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A dendrimer is an artificially manufactured or synthesized molecule built up from branched units called
monomers. In this paper, we shall give the exact formulas for the first-connectivity, second-connectivity
indices and polynomials, Pl and vertex-PI indices and polynomials of an infinite class of dendrimer

nanostars.
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INTRODUCTION

Let G be a connected simple graph. The m-connectivity
index and polynomial of G are defined as:

1
Vig‘:’imu \/d ild ip ™" d Im+1

"x(G) =

V;

i1

V. V. ...V,

where "' 277 "Ima runs over all paths of length m in G

di . V.
and  is the degree of vertex "' .
Let e=uv be an edge in G. Denote by n, (€) and m, (8)
the number of vertex and edges lying closer to u than to v
in G, respectively. Then, the well-studied Pl and vertex-PI
index of G are defined, respectively, as

PI(G) = > [m, (e) +m, (e)]

e=uv
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PI1,(G) =2 [n,(e) +n,(e)]

and e=uv The PI and
vertex-Pl polynomials of G are defined as:
PI (G X) — Z Xmu (e)+m, (e)
)
e=w
and
. _ n, (e)+n, (e)
PI,(G;x) =Y x"
e=wv , respectively.

During the past several decades, there are many papers
dealing with the connectivity index. The reader may
consult these papers (Ahmadi and Sadeghimehr, 2009;
Ashrafi and Nikzad, 2009; Li and Gutman, 2006; Wang
and Hua, 2010) and the references cited therein. But
there exist no papers concerning the connectivity of
polynomial till now. About the Pl and vertex-Pl indices and
polynomials, the reader is referred to these studies
(Firozja and Gholamhossein, 2009; Loghman and
Badakhshian, 2009; Seyedaliakbar and Faghani, 2010;
Yazdani and Bahrami, 2010; Yousefi-Azari et al., 2008).



Figure 1. The dendrimer nanostar NS[n].

Figure 2. The nucleus of dendrimer nanostar NS[n].
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In this paper, we shall give explicit computing formulas
for first and second connectivity indices and polynomials,
the Pl and vertex-Pl indices and polynomials of a type of
dendrimer nanostars with n growth stages.

MAIN RESULTS

Let NS[n] denote a kind of dendrimer nanostar with n
growth stages (Figures 1 and 2). We first give an exact
computing formula for the first-connectivity index and
polynomial of this kind of dendrimer nanostar.

Theorem 1

Let NS[n] be the dendrimer nanostar as shown in Figure
1. Then,

1 L 1
Ly (NS[]: ) = (2M3—1)x2 +(3-23 1436 4 (5.2 )3,

Ly (NS = (4 24/8)2 3 -7,

Proof

e..
Let 1] denote the edge in NS[n] whose two ends are of

d

degree i and j, respectively. Also, we use 1) {0 denote
e..
the number of edge 1 in NS[n]. It is easy to see that
e e
there contains only three types of edges: 22, 23 and

e
33 By a simple computation, we obtain:

d,, =744+ 2My =231

dyg=7+4(21+---+2M)+10.2M =3.2M3 14,
Ay =[31+21(21 4.+ 2M)] - (2N+3 1) —(3.2N*3 14
=5.2"-1,4

So, we have:

1 L 1
Ly (NS[A]; x) = (213 -1)x2 -+ (3-23_14)xV/6 4 (5.2M1,.2),3,

Lyt - Gl 2y8)2mL 316,

Now, we shall give the second-connectivity index and
polynomial for the dendrimer nanostar as shown in Figure 1.
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Theorem 2

Let NS[n] be the dendrimer nanostar as shown in Figure
1. Then,

111
2,/ (NS[A]; x) =3-2"x Z\f (1527 _18)x2V3 4 22 11933,

ZZ(NS[n])=(¥+5ﬁ)2“—¥.

Proof

d..
Let ijk denote the number of 2 paths whose three
consecutive vertices are of degree i, j and k, respectively.

d{s) d..
Also, we use 'Jk to mean 'Jk in the sth
d(8) —q(s)
stage. Obviously, 'Jk kJI
(1)
Firstly, we compute the value of 'J K . Itis easily seen
that:
(1) _ @O _ @
d _6, d223_28, d232 =14,
(1) _ @» _ @» _
d233 40, d32 =3, d333 =12,

Now, we are ready to deduce the relation between
a®  gGD
'Jk and ik for 322.

dfS), =d{SH +3.25-3.251=qfS D 13.25-1

d$3), =afS P +10.25-2.25 1 =af5 P 19.28

d$3), =d{S D +5.2542.25 1 =af5 D 43254

d$3), =afs) +10-25+4.25 1 =af5 D +3.25+2

{3, =a{sH 13251

323
Obviously, for
any @, j,k)#(2,2,2),(2,2,3),(2,3,2),(2,3,3),(3,2,3),
we have:
(s)_o () _gD_.. gD
dljk or OIuk dljk OIuk for

S=2,---,n.

als)

By the aforementioned recursive formulas for 'Jk

obtain:

, we

a0 a0V +3.201-6.+32N L.+ 21)=3. 2N

d{M —a(PD 1 g.2n—... 2281 9(2" +..-+22)=9. 2N+ g,

2239223
df, =d (Tt +3.2M ... 4443204+ 23)=6.27 10,
d{=d{nD +3.2M2=...40+3(2M2 ...+ 2%)=6.2M2 -8,
d{D) =D 3,20 34320 L4 20)=3.2N

A= =0{g=12

So, we arrive at:

11 1
25/ (NS[];X)=3-2"x N_ (15:2M1_18)x2V3 1 oNyv/2 412¢3V3,

2/(NS[n]) = 5f 2 5/3)2"- 5*/_

In the following two theorems, we shall give the Pl and
vertex PI indices and polynomials for the dendrimer
nanostar as shown in Figure 1.

Theorem 3

Let NS[n] be the dendrimer nanostar as shown in Figure
1. Then,

p|(Ns[n];X):(3_2n+1_5)x21-2n+1—12 +(9,2n+2_20))(21-2n+1—13
+ex2l2mlaa g 2120115

PI(NS[n])=189-22"+3163.22M+2 _117.20+2 _195.2N+1 116,

Proof

From Figure 1, we know that NS[n] has exactly
18(2+22 +---+2M)4+26=9.2N+2 _10
21(2+22+...+2ﬂ)+31:21_2n+1_11

vertices and

edges. Also, it can
e=uveE(NS[n])

(Figure 2),

be seen that for any edge
belonging to the nucleus

m(e) =my, (e) +my (e) =|E(NS[n])|—
|E(NS[Nn])|-2

or



2 Ny _3.on+1
More precisely, there exist 32+264+42")=3-2"-6

edges e such that and 9.2N+2_30 edges e such
that;

m(e) =m,, (e)+mv(e):\E(NS[n])\—Z:21-2”+1—13.
Now, consider an e(_jge e lying within the nucleus. Then,
eefy, fj,gk}, i=12,---,8 j=12.-.8

k=12,---,9
By an elementary calculation, we obtain:

m(e;) =m(f;)=|E(NS[n])|-4=21-2"*1-15
fori=1, 2, 3, 4, and
m(e;) =m( f;) =|E(NS[n])|-2=21.2"*1-13

for i=5, 6, 7, 8.
Also,

m(g;) =|E(NS[n])|-3=21-2"+1_14

o =18, 1#45

m(g;) =|E(NS[n])|—2=21-2"*1-13
fori=4, 5, and
m(g;) =|E(NS[n])|-1=21-2"+1_12

So,

PI(NS[N];x) = (3~ZrH':L—S)xz:L'ZrH'l—l2 +(9-2M+2 20)X21.2n+l_13
+ex2l2nl-14 g 2120115

P1(NS[n])=189-22N+3163.22N+2 _117.2N+2 _195.2N+1 1116,
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Since NS[n] is a bipartite plane graph, for any edge
ecE(NS[ND e have "u(®+ny(e) =NV (NS[nD|
Thus, we have the following.

Theorem 4

Let NS[n] be the dendrimer nanostar as shown in Figure
1. Then,

Pl (NS[Nn]; x) = (21_2n+1_11)X9.2n+2_10’

Pl (NS[n])=189-22N+3 _408-2"+1110.
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