Full Length Research Paper

Quasi-radical operation on the submodules in a module

Esra Şengelen Sevim ${ }^{1 *}$ and Ünsal Tekir ${ }^{2}$
${ }^{1}$ Department of Mathematics, Istanbul Bilgi University, Dolapdere, Istanbul, Turkey.
${ }^{2}$ Department of Mathematics, Marmara University, Göztepe-Ziverbey, Istanbul, Turkey.

Accepted 04 April, 2011
All rings are commutative with identity and all modules are unital. The purpose of this paper is to
introduce interesting and useful properties of quasi-radical operation on the submodules in a module. introduce interesting and useful properties of quasi-radical operation on the submodules in a module.

Key words: Prime submodules, qausi-radical operation.

INTRODUCTION

Throughout this paper all rings will be commutative with identity and all modules will be unitary. Let R be a ring and M be a unital R-module. For any submodule N of M, we define $(N: M)=\{r \in R: r M \subseteq N\}$. A submodule N of M is called prime if $N \neq M$ and whenever $r \in R, m \in M$ and $r m \in N, m \in N$ or $r \in(N: M)$. Let $\operatorname{PSpec}(M)$ denote the collection of all prime submodules. Note that some modules have no prime submodules (that is, $\operatorname{PSpec}(M)=\emptyset)$. In recent years, prime submodules have attracted a good deal of attention (Lu, 1984; John, 1978; James and Patrick, 1992; Shahabaddin, 2004). An R module M is called a multiplication module provided for each submodule N of M there exists an ideal I of R such that $N=I M$. We say that I is a presentation ideal of N . Let N and K be submodules of a multiplication module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then, the product of N and K is independent of presentation of N and K (Reza, 2003, Theorem 3.4). Moreover, for $a, b \in M$, by $a b$ we mean the product of $R a$ and $R b$. Let M be a nonzero multiplication R-module. Then, every proper submodule of M is contained in maximal submodule of M (Zeinab and Patrick, 1988, Theorem 2.5). Let N be a submodule of M. Then, the radical of N denoted by \sqrt{N} is defined to be intersection of all prime submodules of M containing N . If N is not contained in any prime submodule of M, then $\sqrt{N}=M$. Let N be a submodule of a multiplication R-module M. Then

[^0]$\sqrt{N}=\left\{m \in M: m^{k} \subseteq N\right.$ for some $\left.k>0\right\}$,
(Reza, 2003, Theorem 3.13).
In this paper, we generalize some properties of quasiradical operation on the ideals in a ring to quasi-radical operation on the submodules in a module (Magnus, 2004).

Definition 1

Let M be an R-module. An operation F on the submodules of M is a correspondence that to every submodule N in M associates a submodule $F(N)$ in M.

Definition 2

(i) Let M be an R-module. Let F be an operation on the submodules of M, and let N be a submodule in M. We say that $F(N)$ is the F-radical of N.
(ii) Let M be an R-module. We say that N is F-radical if $F(N)=N$. A prime submodule N is called F-prime if it is F-radical.

Definition 3

Let M be an R-module and F an operation on the submodules of M. We define F-prime spectrum of M as:
$\operatorname{Spec}(M)=\{F-$ prime submodules $N \subset M\}$.

Definition 4

Let M be an R-module. Let F be an operation on the submodules in M. We say that M satisfies the ascending chain condition (acc) for F-radical submodules if for every chain $\left\{N_{i}\right\}_{i \in \mathbb{N}}$ of F-radical submodules we have that $N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \cdots$ stabilizes.

Relations 1

Let M be an R-module and F be an operation on the submodules of M. It is natural to ask if F satisfies the following relations for any submodules N, K and $\left\{N_{i}\right\}_{i \in I}$ in M:
(a) $N \subseteq F(N)$,
(b) $F(F(N))=F(N)$,
(c) $F(N \cap K)=F(N) \cap F(K)$,
(c)* If M is a multiplication R-module then $F(N \cap K)=$ $F(N) \cap F(K)=F(N K)$,
(d) $\mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right)=\mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{F}\left(\mathrm{N}_{\mathrm{i}}\right)\right)$,
(e) $\sqrt{N} \subseteq F(N)$ if M is a multiplication R-module,
(f) $N \subseteq K$ implies $F(N) \subseteq F(K)$,
(g) $F\left(\bigcup_{i \in I} N_{i}\right)=F\left(\bigcup_{i \in I} F\left(N_{i}\right)\right)$ if $\left\{N_{i}\right\}_{i \in I}$ is ordered family.

Proposition 1

Let M be an R-module. Let F be an operation on the submodules in M. The following assertions hold for (a) - (g) of Relations 1.

1. If F satisfies $(a),(b)$ and (f) then F satisfies (d).
2. If F satisfies (c) then F satisfies (f).
3. Let M be a multiplication R-module. If F satisfies (a) and $(c)^{*}$ then F satisfies (e).
4. If F satisfies (d) then F satisfies (b).
5. If F satisfies (a) and (d) then F satisfies (f) and (g). (Let M be a multiplication R-module. The relations: (a), (b) and $(c)^{*}$ imply the relations $(d),(e),(f)$ and $\left.(g)\right)$.

Proof

1. We have from (a) that $N_{i} \subseteq F\left(N_{i}\right)$ for each $i \in I$. It follows that $\sum_{i \in I} N_{i} \subseteq \sum_{i \in I} F\left(N_{i}\right)$. Consequently, we see by (f) that $\mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right) \subseteq \mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{F}\left(\mathrm{N}_{\mathrm{i}}\right)\right)$. Conversely, since $\mathrm{N}_{\mathrm{j}} \subseteq \sum_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}$ for each $j \in I$, we have by (f) that $\mathrm{F}\left(\mathrm{N}_{\mathrm{j}}\right) \subseteq$ $\mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right)$ for each $j \in I$. Thus since $\mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right)$ is an submodule we see that $\sum_{i \in I} F\left(N_{i}\right) \subseteq F\left(\sum_{i \in I} N_{i}\right)$. This implies, again by (f), that $\mathrm{F}\left(\sum_{i \in \mathrm{I}} \mathrm{F}\left(\mathrm{N}_{\mathrm{i}}\right)\right) \subseteq \mathrm{F}\left(\mathrm{F}\left(\sum_{i \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right)\right)$. Now since from (b) $F(F(N))=F(N)$ for any submodule N in M we get that $\mathrm{F}\left(\sum_{i \in \mathrm{I}} \mathrm{F}\left(\mathrm{N}_{\mathrm{i}}\right)\right) \subseteq \mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right)$. This shows that $F\left(\sum_{i \in I} N_{i}\right)=F\left(\sum_{i \in I} F\left(N_{i}\right)\right)$, that is (d) holds.
2. Assume (f) is not true. There exist N, K such that
$N \subseteq K$ but $F(N) \nsubseteq F(K)$. This implies $F(N \cap K)=F(N) \neq$ $F(N) \cap F(K)$ which contradicts (c). Thus $N \subseteq K$ implies $F(N) \subseteq F(K)$ for any submodules $N, K \subseteq M$, that is (f) holds.
3. From the relation $(c)^{*}$ we get $F\left(t^{2}\right)=F((t)) \cap F((t))=$ $F((t))$ for every $t \in M$. By induction on n , we obtain $F\left(t^{n}\right)=F((t))$ for all positive integer n. Let N be a submodule of M and $t \in \sqrt{N}$. Then $t^{n} \subseteq N$ for some positive integer n. We have that and from relation (a) that $t \in F((t))$. Hence $t \in F(N)$ and we have proved that $\sqrt{N} \subseteq F(N)$, that is (e) holds.
4. If $F(N) \neq F(F(N))$, then $\mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right) \neq \mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{F}\left(\mathrm{N}_{\mathrm{i}}\right)\right)$ for $I=1$ and $N_{1}=N$ that is we get a contradiction of (d). Thus (b) is satisfied.
5. If $N \subseteq K$ does not imply that $F(N) \subseteq F(K)$ then there exist submodules $N \subseteq K$ in M such that $F(N) \nsubseteq F(K)$. Then $F(K) \subset F(N)+F(K)$ so we have by (a) that $F(N+K)=F(K) \neq F(N)+F(K) \subseteq F(F(N)+F(K))$,
which contradicts (d). Thus (f) satisfied. If $\left\{N_{i}\right\}_{i \in I}$ is an ordered family then it is clear that $U_{i \in I} N_{i}=\sum_{i \in I} N_{i}$ Since from (f) we have that $N \subseteq K$ implies $F(N) \subseteq F(K)$; it follows that $\left\{F\left(N_{i}\right)\right\}_{i \in I}$ is an ordered family of submodules as well. This implies that $U_{i \in I} F\left(N_{i}\right)=\sum_{i \in I} F\left(N_{i}\right)$. Thus (d), that is $\quad \mathrm{F}\left(\sum_{i \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right)=\mathrm{F}\left(\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{F}\left(\mathrm{N}_{\mathrm{i}}\right)\right) \quad$ implies $\mathrm{F}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{N}_{\mathrm{i}}\right)=\mathrm{F}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{F}\left(\mathrm{N}_{\mathrm{i}}\right)\right)$, that is (g) holds.

Lemma 1

Let M be an R-module. Let N be a prime submodule in M and let F be an operation on the submodules in M satisfying (a) and (f) of Relations 1 . The following two conditions are equivalent.
(1). $F(N)=N$
(2). $A \subseteq N$ implies $F(A) \subseteq N$ for each submodule A in M.

Proof

Assume (1) does not hold, that is by (a) we have that $N \subset F(N)$ then condition (2) with $A=N$ does not hold. Thus (2) implies (1). Conversely, assume that (2) does not hold. Then there is a submodule A in M such that $A \subseteq N$ but $F(A) \nsubseteq N$. From (f) we get that $F(A) \subseteq F(N)$. Thus by (a) we see that $N \subset F(N)$ that is condition (1) does not hold. This shows that (1) implies (2).

Definition 5

Let M be a multiplication R-module. A quasi-radical operation F on the submodules in M is defined as an operation on the submodules in M such that for all submodules A and B in M the following conditions hold:
(a) $A \subseteq F(A)$
(b) $F(F(A))=F(A)$
(c) $F(A \cap B)=F(A) \cap F(B)=F(A B)$

Remark 1

From Proposition 1 we see that any quasi-radical operation satisfies $(a)-(g)$ of Relations 1.

Proposition 2

Let M be a multiplication R-module. A quasi-radical operation F on the submodules in M satisfies $F(N)=$ $\sqrt{F(N)}=F(\sqrt{N})$ for any submodules $N \subseteq M$.

Proof

It is clear that $F(N) \subseteq \sqrt{F(N)}$. Conversely, let $m \in \sqrt{F(N)}$. Then $m^{n} \subseteq F(N)$ for some positive integer n. Therefore $F\left(m^{n}\right) \subseteq F(F(N))$ and so $m \in F((m)) \subseteq F(N)$. Hence, $\sqrt{\mathrm{F}(\mathrm{N})} \subseteq \mathrm{F}(\mathrm{N})$. Thus we have that $F(N)=\sqrt{F(N)}$. Since F is quasi-radical operation it is satisfies Relations $1(b)$, (e) and (f). This implies that $F(N) \subseteq F(\sqrt{N}) \subseteq$ $F(F(N))=F(N)$. Thus $F(N)=F(\sqrt{N})$ and we have proved the proposition.

Proposition 3

Let M be a multiplication R-module. Let F be a quasiradical operation on the submodules in M. Then for each submodule A in M the following holds:

Proof

We have that:

$$
F(A)=\sqrt{F(A)}=\bigcap_{F(A) \sqsubseteq N, N \text { a prime submodule }} N .
$$

By Proposition 2, we get first equality. The second equality is clear.

Theorem 1

Let M be a multiplication R-module. Let F be a quasi-
radical operation on the submodules in M. If M satisfies the acc for F-radical submodules, then any F-radical submodule is the intersection of a finite number of F prime submodules.

Proof

Let T be the set of F-radical submodules which are not intersection of a finite number of F-prime submodules. Assume that $T \neq \emptyset$. Then T admits a maximal element N, because the acc for F-radical submodules holds. Then N is F-radical and can not be prime. Take $m \notin N$ and $r \notin(N: M)$ such that $r m \in N$, then $N \subset N+R m$ and $N \subset N+r M$. Since N is maximal in T these two new modules are not in T. From (a) we get $N \subset N+R m \subseteq$ $F(N+R m)$ and $N \subset N+r M \subseteq F(N+r M)$. Thus the submodules $F(N+R m)$ and $F(N+r M)$ are F-radical by (b) but are not in T and therefore expressible as a finite intersection of F-prime submodules. By (c) we have:

$$
\begin{gathered}
N \subseteq F(N+R m) \cap F(N+r M)=F((N+R m)(N+r M)) \\
=F\left(N^{2}+r N+m N+r m M\right) \subseteq F(N)=N
\end{gathered}
$$

So, $N=F(N+R m) \cap F(N+r M)$ and thus, a finite intersection of F-prime submodules, which contradicts the assumption that N is in T. Thus $T=\emptyset$.

REFERENCES

Lu CP (1984). Prime submodules of modules. Comment. Math. Univ. St. Paul, 33(1): 61-69.
John D (1978). Prime submodules. J. Reine. Angew. Math., 298: 156181.

James J, Patrick FS (1992). On the prime radical of a module over a commutative ring. Comm. Algebra, 20: 3593-3602.
Magnus R (2004). Radical operations in rings and topological spaces. Doctoral Dissertation, Stockholm.
Reza A (2003). On the prime submodules of multiplication modules. Int. J. Math. Math. Sci., 27: 1715-1725.

Shahabaddin EA (2004). Multiplication modules and related results. Archivum Math., 40: 407-414.
Zeinab AB, Patrick FS (1988). Multiplication modules. Comm. Algebra, 16(4): 755-799.

[^0]: *Corresponding author. E-mail: esra.sengelen@bilgi.edu.tr.

