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Some mathematical properties of nonlinear system associated with an HIV- Immune dynamic model will 
be given. The considered model will be solved numerically. The numerical method permits the 
examination of the behavior of the dynamic system on long-term. In the same time, it is easy to 
implement, fast convergent and has a very competitive stability results. Numerical results demonstrate 
the effect of improving the function of the thymus on the viral growth and T cell population. 
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INTRODUCTION 
 
Acquired Immune Deficiency Syndrome (AIDS) is a viral 
disease. It suppresses the immune system and elimina-
tes the body's ability to increase an immune response by 
killing helper T cells (its target). The T cells are able to 
fight this invasion for a period of time, but eventually 
cannot oppose the violently aggressive attack. As a re-
sult, the immune system becomes less effective in 
fighting. As the disease progresses, the body becomes 
unable to defend itself against any infections such as 
pneumonia. The virus, which causes AIDS, is the human 
immunodeficiency (HIV) virus. 

Recently, mathematical immunology has been advan-
ced dramatically. The aim of mathematical immunology is 
to aid understanding of the complexities of the immune 
system response through mathematical modeling. Mathe-
matical models enable us to verify the role of various 
interactions of individual elements within the frame of the 
function of the whole immune system. These models may 
be lead to different situations with different interpreta-
tions, which can be helpful to clinicians.  

This paper, consider the model that describes the 
population of HIV virus and its target T cells. It has been 
used extensively, see e.g., (Kirschner, 1996; Perelson et 
al., 1993; Prikrylova et al., 1992)�and the including refe-
rences. However most of these studies, appear to give no 
details about the utilized numerical methods� 

The examination of the long-term behavior of a dyna-
mic system is necessary. While, using small time step 
size requires extra computing costs. So, it is essential to 
use a numerical method that allows the largest time 
steps. 

This work considers an existing model (Kirschner,1996) 
concerned with the dynamics of HIV- Immune interaction, 
with slight modification. The solution of this model is uni-
que, depends on the initial data. In the case of uninfected 
individual, there are no points of singularity and the criti-
cal point is stable. While for the case of infected indivi-
dual, the solution posses two critical points.  

Four schemes are investigated to present a compara-
tive study for solving HIV-immune dynamic model, name-
ly linear implicit finite difference method, nonlinear implicit 
finite difference method, Euler method and Runge-Kutta 
method. The numerical comparisons were carried up to 
test the effect of time step size on the behavior of these 
methods. It was shown that the linear implicit finite differ-
rence method is much better, in terms of numerical con-
vergence, than the other methods. It permits the exami-
nation of the behavior of the dynamic system on long-
term. The novelty of the implicit difference scheme to be 
developed in this paper is that it is easy to implement, 
fast convergent and has a very competitive stability re-
sults. 

Numerical results demonstrate the effect of improving 
the function of the thymus on the viral growth and T cell 
population. 
 
 
HIV-immune dynamic system [1, 3, 7 - 10]  
 
The typical T-cell lymphocyte, originate from the hemo-
poietic stem cells in the bone marrow. A population of 
lymphocytes then  passes  through the  thymus  gland  to  



 
 
 
 
take their T cell education. Then they become mature T 
cells. Most of them home to the lymph nodes and spleen, 
other circulate in the blood stream. Normally T cells are 
produced at a uniform rate. When the body detects a 
need for T cells to fight an infection, additional T cells are 
created by proliferation. Even after thymes involution the 
thymus remains functional (www.HealthyImmmunity.com; 
www.aidsinfonet.org). Increases in T cell count is consi-
dered as a sign of immune restoration in the case of da-
mage done to the immune system by a foreign sub-
stance. T cells live only for a finite period of time. 

The mechanism of HIV infection is as follows: Like 
most viruses, HIV is a very simple RNA virus. It binds to 
CD+4 (marker of T cell) molecules on the surface of T 
cells. The virus then invades the cytoplasm of the T cell. 
By means of its reverse transcripts� gene, the HIV virus 
synthesizes a homologous DNA copy and inserts itself 
into the host cell's DNA. The virus then produces copies 
of itself. So, the outcome of an HIV' infected patient is an 
interplay between load and rate of proliferation of HIV 
virus, rate of proliferation of T helper cells, rate of prolix-
feration of infected T helper cells and other members of 
the immune system. As the disease progresses, the 
number of T helper cells declines and the body becomes 
unable to defend itself against any infections. 
 
 
Mathematical model 
 
The present model (Elsady, 2002) considered as a slight 
modification of that (Kirschner, 1996). It represents the 
interaction of HIV and the immune system response. The 
model consists of three differential equations, which 
describe rate of changes in "T" the uninfected T helper 
cells population, "Ti" the infected T helper cells popula-
tion, and "V"�the virus population that lives freely in blood. 
The basic equations of the model are 
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with the initial conditions: 
 

.)0(0)0(,)0( 00 VVandTTT i ===   (4)  
 

In equation (1), �(t) represents the rate of generation of 
new helper T cells from the thymus, bone marrow, or 
other sources in the presence of virus.�The T cells have a  
finite life span with a death rate �T,  so  the  second  term 
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represents natural death of uninfected T cell. The third 
term represents normal proliferation process of T cells 
with rate �T. 

In equations (1) and (2), the term kVT(t)V(t) represents 
the rate that free virus infects new healthy T helper cells. 
After a T helper cell becomes infected, it becomes Ti cell 
and hence the kVT(t)V(t) term is subtracted from (1) and 
added to (2). kV is the kinetic constant for the infection 
rate� 

While in equation (2), the infected Ti cells are assumed 
to have a death rate �Ti or destroyed during the prolife-
ration process according to Michaelis-Menten mecha-
nism. �Ti is the maximal proliferation rate and c is the half 
saturation constant of the proliferation process� 

Equation (3) models the free virus population. The first 
term on the right hand side is the source for virus popu-
lation, where n is the average number of viruses released 
per infected cell before it dies. The second term repre-
sents partial�clearance of virus from the blood by specific 
immune response, e.g., antibodies, natural killer T cells 
and cytotoxic T cells, where �V is the rate of the process. 
The third term, represents release of virus from other 
infected cells (such as macrophage and other cells). The 
growth rate of this process is g, and the half saturation 
constant is b� 

Equations (1) - (3) together with the initial conditions (4) 
represent the initial value problem, which represents the 
dynamic interaction between HIV and the immune 
response. 
 
 
ANALYSIS AND RESULTS 
 
For convenience equation (1) will be rewritten in the form 
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where 
max

,)(
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γγβαβ =−= , maxT  denotes T cells' 

maximum possible population, called equilibrium level, 
which cannot be exceeded by the organism.  
The initial value problem, equations (2), (3), and (5) 
together with the initial conditions (4) can be written in 
compact form as 
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with the initial conditions: 
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ƒ and its Jacobian matrix: 
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are defined and continuous t � 0. By standard results 
(Sundaram, 1996), problem (6) is well posed and posses 
unique, continuous, positive and uniform ally bounded 
solution. Therefore, the considered model is reasonable 
in the sense that no population goes negative and no 
population grows unboundedly. This solution dependent 
on the initial conditions. 
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dt
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 yields a trivial critical 

point:  
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Case of uninfected individual 
 
Equation (1) can be rewritten in the form  
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where )()())(,( 2 tTtTtTtf γβα −+=  and the initial 

conditions 0)0( TT = .  
 

This model gives realistic population dynamics 
(Perelson et al., 1993) under the assumptions:  

 
0,0 max >≥ TTβα  and the steady state population size 

 
 
 
 

sT  should be less than maxT . 
 
For t � 0, problem (7) is well posed and has a unique 
solution 
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This solution depends on the initial conditions and has no 
point of singularity. While the solution  
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is a stable equilibrium solution.  
For a healthy individual and in mm3, the realistic value of 
the parameters is 
 

1700,/03.0,/02.0,10 max ==== Tdd TT γβα  
 
Note that the fractionation, which is not accepted 
biologically, will be used to unify the unit of volume 
(mm³). 

Figure 1 shows that in the absence of any infection, the 
steady state concentration of T cells would be �1100 
cells/ mm³ after a period of � 100 days for different initial 
count of T cells. 
 
 
Numerical schemes and comparison (Elsady, 2002) 
 
Let {xn | n = 0, 1, 2, ...} represents an approximate 
solution to x(t) solution of the non-linear ordinary 
differential equations of the model at a discrete set of 
points {tn | n = 0, 1, 2, ...} and � is the time step size. The 
proposed two discretization methods of� the non-linear 
ordinary differential equations is as follows: 
 
 
Non-linear implicit method (NLIM) 
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Figure 1. Steady state concentration of T-cells in the absence of 
any infection. 
 
 
 
Table 1. Initial values 
 

Dependent variables Values 
T0 = initial count of T cells population 1000 cells /mm³ 
Tax = maximum concentration 1700 cells /mm³ 
Ti

0 = initial count of infected Ti cells 
population 

0 cells /mm³ 

V0 = initial count of infection population 0.001 virus/mm³ 
 

 
 
Table 2. Parameters values 
 

Parameters and constants Values 
S = source of new T cells 10 cells /day 
�T = death rate of uninfected T cells 0.02 / day 
�Ti = death rate of infected T cells 0.5 / day 
�T = death rate of virus due to other 
sources 

7.4×10-4
� / day 

�T =normal proliferation rate of  helper T 
cells 

0.003 / day 

�Ti = the maximal proliferation rate of 
infected cells 

0.002 day 

kV = rate of T cell becomes infected by 
free virus 

2.4×10-5 

n = number of virus produced by each 
infected cell 

1000 

c = half saturation constant of the 
proliferation process 

100 
viruses/mm3 

g = growth rate of external viral source 
other than T cells 

0.1/ day 

b = half saturation constant of the viral 
source 

15 viruses/mm3 

 
 
Linear implicit method (LIM) 
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The terms of the present model are similar to that of the 
model in (Kirschner, 1996). Therefore, the initial values 
for the dependent variables and the parameters are 
chosen to be as in Tables 1 and 2. Also, the fractionation, 
which is not accepted biologically, will be used to unify 
the unit of volume (mm³). 
 
 
Comparison 
 
Now, the numerical comparisons will be given to test the 
effect of time step size on the convergence of Euler, se-
cond order Runge-Kutta, NLIM and LIM methods. The 
results are summarized in Table 3 for different choice of 
time step �. 
����The failure of Euler method and second order Runge-
Kutta method occur when � � 1.2, and � � 2.5 respec-
tively. While the successful of NLIM is up to � = 37 and 
for the LIM for any step size. The failure of both Euler and 
RK2 methods is due to overflow in computation, while the 
failure of NLIM is due to Newton's method failed to 
converge to the prescribed accuracy after 15 iterations. 
Therefore, from Table 3, the LIM method has a much 
better behavior than the Euler method, Runge-Kutta 
method and the NLIM method. It permits the examination 
of the long-term behavior of a dynamic system by using a 
larger time steps. The LIM is easy to implement and fast 
convergent.  
 
 
Effect of improving thymus on the count of T cells 
 
It is assumed that there is a deterioration of these 
sources as the viral level increases during the course of 
HIV infection. By taking 
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Figures 2 and 3 illustrate the effect of thymus on the 
quality of life for an infected individual. As the thymus 
function well, there is a longer period before the complete 
deterioration of the T cells. 
 
 
Summary 
 
In the absence of any infection, there is steady state 
concentration of T-cells depends on the initial count of T-
cells in the body. By using the same mathematical model, 
the graphical pattern of other cellular members of the 
immune system (using the corresponding empirical num-
bers values of the immune cells studied) can be getting. 
The effect of thymus on the quality of life for an infected 
individual is clear. The numerical method permits the 
examination of the behavior of the dynamic system on 
long-term.� In the same time, it is easy to implement, fast 
convergent and has a very competitive stability result. 
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Table 3. Effect of time step on the successful of the method. 
 

� Euler RK2 NMIM LIM 
0.1 Convergence Convergence Convergence Convergence 
1.0 Convergence Convergence Convergence Convergence 
1.1 Convergence Convergence Convergence Convergence 
1.2 Failure Convergence Convergence Convergence 
2.5 Failure Failure Convergence Convergence 
37 Failure Failure Failure Convergence 
100 Failure Failure Failure Convergence 
1000 Failure Failure Failure Convergence 

 
 
 

 
 
Figure 2. Count of T cells for 	 = 0, 0.5, 1 is in red, blue, and green 

respectively, where S
tV
tV
)(1
)(1

+
+θ . Decrease in the population of 

normal T cells may be due to secretion of soluble substances by the 
virus that decrease the proliferation process of normal T helper cells. 

 
 
 

 
 

 

Figure 3. Number of HIV virus for 	 = 0, 0.5, 1 is in red, blue, and green respectively, where S
tV
tV
)(1
)(1

+
+θ . 

Aggressive proliferation of the virus as the progress with time in the case of strong immune system. 
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