
 

International Journal of the Physical Sciences Vol. 6(23), pp. 5432-5441, 9 October, 2011 
Available online at http://www.academicjournals.org/IJPS 
ISSN 1992 - 1950 ©2011 Academic Journals 

 
 
 
 
 

Full Length Research Paper 

 

EGG signal classification using statistical analysis 
 

G. Subramanya Nayak1* and C. Puttamadappa2 

 
1
Manipal Institute of Technology, Manipal 576104, Karnataka, India. 

2
Sri Jagadguru Balagangadharanatha Institute of Technology, Bangalore. 

 
Accepted 20 December, 2010 

 

The method is used to register the laryngeal behavior indirectly by measuring change in the electrical 
impedance across the throat during speech or voice. In this Electroglottography (EGG) signal 
acquisition, the electrodes are made of steel. They have the form of rectangles covering an area of 10.75 
cm

2
. It is designed as a ring electrode encircling each of the two other electrodes. The electrodes are 

mounted on a flexible band whose length is adjusted to hold the electrodes in a steady position and to 
still allow the subject to comfortably speak and breathe naturally. The electrodes are mounted on a small 
holder which is pressed against the throat by hand. A signal generator supplies an AC sinusoidal 
current usually ranging from 2 MHz. The RF carrier signal is amplitude modulated by the modulating 
speech/voice signal and the demodulated signal is extracted. The variations in the signal correspond to 
the vocal fold abduction/laryngeal movement. For normal and pathology conditions, the results are 
recorded. These values form a feature vector, which reveals information regarding pathology. Principal 
component analysis technique (PCA) is used for classification, giving successful results for the specific 
data set considered. 
 
Key words: Electroglottography, principal component analysis. 

 
 
INTRODUCTION 
 
The voice pathology is very common in all over the world. 
In the current study, the vocal fold abduction/laryngeal 
movement of normal and pathology patients have been 
recorded in terms of demodulated signals and MATLAB 
@6.1 supported principal component analysis technique 
(PCA) used for classification and giving successful 
results for the specific set of data considered. 
 
 
INSTRUMENTATION 
 
The electrodes are made of steel. They have the form of 
rectangles covering an area of 10.75 cm

2
. It may be 

designed as a separate electrode or as a ring electrode 
 
 
 
*Corresponding author. Email: gs_nayak@rediffmail.com or       
gs.nayak@maniapl.edu. Tel: 0918202525318. Fax: 
0918202571071. 
 
Abbreviations: RF, Radio frequency; AC, alternating current; 
PCA, principal component analysis; Gx, waveform of larynx 
movement; Lx, vibration component. 

encircling each of the two other electrodes. The 
electrodes are mounted on a flexible band whose length 
may be adjusted to hold the electrodes in a steady 
position and to still allow the subject to comfortably speak 
and breathe naturally. 

The electrodes are mounted on a small holder, which is 
pressed against the throat by hand. A signal generator 
supplies an AC sinusoidal current usually ranging from 
300 KHz to 5 MHz as shown in Figure 1. 

The frequency selected for the above test was 2 MHz. 
This frequency is sufficiently high, so that the current 
capacitancively bypasses the less conductive skin layer 
without the use of additional conductive paste 
(Subramanya and Jagdish, 2006). 

The generator may produce constant voltage or 
constitute constant current source (Subramanya and 
Jagdish, 2006). The supplied current is different for each 
particular device, but is not stronger than several milli-
amperes. The voltage between the electrodes depends 
on the tissue impedance (Subramanya and Jagdish 
2006; Krishnamurthy and Childersm, 1986 Robert, 1991).  

The power dissipation of only several microwatts 
occurs at the level of the subject’s vocal folds.  An integral 
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Figure 1. Instrumentation for EGG. 

 
 
 

part of the electroglottographic signal is the varying 
component generated by the vertical movement of the 
whole larynx. Therefore, the signal of rapid movements of 
the vocal folds is superimposed on the signal produced 
by the slower movements of the other structures. Fourcin 
and Abberton proposed the name Gx for the waveform of 
larynx movement and the name Lx for the vibration 
component. The Gx component originates, for example, it 
can be observed in swallowing, but it is caused by the 
vertical movement of the larynx, which is related to the 
voice quality setting of the raised/ lowered larynx. Gx is 
used to calculate vocal fold abduction (Subramanya and 
Jagdish, 2006).  

The DC offset changes (Gx) can be evened out 
because, the effects of the varying larynx height are 
compensated by the use of additional electrodes or high 
pass filtering of the registered signal. The sensing 
electrode detects the current as it passes through the 
skin and the throat .The percentage of amplitude 
modulation of the received signal reflects the percentage 
change in tissue impedance in the current’s path. The 
output from the second RF transformer is then amplified 
using the above RF amplifier circuit. The output is 
demodulated using a diode detector circuit (Gx + Lx). The 
output is then amplified using an operational amplifier 
(OPAMP) inverting amplifier (Gx) as shown in Figure 2. 
The output spectra were recorded. 
 
 
PCA ANALYSIS 
 
In the development of diagnostic or analytical methods 
for routine applications, only a small amount of data from 
a very large quantity of data is made use of from the point  

of view of expediency. This may lead to wrong 
interpretation and consequent faulty decision making, 
especially in clinical applications where personal 
judgment of the clinician may influence the decision. This 
kind of subjective evaluation of data can be avoided 
when we have enough data (for example, a large number 
of spectra, each consisting of several data points) by 
appropriate mathematical/statistical analysis. Almost 
always, the enormous amount of data could be 
understood in terms of a much smaller number of 
components, called principal components or factors. This 
is equivalent to the situation, where any number of 
vectors in 3-dimensional spaces can be expressed in 
terms of 3 unit vectors and 3 characteristic numbers for 
each vector. The n number of spectra with p data points 
each may be expressed in terms of a much smaller 
number of components or factors each with p data points. 
The identification of these unique factors is known as 
principal component analysis (PCA) (Rudra, 2000; 
William, 2001). 

In real samples, there are usually many different 
variations that make up a spectrum, the constituents in 
the sample mixture, inter-constituent interactions, 
instrument variations such as detector noise, changing 
environmental conditions that affect absorbance and 
differences in sample handling. Yet, even with all these 
complex changes occurring, there should be some finite 
number of independent variations occurring in the 
spectral data. Hopefully, the largest variations in the 
calibration set would be changes in the spectrum due to 
different concentrations of the constituent of the mixtures. 
If it were possible to calculate set of “variation spectra” 
that represented the changes in the intensities at all the 
wavelengths in the spectra, then this data could be used  
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Figure 2. RF amplifier and detector. 

 
 
 

instead of raw spectral data for building the calibration 
model. These should be fewer common variations than 
the number of calibration spectra (in most cases), and 
thus, the number of calculations for the calibration 
equations will be reduced as well. 

Presumably, the “variation spectra” could be used to 
reconstruct the spectrum of a sample by multiplying each 
one by an appropriate constant scaling factor and adding 
the results together until the reconstructed spectrum 
closely matches the sample spectrum. Obviously, each 
spectrum in the calibration set would have a different set 
of scaling constants for each variation since the 
concentrations of the constituent is different. Therefore, 
the scaling constant of each “spectrum” that must be 
added to reconstruct the unknown data should be related 
to the concentration of the constituents. 

The “variation spectra” are often called “eigenvectors” 
(also called spectral loading, loading vectors, principal 
components or factors), from the methods used to 
calculate them. The scaling constants used to reconstruct 
the spectra are generally known as “scores”. 

Since   the   calculated   eigenvectors   came   from  the  

original calibration data, they must be somehow related 
to the concentrations of the constituents that make up the 
samples. The same loading vectors can be used to 
predict “unknown” samples; thus, only difference between 
spectra of samples with different constituent 
concentrations is the fraction of each loading added 
(scores). 
 
 
Signal preprocessing 
 
In the present study, we have used MATLAB @6.1 
software tool which is used to carry out smoothing, 
mathematical and statistical analysis.  
 
 
Smoothing 
 
Highly noisy spectrum can be smoothened to a great 
extent using various smoothing functions. These 
includes; Fourier-domain smoothing, binomial smoothing, 
etc. Fourier transforms the data, applying a filter function 
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Figure 3. Typical discrimination model. 

 
 
 

Table 1. Spectral details. 
 

Spectral No. Sample type Mean age Histopathology Signal 

1- 20 Normal  Standard Set 48 ± 6.1 Uninfected area - Normal - 

21-40 Pathology  Standard set 48 ± 6.1 Laryngeal movement /  vocal fold abduction - 

41-80 Normal Test  Set 44 ± 7.5 Uninfected area -  Normal Normal 

81-117  Pathology  Test Set 44 ± 7.5 Laryngeal movement /  vocal fold abduction Pathology 

 
 
 
and then inverse Fourier transforming the data, 
accomplishes Fourier smoothing. 
 
 
CLASSIFICATION   
 
This method can classify samples into well-defined 
groups or categories based on a training set of similar 
samples without prior knowledge of the actual 
composition of group of training samples. The aim of this 
analysis is to identify unknown sample. The spectrum of 
sample is compared against the model to determine if it 
matches the training data for the model (Manjunath et al., 
2004).  If the training set was constructed from spectra of 
samples that were of known quality, the model can 
accurately predict if the sample is of same quality by 
matching the spectrum and giving a “YES” or “NO” 
answer. 
 
 
Classification parameters 
 
Eigenvectors and scores 
 
Eigenvectors are the spectral equivalents of principle 
components of the sample and scores corresponding to 
contribution of each principle component to a given 
sample. Multiplying the eigenvectors with the scores for 
that sample and adding the product for all scores can 
reconstruct each sample spectrum. 

Residual errors or spectral residual 
 
When each sample is predicted, a set of scores is found 
that best fits the model loading vectors to the sample 
spectrum. By using the calculated scores and calibration 
of loading vectors, a new model reconstructed spectrum 
can be calculated. This new spectrum is what the PCA 
model thinks the sample spectrum looks like. The 
residual errors or spectral residual is the difference 
between this spectrum and the actual prediction 
spectrum. 
 
 
Mahalanobis distance 
 
It is very sensitive to inter variable changes in calibration 
data. The distance is measured in terms of standard 
deviations from the mean of the training samples The 
values give a statistical measure of how well the 
spectrum of unknown sample matches the original 
training spectra. Typical discrimination model is as shown 
in Figure 3. 

In PCA analysis, twenty spectra each from certified 
normal and pathology samples (details of spectra used 
are listed in Table 1) were combined to see the best 
approach to prepare calibration sets in the two classes. It 
is seen that the eigenvalues decreases very rapidly and 
are almost zero after 7 to 8 factors, and about 99% of 
total spectral contribution came from these factors only 
as shown in Table 2. From Table 2 and  Figure  4,  it  can
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Table 2. Factor number with corresponding eigenvalues and total 
percentage variance for 20 normal and 20 pathology calibration 
spectra. 
 

Factor number Eigenvalue Total % variance 

1 53.980101 71.1774449 

2 107.09752 88.0199317 

3 50.1468976 95.841953 

4 10.7986678 97.5396094 

5 7.3732443 98.7601175 

6 5.16731475 99.5704086 

7 2.36394707 99.8509443 

8 0.01421524 100 

 
 
 

be seen that the eigenvalues decreases very rapidly and 
are almost zero after eight factors and also 100% of the 
total spectral contribution came from these eight factors. 
This can be further confirmed by using an appropriate 
number of factors from the model set and regenerating 
the spectrum of any sample. The difference between the 
observed and regenerated spectrum, expressed as 
residual errors squared sum can be used as a measure 
of desired number of factors, as well as accuracy of the 
model. In the present analysis, it is found that four factors 
contributed to about 98% of total variance, and these four 
factors completely describe the spectra. The higher 
factors were found only to account for variations in day-
to-day runs, noise, etc. and did not improve the sum of 
squared spectral residuals, or other parameters like 
average predicted Mahalanobis distance (Mahalanobis, 
1936). All final calculations were thus carried out using 
only four factors. In this case, the statistical parameters 
like spectral residuals, Mahalanobis distances, etc. were 
used for discrimination between normal and pathology 
cases. 

The Mahalanobis distance is normally expressed in 
units of standard deviation. For classification of oral 
tissues, we have employed the Mahalanobis distance (M-
distance) and spectral residual (the residual error 
squared sum) as the criteria. The M-distance can be 
represented by: 
 

D2 = (S test) M –1(S test) 
1
  

 
Where S test is the vector of scores and sum of squared 
spectral residuals for a given test sample, and M is given 

by S′′′′S/(n-1), where S contains the corresponding 
parameters for the calibration set (n standards).  

Since the Mahalanobis distance is a standard 

deviation, a distance of ≈2 for a sample corresponds to a 
5% probability of the sample belonging to the standard 
set, and higher distances will have still less probability. 
There are two main advantages in using D

2 
as a 

discriminating parameter. As seen from the equation, D
2
 

explicitly accounts for any correlations between the 

variables, namely scores of factors. By fixing an upper 
limit for inclusion in any class represented by the 
standard calibration set for that class, we can possibly 
achieve any desired level of discrimination for staging.  

We have made match mismatch tables of calibration 
set as well as test set samples (normal and malignant 
spectra) by comparing these with the normal calibration 
set considering the Mahalanobis distance (M-distance) of 

≈3. The results are listed in Tables 3, 4, 5 and 6. 
 
 
DISCUSSION   
 
In PCA analysis, we have used twenty spectra each from 
certified normal and malignant oral tissue samples, and 
calibration set is built. As mentioned earlier, we have 
used four factors for all final calculations, M-distance and 
spectral residual as discrimination parameters. 

Figure 5 shows a plot of the M–distance against 
residual errors squared sum for a new set of 77 samples 
(40 normal + 37 pathology), compared to a standard set 
of normal spectra. It is clearly seen from the plot that all 
samples diagnosed as normal by pathological 
examination in the new set fall in the lower left-hand 
corner of the plot. If we take a M-distance of 1 as 
acceptance, then almost all the samples classified as 
normal samples fall within 3 times this value, while all 
samples classified as pathology lies far outside. The 
specificity and sensitivity of this technique is thus quite 
good, 100 and 83.8%, respectively (shown in Table 7). A 
closer observation of Figure 5 shows a very small 
number of samples outside the acceptable range of either 
normal or pathology species, that is, the overlap between 
two sets are negligible up to mean +-2 standard 
deviations, which shows the probability of samples being 
in the respective clusters to be about 97% and finding 
them out of the cluster is less than 3%. All the pathology 
samples    have    an   M-distance   >>2 ,  indicating   the 
probability of their belonging to the normal group, 
practically zero. All the normal samples have an M-
distance much lower than  2,  showing  the  probability  of
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Figure 4. PCA eigen values and total % variance for a model set of (a) 20 normal spectra (b) 20 pathology spectra.  

 
 
 

these being out of the group negligible. Once the validity 
of the standard calibration sets was established, we 
carried out a limited test on the predictive value of the 
method. For this, 77 additional spectra (40 normal and 37 
pathology spectra) were predicted with the standard 
calibration set prepared earlier. For better discrimination 
of normal and pathology spectra, we have used match 
mismatch criteria by comparing calibration set as well as 

test set samples (normal and pathology spectra) with the 
normal calibration set considering the Mahalanobis 

distance (M-distance) of ≈3. According to this criterion, all 
spectra that fall within the limits are labeled as ‘match’ 
and others are labeled as ‘no match’. When a set of 20 
spectra of normal samples was used as calibration 
standard, all normal spectra of the calibration set showed 
‘match’ and all pathology calibration set spectra showed
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Table 3. Retrospective test of normal calibration set samples against calibration set of normal samples.  
 

Spectral number Match M. Distance Limit test *** Spectral residual 

1 Yes 0.7692 Pass (PPP) 0.5074 

2 Yes 1.0833 Pass (PPP) 0.9164 

3 Yes 0.8911 Pass (PPP) 0.7391 

4 Yes 1.0007 Pass (PPP) 0.1847 

5 Yes 0.8405 Pass (PPP) 0.5694 

6 Yes 1.7137 Pass (PPP) 1.5398 

7 Yes 0.8633 Pass (PPP) 0.2917 

8 Yes 1.3845 Pass (PPP) 0.2797 

9 Yes 1.0032 Pass (PPP) 0.5828 

10 Yes 1.6049 Pass (PPP) 1.3779 

11 Yes 1.7517 Pass (PPP) 1.5069 

12 Yes 1.7636 Pass (PP?) 1.3078 

13 Yes 0.7862 Pass (PPP) 0.9804 

14 Yes 0.5342 Pass (PPP) 0.7848 

15 Yes 0.5356 Pass (PPP) 0.6027 

16 Yes 0.7404 Pass (PPP) 0.6673 

17 Yes 1.2598 Pass (PPP) 0.5892 

18 Yes 0.8114 Pass (PPP) 0.5102 

19 Yes 1.0734 Pass (PPP) 0.9164 

20 Yes 1.2451 Pass (PPP) 0.5988 
    

 * P = Pass, F = fail. Mean M distance for normal calibrated set is 1.0602±0.51 and mean spectral residual is 
0.7569±0.028. Acceptance value is fixed to twice the mean M distance of normal calibration set. 

 
 
 

Table 4. Retrospective test of pathology calibration set samples against calibration set of 
normal samples.  
 

Spectral number Match M.distance Limit test ** Spectral residual 

21 No 7.8591 Fail (FFF) 5.0169 

22 No 8.5018 Fail (FFF) 5.3739 

23 No 7.3529 Fail (FFF) 4.6739 

24 No 4.9425 Fail (FFF) 3.3747 

25 No 8.5206 Fail (FFF) 5.4821 

26 No 7.8294 Fail (FFF) 5.0665 

27 No 5.4197 Fail (FFF) 3.6616 

28 No 5.5963 Fail (FFF) 3.6608 

29 No 5.1404 Fail (FFF) 3.6272 

30 No 4.7382 Fail (FFF) 5.0196 

31 No 5.4372 Fail (FFF) 3.5981 

32 No 10.099 Fail (FFF) 6.3894 

33 No 4.9682 Fail (FFF) 2.4129 

34 No 4.9958 Fail (FFF) 2.4899 

35 No 16.0364 Fail (FFF) 9.5869 

36 No 4.5523 Fail (FFF) 2.5229 

37 No 4.7859 Fail (FFF) 2.8999 

38 No 4.6783 Fail (FFF) 5.0518 

39 No 7.8393 Fail (FFF) 5.0665 

40 No 8.9971 Fail (FFF) 2.5192 
  

 ** P = Pass, F = fail. Mean M distance for normal calibrated set is 1.0602±0.51 and Mean 
Spectral residual is 0.7569±0.028. Acceptance value is fixed to twice the mean M distance of 
normal calibration set. 
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Table 5. PCA of test normal samples against calibrated set of standard normal samples. 
  

Spectral number Match M. Distance Limit Test *** Spectral residual 

41 Yes 0.8593 Pass (Ppp) 0.6065 

42 Yes 1.1834 Pass (Ppp) 0.9234 

43 Yes 0.8912 Pass (Ppp) 0.8382 

44 Yes 1.1125 Pass (Ppp) 0.0958 

45 Yes 0.7503 Pass (Ppp) 0.6585 

46 Yes 1.8137 Pass (Ppp) 1.6498 

47 Yes 0.7833 Pass (Ppp) 0.3917 

48 Yes 1.3955 Pass (Ppp) 0.2897 

49 Yes 1.1232 Pass (Ppp) 0.6837 

50 Yes 1.6959 Pass (Ppp) 1.4888 

51 Yes 1.5617 Pass (Ppp) 1.6069 

52 Yes 1.5547 Pass (Ppp) 1.4129 

53 Yes 0.8763 Pass (Ppp) 0.8815 

54 Yes 0.6343 Pass (Ppp) 0.7849 

55 Yes 0.8993 Pass (Ppp) 0.7066 

56 Yes 1.0844 Pass (Ppp) 0.9232 

57 Yes 0.7813 Pass (Ppp) 0.7482 

58 Yes 1.0108 Pass (Ppp) 0.0769 

59 Yes 0.8513 Pass (Ppp) 0.5786 

60 Yes 1.7228 Pass (Ppp) 1.5434 

61 Yes 0.5569 Pass (Ppp) 0.8116 

62 Yes 0.9366 Pass (Ppp) 0.3452 

63 Yes 0.8719 Pass (Ppp) 0.4259 

64 Yes 1.0687 Pass (Ppp) 0.2527 

65 Yes 0.9893 Pass (Ppp) 0.2553 

66 Yes 0.9319 Pass (Ppp) 1.0016 

67 Yes 0.7813 Pass (Ppp) 0.2299 

68 Yes 0.9303 Pass (Ppp) 0.5785 

69 Yes 1.0133 Pass (Ppp) 0.5928 

70 Yes 1.0258 Pass (Ppp) 0.6294 

71 Yes 0.7763 Pass (Ppp) 0.6962 

72 Yes 0.6243 Pass (Ppp) 0.5848 

73 Yes 0.7357 Pass (Ppp) 0.7027 

74 Yes 0.7405 Pass (Ppp) 0.6773 

75 Yes 1.2699 Pass (Ppp) 0.5872 

76 Yes 0.8345 Pass (Ppp) 0.4802 

77 Yes 1.2344 Pass (Ppp) 0.9464 

78 Yes 1.2436 Pass (Ppp) 0.5999 

79 Yes 0.5555 Pass (Ppp) 0.8145 

80 Yes 0.9457 Pass (Ppp) 0.3543 
 

Mean M distance for normal calibrated set is 1.0161 and Mean Spectral residual is 0.7112. 
Acceptance value of M - distance =3.0. 

 
 

 
Table 6. PCA of test pathology samples against calibrated set of standard normal 

samples.  
 

Spectral number Match M. distance Limit test *** Spectral residual 

81 No 7.8899 Fail (FFF) 5.1179 

82 No 8.7124 Fail (FFF) 5.4739 

83 No 7.3679 Fail (FFF) 4.6924 
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Table 6. Cont 
 

84 No 4.7835 Fail (FFF) 3.4764 

85 No 8.5322 Fail (FFF) 5.4921 

86 No 7.9394 Fail (FFF) 5.1772 

87 No 5.4124 Fail (FFF) 3.6544 

88 No 5.5765 Fail (FFF) 3.5643 

89 Yes 2.1505 Pass (PPP) 1.6373 

90 Yes 1.7433 Pass (PPP) 1.4396 

91 No 5.5472 Fail (FFF) 3.5675 

92 No 10.103 Fail (FFF) 6.4322 

93 No 4.1235 Fail (FFF) 2.4266 

94 No 4.5434 Fail (FFF) 2.4933 

95 No 16.1346 Fail (FFF) 8.6433 

96 No 5.4443 Fail (FFF) 2.5434 

97 No 6.4636 Fail (FFF) 2.9968 

98 Yes 2.5643 Pass(PPP) 1.9455 

99 No 7.8454 Fail (FFF) 6.0943 

100 No 8.8766 Fail (FFF) 6.1278 

101 No 9.8162 Fail (FFF) 6.5458 

102 No 8.7603 Fail (FFF) 5.6559 

103 No 8.4583 Fail (FFF) 5.6559 

104 No 19.3782 Fail (FFF) 11.3654 

105 No 8.8594 Fail (FFF) 6.0079 

106 No 8.4018 Fail (FFF) 5.4739 

107 Yes 2.3404 Pass (ppp) 1.6269 

108 Yes 2.1404 Pass (PPP) 1.5672 

109 Yes 2.3304 Pass (PPP) 1.7872 

110 No 8.0493 Fail (FFF) 4.6424 

111 No 7.2592 Fail (FFF) 5.7323 

112 No 8.6743 Fail (FFF) 6.6666 

113 No 9.3213 Fail (FFF) 7.2223 

114 No 7.1233 Fail (FFF) 3.3246 

115 No 8.0428 Fail (FFF) 3.3202 

116 No 8.8162 Fail (FFF) 5.5459 

117 No 8.0428 Fail (FFF) 3.3204 
 

Mean M distance for normal calibrated set is 1.0161 and Mean Spectral residual is 0.7112. 
Acceptance value of M - distance =3.0. 

 
 
 

 
 
Figure 5. Plot of spectral residual versus M.distance- normal and pathology spectra against normal calibration set. 
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Table 7. Performance of PCA (77 test signals). 
 

Classifier Specificity (%) Sensitivity (%) Accuracy (%) 

PCA 100 83.8 92.2 

 
 
 

 
 
Figure 6. Classification of 117 spectra (20+40 normal, 20+37 pathology). Sample number against M. 
distance for normal and pathology calibration and test spectra. 

 
 
 

‘no match’ as shown in Table 3 and 4, respectively. In 
this case, all the normal spectra are tested retrospectively 
by rotating out each spectrum from the calibration set, 
while all the pathology spectra are tested prospectively.  

PCA of this region was then repeated in the prediction 
mode for testing match or mismatch of test samples with 
the normal calibration set. As expected when the set of 
40 spectra of normal samples showed ‘match’ and 31 out 
of 37 pathology spectra showed ‘no match’ as shown in 
Table 5 and 6. Six pathology test spectra which shows 
match when normal calibration set was used for 
prediction of 37 pathology spectra may be due to the 
recording of the spectra from normal site of the pathology 
tissue. From the tables, it can be seen that the results are 
very satisfactory and the PCA using match mismatch can 
be used for the discrimination between normal and 
pathology cases.   

We have also plotted M-distance versus sample 
number for 117 spectra (20+40 normal and 20+ 37 
pathology) as shown in Figure 6. 
 
 
Conclusion 
 
As seen from the performance tables of PCA analysis, it 
is found that the sensitivity is 83.8% in case of PCA. PCA 
analysis play important role when biochemical 
composition of subject is considered (Nayak et al., 2006). 
In case of pathology test spectra used for prediction 
against normal calibration set, it is seen that there were 

few pathology spectra, which were classified, as normal. 
This deviation may be due to the recording of the spectra 
from normal site of patient. 
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