largest memory size because of 
asymmetric cryptography. In the 10 levels tree, 6.86 MB 
is used to compute a key which is infeasible for sensor 
nodes. SPINS uses only 120 bytes memory for the 
protocol. In addition, CAP uses 280 bytes in the memory. 
Therefore, both SPINS and CAP could be implemented in 
sensor nodes while SPINS is the most efficient in 
memory usage. 
 
 
Conclusion 
 
In conclusion, approximately 98% of energy usage in the 
protocols is from communication task as shown in Table 
1.  

The characteristic of the protocols are shown in Table 2 
and 4. Finally, the comparisons of energy consumption in 
these protocols are shown in Table 3. ELK uses an 
excessive resource especially memory and CPU which 
are infeasible to implement in sensor networks. The 
reason is that ELK uses asymmetric cryptography and it 
does not focus on minimizing the resource usage. In 
SPINS, memory and CPU usages are the lowest among 
three protocols followed by CAP and ELK, respectively. 
In addition, CAP uses the lowest energy in operation. 
Therefore, CAP can enhance the most system lifetime. 
However, it still uses memory and CPU processing more 
than SPINS. 
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