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A dendrimer is an artificially manufactured or synthesized molecule built up from branched units called 
monomers. In this paper, we shall give the exact formulas for the first-connectivity, second-connectivity 
indices and polynomials, PI and vertex-PI indices and polynomials of an infinite class of dendrimer 
nanostars. 
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INTRODUCTION 
 
Let G be a connected simple graph. The m-connectivity 
index and polynomial of G are defined as: 
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 runs over all paths of length m in G 

and
id

is the degree of vertex iv
. 

Let e=uv be an edge in G. Denote by 
)(enu  and 

)(emu  
the number of vertex and edges lying closer to u than to v 
in G, respectively. Then, the well-studied PI and vertex-PI 
index of G are defined, respectively, as 
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. The PI and 
vertex-PI polynomials of G are defined as: 
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, respectively. 
 
During the past several decades, there are many papers 
dealing with the connectivity index. The reader may 
consult these papers (Ahmadi and Sadeghimehr, 2009; 
Ashrafi and Nikzad, 2009; Li and Gutman, 2006; Wang 
and Hua, 2010) and the references cited therein. But 
there exist no papers concerning the connectivity of 
polynomial till now. About the PI and vertex-PI indices and 
polynomials, the reader is referred to these studies 
(Firozja and Gholamhossein, 2009; Loghman and 
Badakhshian, 2009; Seyedaliakbar and Faghani, 2010; 
Yazdani and Bahrami, 2010; Yousefi-Azari et al., 2008). 



 
 
 
 

 
 

Figure 1. The dendrimer nanostar NS[n]. 
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Figure 2. The nucleus of dendrimer nanostar NS[n]. 
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In this paper, we shall give explicit computing formulas 
for first and second connectivity indices and polynomials, 
the PI and vertex-PI indices and polynomials of a type of 
dendrimer nanostars with n growth stages. 
 
 
MAIN RESULTS 
 
Let NS[n] denote a kind of dendrimer nanostar with n 
growth stages (Figures 1 and 2). We first give an exact 
computing formula for the first-connectivity index and 
polynomial of this kind of dendrimer nanostar. 
 
 
Theorem 1 
 
Let NS[n] be the dendrimer nanostar as shown in Figure 
1. Then, 
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Proof  
 

Let 
e
ij

denote the edge in NS[n] whose two ends are of 

degree i and j, respectively. Also, we use 
d
ij

 to denote 

the number of edge 
e
ij

 in NS[n]. It is easy to see that 

there contains only three types of edges: 22
e

, 23
e

 and 

33
e

. By a simple computation, we obtain: 
 

1 37 4(2 2 ) 2 1,
22

1 37 4(2 2 ) 10 2 3 2 14,
23
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So, we have: 
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Now, we shall give the second-connectivity index and 
polynomial for the dendrimer nanostar as shown in Figure 1. 
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Theorem 2 
 
Let NS[n] be the dendrimer nanostar as shown in Figure 
1. Then, 
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Proof 
 

Let 
d
ijk  denote the number of 2 paths whose three 

consecutive vertices are of degree i, j and k, respectively. 

Also, we use 

( )sd
ijk

 to mean 
d
ijk  in the 

thS  

stage. Obviously, 

( ) ( )s sd d
ijk kji


. 

Firstly, we compute the value of 

(1)d
ijk . It is easily seen 

that: 
 

(1) (1) (1)6, 28, 14,
222 223 232

(1) (1) (1)40, 3, 12,
233 323 333

d d d

d d d

  

  
 

 

Now, we are ready to deduce the relation between 

( )sd
ijk  and 

( 1)sd
ijk


 for 2S  . 
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 ( ) ( 1) ( 1)110 2 2 2 9 2 .
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( ) ( 1) ( 1)1 15 2 2 2 3 2 .
232 232 232
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Obviously, for 

any
( , , ) (2,2,2), (2,2,3),(2,3,2),(2,3,3),(3,2,3),i j k 

we have: 
 

( ) 0sd
ijk


or 

( ) ( 1) (1)s sd d d
ijk ijk ijk

  
 for 

2, , .s n  

 
 
 
 

By the aforementioned recursive formulas for 

( )sd
ijk , we 

obtain: 
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( ) ( 1) 1 1 3 13 2 14 3(2 2 ) 6 2 10.
232 232
n n n n nd d              
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So, we arrive at: 
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In the following two theorems, we shall give the PI and 
vertex PI indices and polynomials for the dendrimer 
nanostar as shown in Figure 1. 
 
 
Theorem 3 
 
Let NS[n] be the dendrimer nanostar as shown in Figure 
1. Then, 
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Proof 

 
From Figure 1, we know that NS[n] has exactly 

2 218(2 2 2 ) 26 9 2 10n n        vertices and 
2 121(2 2 2 ) 31 21 2 11n n        edges. Also, it can 

be seen that for any edge ( [ ])e uv E NS n   not 
belonging to the nucleus (Figure 2), 

( ) ( ) ( ) ( [ ]) 1m e m e m e E NS nu v   
 or 

( [ ]) 2E NS n 
. 



 
 
 
 

More precisely, there exist 
2 13(2 2 2 ) 3 2 6n n       

edges e such that and 
29 2 30n   edges e such 

that; 
 

1( ) ( ) ( ) ( [ ]) 2 21 2 13nm e m e m e E NS nu v
      

. 
 
Now, consider an edge e lying within the nucleus. Then, 

{ , , }, 1,2, ,8e e f g i
i j k

 
 , 1,2, ,8j   and 

1,2, ,9k  . 
By an elementary calculation, we obtain: 
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i i

     
  

 
for i=1, 2, 3, 4, and  
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for i=5, 6, 7, 8. 
Also,  
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for i=4, 5, and  
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So, 
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Since NS[n] is a bipartite plane graph, for any edge 

( [ ])e E NS n , we have 
( ) ( ) ( [ ])n e n e V NS nu v 

. 
Thus, we have the following. 
 
 
Theorem 4 
 

Let NS[n] be the dendrimer nanostar as shown in Figure 
1. Then, 
 

21 9 2 10( [ ]; ) (21 2 11) ,
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