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In this paper, we analyze the Hopf bifurcation of basic food web of four species based on standard 
normal form theory. The basic model we consider is owed to a bottom prey X, two competing predators 
Y and Z on X, and a super-predator W only on Y. It is found that periodic solutions arise from the main 
parameter values 1δ  and ζ  through through a Hopf bifurcation point. The direction and type of the 
Hopf bifurcation involved as well as the parameter values also are determined. 
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INTRODUCTION 
 
Chaos theory is a field of study in applied mathematics, 
and it has applications in several disciplines including 
physics, economics, biology and philosophy. It has 
always intertwined with complex population dynamics 
since its inception (Xiang et al., 2011). The question of 
under what minimum circumstance can chaos arises in 
population models was raised which postulates that it 
requires at the minimum the coupling of two oscillators 
from some shorter predator-prey chains (Rai, 2004). The 
main objective of this paper is to show that this 
hypothesis is false for a food web of four species in which 
chaos can occur even though none of the sub-chains 
contains any oscillator. 

Bockelman et al. (2004) addressed an important issue 
in population dynamics. The competition exclusion 
principle presented by Koch (1974), Armstrong and 
McGehee (1980) and Waltman (1983), which states that 
for most systems where two predators feed on a prey 
there cannot be any stable coexisting state. The chaotic 
four species model found in their paper is not by an 
exclusive singular perturbation construction as with the 
case of Liu et al. (2003). Instead, it is found by a 
combination of singular perturbation analysis, Hopf 
bifurcation analysis and a numerical bifurcation study on 
a period-doubling cascade originated from the Hopf point. 
Understanding the system mechanism that creates this 
phenomenon is particularly challenging because it seems  
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that the singular perturbation approach alone is not 
thoroughly effective. 

The food web includes X for the prey, Y, Z for the 
competing predators of the common prey X, and W for 
the top-predator on Y. We will assume that X is governed 
by Verhulst’s logistic growth principle proposed by Lotka 
(1925) and Volterra (1926) in the absence of the 
predators, and all predators governed by Holling’s Type II 
predation functional form, two of the most fundamental 
modeling principles in ecology. The dimensional model is 
as follows: 
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Here r is the intrinsic growth rate and and K is the 

carrying capacity for the prey. Parameter 1p  is the 

maximum predation rate per predator Y and 1H is the 

semi-saturation density for  which  when  X = 1H
 
 the  Y's 



 
 
 
 

predation rate is half of its maximum, 1p /2. Parameter 1b  

is predator Y's birth-to-consumption ratio and 1d  is its 

per-capita death rate. The remaining parameters have 
parallel and analogous meanings. Using the scaling tran-
sformations together with the dimensionless parameters 
(Rai, 2004), Equation 1 is changed to this form: 
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where all the parameters are positive. Its chaotic 
dynamics and the routes to chaos are observed by 
numerical simulations (Wei, 2010). It has been studied for 
the existence of a chaotic attractor (Bockelman et al., 
2004), on which all species coexist, by using a geometric 
method of singular perturbations. It is shown that under 
the situation that without the top-predator W, competitor Z 
goes to extinction, without Z the XYW locks in a periodic 
cycle, yet with all species, the noncompetitive Z can 
derive the dynamics from periodic orbits to chaos. 

Bockelman and Deng (2005) have shown that a one-
dimensional bifurcation diagram using the relative 
reproduction rate of Z as the bifurcation parameter was 
computed to show period-doubling cascades leading to 
chaos. The chaotic attractor is formed via period-doubling 
cascades from a Hopf bifurcation point. The results of 
Hopf bifurcation were not proved analytically.  All the 
conditions of the Hopf bifurcation theorem were not 
verified and stability of the limit cycle were not addressed. 
Moreover, to the best of our knowledge, there are few 
reports on the limit cycle of food web of four species 
theoretically, while some detailed investigations and 
studies of dynamical behaviors 3D autonomous systems 
were given by Yu and Zhang (2004), Dias et al. (2010), 
Mello et al. (2008) and Wei and Yang (2011). It motivated 
a great deal of interest to investigate the formation 
mechanism of chaos and periodic orbit. In this paper, 
applying the normal from theory introduced by Hassard et 
al. (1982), we investigated that periodic solutions arise 
from through a Hopf bifurcation point. The direction and 
type of the Hopf bifurcation involved as well as the 
parameter values also are determined. 
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LOCAL STABILITY AND HOPF BIFURCATION 
 
First, we study the conditions for the existence of the 
equilibria. Equation 2 have eight possible equilibria 
labelled by iP , i=1,2,3,4,5,6a,6b,7, as shown in Table 1 

(Wei, 2010). The notations (
iPx ,

iPy ,
iPz ,

iPw ),
iPE , and 

A( iP ) will be used for the coordinates, region of existence 

and Jacobian matrix of steady state iP , respectively, 

throughout this paper. 
We choose here to 

study 3P 1 1
1

1

( , (1 )( ),0,0)
1

x x
δ β β

δ
− +

−
, because it seems 

more meaningful to proceed in the neighbourhood of 
z  0=  and w 0=  if we keep in mind the situation of 
biological interest. It is easy to obtain the condition for the 
existence of the equilibria 3P , that is, 

1
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−< > . The Jacobian matrix of 

Equation 2, evaluated at 3P , is denoted A( 3P ). 

Obviously, linearizing Equation 2 about the equilibrium 
yields the following characteristic equation: 
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Now, we study the problem of the existence of Hopf 
bifurcation. 
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Table 1. Possible equilibria in Equation 2, (0,1)t ∈ .
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the first condition for Hopf bifurcation in the sense of the 
theorem (Hassard et al., 1982) is satisfied. 

Differentiating all the terms in Equation 3 with respect 

to the parameter 1β , one obtains 
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Thus, the second condition for a Hopf bifurcation to exist 
is also met. So, a Hopf bifurcation exists. 
 
 
DIRECTION AND STABILITY OF BIFURCATING 
PERIODIC SOLUTIONS 
 
In the following, the stability and expression of the Hopf 
bifurcation of Equation 2 is investigated by using the 
normal form theory, some rigorous mathematical 
analysis, and symbolic computations. 

The eigenvectors associated with eigenvalues 1λ , 

3λ and 4λ will be 1α , 3α and 4α ,respectively. They satisfy 
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Therefore, one can define 
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Making the transformation 
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transformed into the following normal form: 
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We obtained the quadratic and cubic items of , ,P Q R  

and S , but they are too long to be displayed.  Next, by 
the MATHEMATICA 7.0, we calculate the important 

quantities about 3P , all to be evaluated at 1
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We will find that there are not 2 2
1 2,u u  and 1 2u u  in the 
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Solving the following equations 
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In virtue of the above analysis, we can compute the 
following quantities 
 



2 2 21
1 20 11 11 02

0

1
(0) ( 2 | | | | )

2 3 2

gi
C g g g g

ω
= − − +

 

= 3/2 7/2 2 3
1 1 1 1 13 5/2

1 1

1
(( 1)(9 1 1 (2 9 6 8)

12(1 ) 1
i iδ δζ δ δ ζ ζ ζ δ

δ δζ
+ − + + − + +

− −
 

5/2 2 2 3/2 3/2
1 1 1 1 1 12 (1 ) (9 2 3) 2 1 (2 8) (9 8) 1i i iδ ζ ζ ζ δ δ ζ ζ δ δζ δ+ − − + + + − − + − −

 
254          Int. J. Phys. Sci. 
 
 
 

2 3/2
1 1 1 1 1 11 (9 2 6 8) 4 (1 ) 2 1 6 (1 ) )i i i i iδ ζ ζ ζ δ δ δζ ζ δ δ ζ+ + − + + − − + + − − , 

2
1 1 1 2 2

2 1 1 1

1

2 ( 1)( 1)
3 (1 ) 2(1 )

1

δ δ δ ζ
µ δ δ ζ δ

δ
+ −

= − + + −
−

, 

2
3/2 3/2 2 2 2 2 21

2 1 1 1 1 1 1 1 1 19/2 2
1 1

( 1)
(2 1 (8 3 3) 1 (9 2 3

12(1 )

δτ δδ ζ δ δ δδ δ ζ ζ δ ζδ
δ δζ
+= + − − + − + −

−
    

2 3/2 2
1 1 1 1 1 18 5 14 16) 4 ( 1) 1 (2 15 8) 2 1 )δ ζ ζ δ δζ δ δ ζ ζ δ ζ+ − − − − + + − + + + − , 

2 3/2 2
2 1 1 1 1 1 1 17/2 2

1

1
( 1) ( 2 1 3 1 1 (3 2)

2(1 )
β δ δ δ ζ δδ ζ δδ ζ

δ ζ
=− + − + + − + − +

−
 

1 1 12 (1 ) 2 1 ]δ δ ζ δ+ + − − . 

 
Therefore, one obtains 2 0µ >  when 0(0, )ζ ζ∈  while  

2 0µ <  when 0( , )ζ ζ∈ +∞ , in which 

1
0

1 1

( 7 4)( 1)

9 ( 1)

δζ
δ δ
− −=

+
 is the unique and positive root of 

2 0µ = .  Moreover, '(0) 0α <  and the signs of 2µ  and 

2β  are the same. Based on the above discussion, we 

have the following conclusion. 
 
 
Theorem 2 
 

Let 3
3 1 2 3 1 2 3 2

3 1 1 1 1 1

1
{( , , , ) | 1, 1, }

(1 ) (1 )

δβ δ δ δ δ δ δ
δ δ β δ δ β

−< < >
− − −

, 

3,4 0λ < . Then  

 
(1)  The Hopf bifurcation is non-degenerate and 

supercritical and the direction of bifurcation is 1
1

1

1

1

δβ
δ

−<
+

 

when 0(0, )ζ ζ∈ , and the bifurcating periodic solutions 

are stable;  
(2) The Hopf bifurcation is nondegenerate and subcritical 
and the direction of bifurcation is 1

1
1

1

1

δβ
δ

−>
+

 when 

0( , )ζ ζ∈ +∞ , and the bifurcating periodic solutions 

are unstable; 

(3)  When 2 0µ < , and the period of bifurcating periodic 

solutions increases; when 
2 0τ > , and the period of 

bifurcating periodic solutions decreases. Meanwhile, the 
period and characteristic exponent are  
 

2 41
2

1 1

(1 )
2 (1 ( ))

(1 )
T O

δ ζπ τ ε ε
δ δ

+= + +
−

,  

 
2 4

2 ( )Oβ β ε ε= + 2 4
2 ( )Oβ β ε ε= + . 

 
 
 
 
Therefore, by choosing the appropriate bifurcation 

parameter 1β , it is proved that this Equation 2 has a Hopf 

bifurcation when 1β  exceeds the critical value 1
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This theoretical result is consistent with the numerical 
results by Bockelman et al. (2004). 
 
 
CONCLUSION AND REMARKS 
 
In this paper, the dynamic complexities of a basic food 
web of four species are studied analytically. With precise 
symbolic computation and a completely mathematical 
analysis, we have obtained the conditions that the 
periodic solutions from Hopf bifurcation are stable or 
unstable with Z and W going to extinction. Furthermore, 
the chaotic solutions from the Hopf bifurcation can cause 
the population to run a higher risk of extinction due to the 
unpredictability (Bockelman et al., 2004). Thus, how to 
control chaos in the epidemic model is very important, 
which needs further investigation. 
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