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The Merrifield-Simmons index is one of the most popular topological indices in chemistry and in 
mathematical properties; there is a correlation between this index and boiling points. The Merrifield-
Simmons index of a graph is defined as the total number of its independent sets, including the empty 
set. This paper proposed an edge grafting theorem operation, which is certain kind of edge moving 
between two vertices distancing one from the unique cycle. Firstly, we define a new graph which is said 
to be a cycle-r-regular unicycle graph where each vertex in the unique cycle is with degree r. Then we 
show how the graph of Merrifield-Simmons index changes under the edge grafting operation on the 
cycle-3-regular unicycle graphs. Finally, we give some applications of these results on ordering the 
graph of Merrifield-Simmons index among cycle-3-regular unicycle graph. We find that the first three 

largest values of Merrifield-Simmons index in these graph are
3 4

2 2 8
n n− −

+ + , 
n-8

2 2 3⋅ −  and 
7

3 2 8
n−

⋅ + , 
respectively. 
 
Key words: Independent-vertex set, Merrifield-Simmons index, cycle-3-regular unicyclic graph, external 
graphs. 

 
 
INTRODUCTION 
 
For any given graph G , the Merrifield-Simmons index 

denoted by ( )Gσ , is defined as the total number of 

independent-vertex subsets, including the empty set. The 
Merrifield-Simmons index was introduced (Prodinger and 
Tichy, 1982), although it is called Fibonacci number of a 
graph. 

The Merrifield-Simmons index is one of the most 
popular topological indices in chemistry and its 
mathematical properties were studied in detail (Prodinger 
and Tichy, 1982; Xueliang et al., 2005; Pedersen and 
Vestergard, 2005; Hanyuan et al., 2008; Maolin and 
Hongbo, 2008a; Hongzhuan and Hongbo, 2006) whereas 
its applicability for quantitative structure-activity relationship 
(QSAR) and quantitative structure-property relationship 
(QSPR) was examined to a much lesser extent. For 
further details on chemical structure (Danesh et al., 2010). 
Merrifield and Simmons showed the correlation between 
this index and boiling points (Merrifield and Simmons, 
1989). Till now, there have been many papers dealing 
with Merrifield-Simmons index. Prodinger and Tichy 
(1982) showed that among all n-vertex trees, the star has 

the maximal Merrifield-Simmons index, while the path 
has the minimal Merrifield-Simmons index. Alameddine 
(1998) obtained bounds for the Merrifield-Simmons index 
of a maximal outerplannar graph. The authors studied the 
Merrifield-Simmons index of hexagonal chains and 
catacondensed systems (Gutman, 1993; Lianzhu, 1998), 
respectively. Xueliang et al. (2005) characterized the tree 
with the maximal Merrifield-Simmons index among the 
trees with a given diameter. Pedersen and Vestergard 
(2005) studied the Merrifield-Simmons index of the 
unicycle graphs. Hanyuan et al., (2008) studied the upper 

bound for the Merrifield-Simmons index in ( , 1)n n + -

graphs (Hanyuan et al., 2008). Maolin and Hongbo 
(2008a) determined unique trees with the first and 
second largest Merrifield-Simmons index, respectively. 
Hongzhuan and Hongbo (2006) determined the unicycle 
graphs with the largest and smallest Merrifield-Simmons 
index. There have been many literatures studying the 
Merrifield-Simmons index. For further details (Gutman, 
1990; Gutman and Kolakovic, 1990; Gutman, 1992). 

In order to state and prove our  main  results,  we  need 
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Figure 1.  The graph 2

4P  obtained by attaching one 

pendant edge to each of the vertices of 
4

P  respectively 

except one pendent vertex. 
 
 
 

some further notations.  

Let ( ( ), ( ))G V G E G=  be a graph with vertex set ( )V G  

and edge set ( )E G . For any ( )v V G∈ , we denote the 

neighborhood of v  as ( )N v . Let [ ] ( )v v N v= U . We use 

G v−  to denote the graph obtained from G  by deleting 

the vertex v  and all edges incident with v . Let Un  

denote the set of connected unicycle graphs of order n. 

Let { }( ) ( ) , ( )
r

U l G U d x r x V Cn n l
= ∈ = ∈ , where 2r ≥ , 

and Cl  is the unique cycle in G . Any graph in 
r

Un  is said 

to be a cycle-r-regular unicyclic graph. Let G  be a 

connected unicyclic graph and C
l
 be the unique cycle of 

length (3 )l l n≤ ≤  in it. If 1n l≥ + , then G  has at least a 

vertex with degree one, which is also named a pendent 

vertex. Let Pn  be the path on n  vertices and its vertices 

be ordered successively as , , ,1 2x x xnL . By 
k

Pn  we 

denote the graph obtained from Pn  by attaching exactly 

one pendent edge to each of the vertices 

, , ,1x x xk k n+ L , respectively. Here, 1

1 2P P=  and 

1

2 4P P= . Let the vertices of C l
 be ordered successively 

as , , ,1 2y y y lL . Denote by ( , , , )1 2

l
C t t tn lL  the graph 

obtained from Cl
 by attaching exactly t i

 pendent edges 

to the vertex yi
 for 1, 2, ,i l= L , where 0ti ≥  and 

1

l
t n li

i
∑ = −
=

. Here (0, 0, , 0)
l

C Cl l=L . Let (1, 1, , 1)2 2 1

l
C Sl n l∞ − +L  

be the graph obtained by identifying the center of the star 

2 1S n l− +
 and one pendent vertex of (1, 1, , 1)2

l
C l L . Let 

(1, 1, , 1) ( , )2 2 1

l
C S Sl k n l k∞ − + −L  be the graph obtained 

by fusing  the  centers  of  two  stars , 21 1S Sk n k− + −  
 with 

 
 
 
 

two different pendent vertices of the graph (1, 1, , 1)2

l
C l L , 

respectively. For example, we illustrated 2

4P  in Figure 1, 

4
(1, 1, 1, 1)8 7C S n∞ −

, 3
(1, 1, 1)6 5C S n∞ −

 in Figure 2 and 

3
(1, 1, 1) ( , )6 7 3C S Sn∞ −

 in Figure 3, respectively. 

Let 
, , ,

1 2
Tn n nkL

 be a tree obtained from a star 
1S k +

 by 

attaching paths of orders , ,1 2n n nkL  to k  pendent 

vertices of 1Sk+ . Let Fn  denote the nth Fibonacci 

number, then we have 1 2F F Fn n n+ =+ +  with initial 

conditions 11 2F F= = . 

All graphs considered here are both finite and simple. 
Other notations and terminology not defined here can be 
seen in Hongbo (2008). 

In this paper, we investigate the Merrifield-Simmons 

index for graphs in 
3

Un , and characterized the 
3

Un  with 

the first, second and third maximal Merrifield-Simmons 
indices. 
 
 
SOME LEMMAS 
 
The following Lemma 1 to 5 can be found in Maolin and 
Hongbo (2008a), Hongzhuan and Hongbo (2006) and 
Hongbo (2008). 
 
 
Lemma 1  
 

Let G  be a graph with m components , , ,1 2G G GmL . 

Then ( ) ( )1
m

G Gi iδ δ∏= = . 

 
 
Lemma 2 
 

For any graph G  with any ( )v V G∈ , we have 

( ) ( ) ( [ ])G G v G vδ δ δ= − + − . 

 
 
Lemma 3  
 
For any graph G , if x and y  are adjacent in G , then 

( ) ( { , }) ( [ ]) ( [ ])G G x y G y G xδ δ δ δ= − + − + − . 

 
 
Lemma 4  
 
For any graph G , if x  and y  are not adjacent in G , then
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n－8 

(a) 

n－6 

(b) 

4
(1 , 1 , 1 , 1 )8 7C S n∞ −

 

3
(1 , 1 , 1 )6 5C S n∞ −  

 
 

Figure 2. The graph obtained by identifying the center of star 
7n

S
−

 (resp.
5n

S
−

) with one 

pendent vertex of 
4

8
(1,1,1,1)C  (resp. 

3

6
(1,1,1)C ). 

 
 
 

n－8 

3
(1, 1, 1) ( , )6 7 3C S Sn∞ −  

 
 
Figure 3. The graph obtained by fusing the center of two 

stars 
3

S , 
7n

S
−

 with two different pendent vertices 

3

6
(1,1,1)C . 

 
 
 

( ) ( { , }) ( [ ]) ( [ ]) ( [ ] [ ]).G G x y G x y G y x G x yδ δ δ δ δ= − + − + − + −U U U  

 
 
Lemma 5  

 

Let T be a tree, then 
1

( ) 2 12

n
F Tn δ

−
≤ ≤ ++

 and 

( ) 2T Fnδ = +  if and only if T Pn≅ , and 
1

( ) 2 1
n

Tδ
−

= +  

if and only if T Sn≅ . 

Remark 1 
 

As in many previous works, people discuss the properties 
of the Merrifield-Simmons index for molecular graphs 
representing hydrocarbons with emphasis on molecular 
trees, unicycle graphs and bicycle graphs. In this work, 
we consider a new graph cycle-3-regular unicycle graph. 
 
 

THE MAXIMAL VALUE OF MERRIFIELD-SIMMONS 

INDEX IN 3
U n

 

 

In this section, we study how Merrifield-Simmons index 
changes under certain graph operations (in Lemma 6 and 
Lemma 7) on cycle-3-regular graphs. This result will be 
used throughout the paper. 
 
 

Lemma 6 
 

Suppose 1s ≥  is an integer, let u  be a pedant vertex of 

a connected graph 0G  with at least two vertices. Let G  

be the graph obtained by identifying u  and a pendent 

vertex of a star 2Ss+ , Let G′  be the graph obtained by 

identifying u  and the center of a star 2Ss+ , Then 

( ) ( )G Gδ δ′ > . 

 
 

Proof 
 
By Lemma 2, we have: 
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Figure 4. Operation that increases the Merrifield-Simmons index of cycle-3-regular 
graphs. 

 
 
 

( ) ( ) ( [ ]) (2 1) ( ) 2 ( ).0 0

s s
G G u G u G G wδ δ δ δ δ= − + − = + + −  

 

While, 
1

( ) ( ) ( [ ]) 2 ( ) ( ).0 0

s
G G u G u G G wδ δ δ δ δ

+
′ ′= − + − = + −  

Where w  be the neighborhood of u  in 0G . Hence, 

( ) ( ) (2 1)[ ( ) ( )] 00 0

s
G G G G wδ δ δ δ′ − = − − − > . Therefore, 

( ) ( ).G Gδ δ′ >  

This finished the proof of Lemma 6. 
 
 
Lemma 7  
 
Let u  and v  be pendent vertices of a connected graph 

1G  with at least two vertices. Let , , ,1 2u u usL  be the 

leaves adjacent to u  in G , Let  , , ,1 2v v vtL  be the 

leaves   adjacent   to    v     in    ,G     We    suppose   that 

{ , , , } { , , , }1 2 1 2G G uu uu uu vu vu vus s
′ = − +L L

 
and 

{ , , , } { , , , }.1 2 1 2G G vv vv vv uv uv uvt t
′′ = − +L L

 
(Figure 

4), then either ( ) ( )G Gδ δ′ >  or ( ) ( ).G Gδ δ′′ >  

 
 
Proof 
 

It is easy to see that 
 { , , , , , , , , }.1 1 2 1 2G G u v u u u v v vs t= − L L

 

Because ,u v  are not adjacent in ,G G ′ and G′′  by the 

definition of Merrifield-Simmons index and by Lemma 4, 
we have: 
 

{ }( ) ( , ) ( [ ]) ( [ ]) ( [ ] [ ])G G u v G u v G v u G u vδ δ δ δ δ= − + − + − + −U U U

2 ( ) 2 ( ) 2 ( ) ( { , })1 1 2 1 1 1 1 2

s t s t
G G w G w G w wδ δ δ δ

+
= + − + − + −  

 
and  
 

( ) ( { , }) ( [ ]) ( [ ]) ( [ ] [ ])G G u v G u v G v u G u vδ δ δ δ δ′ ′ ′ ′ ′= − + − + − + −U U U

2 ( ) ( ) 2 ( ) ( { , })1 1 2 1 1 1 1 2

s t s t
G G w G w G w wδ δ δ δ

+ +
= + − + − + −  

 

respectively, where ,1 2w w  denote the neighborhood of 

u and v  in 1G , For the difference contributions for ( )Gδ  

and ( )Gδ ′ , we get 

( ) ( ) (2 1)[2 ( ) ( )].1 1 1 1 2

s t
G G G w G wδ δ δ δ′∆ = − = − − − −  

 
Similarly, there is  
 

( ) ( { , }) ( [ ]) ( [ ]) ( [ ] [ ]).G G u v G u v G v u G u vδ δ δ δ δ′′ ′′ ′′ ′′ ′′= − + − + − + −U U U

2 ( ) 2 ( ) ( ) ( { , })1 1 2 1 1 1 1 2

s t s t
G G w G w G w wδ δ δ δ

+ +
= + − + − + −  

 

For the difference contributions for ( )Gδ  and ( )Gδ ′′ , we 

get 



 
 
 
 

( ) ( ) (2 1)[2 ( ) ( )].2 1 2 1 1

t s
G G G w G wδ δ δ δ′′∆ = − = − − − −  

 

If ( ) ( )G Gδ δ′ < ,  that is, 01∆ < , then 

( ) 2 ( ).1 2 1 1

t
G w G wδ δ− ≥ −

 
There is 

(2 1)[2 ( ) ( )] (2 1)(2 1) ( ) 0.2 1 2 1 1 1 1

t s t s t
G w G w G wδ δ δ

+
∆ = − − − − ≥ − − − >  

This finishes the proof of Lemma 7. 
It follows that the value of Merrifield-Simmons index is 

strictly increasing by this operation. This in turn provides 
a way of comparing the Merrifield-Simmons index. 

By the proof of Lemmas 6 and 7, we can verify that the 
external graph with maximal Merrifield-Simmons index 
must be the graph such that all the pendent edges not on 
the cycle are attached to the same vertex out of the 
cycle. Therefore, we obtain the following Lemma 8. 
 
 
Remark 2 
 
The edge grafting operations on the graphs were often 
considered and used in the study of the invarant 
structure, for example, Kexiang and Kinkar (2011) 
characterized the extremal graphs with the lower or upper 
bounds on the Harary index. Hongbo and Shenggui 
(2011) characterized the graphs with the maximum and 
minimum Merrifield-Simmons index, respectively among 
the graphs given cut vertices. This paper also uses this 
transformation to obtain optimal solution for comparison 
of the Merrifield-Simmons index in cycle-3-regular graph. 
Other methods used in studying the chemical structure 
can be seen in Mollaamin et al. (2011) and Zhang et al. 
(2011). 
 
 
Lemma 8 
 

If 
3

( )G U ln∈ , then ( ) ( (1,1, ,1) )2 2 1

l
G C Sl n lδ δ≤ ∞ − +L  

with the equality if and only if 

(1,1, ,1) .2 2 1

l
G C Sl n l≅ ∞ − +L  

 
 
Lemma 9 
 

Let 5l ≥  and 2n l≥ be integer, then 

 

1
( (1,1, ,1) ) ( (1,1, ,1) ).2 2 1 2( 1) 2 3

l l
C S C Sl n l l n lδ δ

−
∞ < ∞− + − − +L L  

 
 

Proof  
 

By Lemma 1 and by the definition of Merrifield-Simmons 
index, we have 
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2 1
( (1,1, ,1) ) 2 ( (0,1, ,1)) ( ) 12 2 1 2 1

l n l l
C S C Pl n l l lδ δ δ

−
∞ = +− + −L L       (1)       

 
1 2 2 1 1

( (1,1, ,1) ) 2 ( (0,1, ,1)) ( ) 22( 1) 2 3 2( 1) 2

l n l l
C S C Pl n l l lδ δ δ

− − + −
∞ = +− − + − −L L          (2)

      
In the following, we first simplify the first part of Equations 
1 and 2. Let 
 

1
(0,1, ,1), (0,1, ,1).0 2 1 2( 1)

l l
F C F Cl l

−
= = −L L  

 

At the same time, let ,u u Cl
′ ∈  and ( ) ( ) 2.d u d u′= =  By 

Lemma 2, we have  
 

1 1
( (0,1, ,1)) ( ) ( ) ( [ ]) ( ) 4 ( )2 0 0 0 1 3

l
C F F u F u P Pl l lδ δ δ δ δ δ= = − + − = +− −L   

 
and 
 

1 1 1
( (0,1, ,1)) ( ) ( ) ( [ ]) ( ) 4 ( )2( 1) 1 1 0 2 4

l
C F F u F u P Pl l lδ δ δ δ δ δ

−
′ ′= = − + − = +− − −L

,
 

respectively. 
It can be easily seen that 

 

1 1 1
( ) 2 ( ) 2 ( ).1 2 3P P Pl l lδ δ δ= +− − −  

 

Moreover, we have the following 
 

1 1 1
4 ( ) ( ) 4 ( ).3 1 2P P Pl l lδ δ δ< <− − −

 

 

Similarly, we have 1 1 1
4 ( ) ( ) 4 ( ).5 3 4P P Pl l lδ δ δ< <− − −

 

 

Hence, 
 
(2) (1)

2 1 1 1 1 1 1
2 [(4 ( ) ( )) 4(4 ( ) ( )) [ ( ) ( )]2 1 4 3 1 2

n l
P P P P P Pl l l l l lδ δ δ δ δ δ

−

−
= − + − − −− − − − − −

 

 
n-2l 1 1 1 1 1 1

2 [2 ( ) 4 ( ) 16 ( ) 4 ( )] [ ( ) ( )]3 4 4 3 1 2

n-2l 1 1 1 1
2 [20 ( ) 2 ( )] [ ( ) ( )]4 3 1 2

n-2l 1 1 1 1
2 [16 ( ) 4 ( )] [ ( ) ( )]4 5 1 2

2 1 1
2 14 ( ) (4 ( ) 2 (4 3 4

P P P P P Pl l l l l l

P P P Pl l l l

P P P Pl l l l

n l
P P Pl l l

δ δ δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ δ

= + + − − −− − − − − −

= − − −− − − −

= − − −− − − −

−
> ⋅ − +− − −

1
))

2 1 1
2 14 ( ) 18 ( )4 4

2 1 1 1
2 28 ( ) 18 ( )4 4

2 1 1
(2 1) 18 ( ) 0.4

n l
P Pl l

n l
P Pl l

n l
Pl

δ δ

δ δ

δ

−
> ⋅ −− −

− −
= ⋅ −− −

− −
> − ⋅ >−
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n－8 

n－8 

T1 

T2 

u 

v 

u′ 

v′ 

 
 
Figure 5. The graphs in Theorem 11. 

 
 
 
Therefore,  

1
( (1,1, ,1) ) ( (1,1, ,1) ).2 2 1 2( 1) 2 3

l l
C S C Sl n l l n lδ δ

−
∞ < ∞− + − − +L L  

 

For all 5.l ≥  This completes the proof. 

Next, we will give applications of the above results 
(about the effect of edge grafting operation) to the 
comparison of the Merrifield-Simmons index of cycle-3-
regular unicycle graphs. 
 
 
Theorem 10 
 

Let G  be a graph of order 10n ≥  in
 

3
Un . Then 

3 4
( ) 2 2 8

n n
Gδ

− −
≤ + + , with equality if and only if 

3
(1, 1, 1) .6 5G C S n≅ ∞ −

 

 
 
Proof 

 
For 5l ≥  and 2n l≥ , by direct verification and Lemma 

9, it follows that the value of Merrifield-Simmons index in 

cycle-3-regular graph is decreasing for 5l ≥  and 2n l≥ . 

Therefore, for any graph G  in 
3

Un , there is 

4
( ) ( (1, 1, 1, 1) ).8 7G C S nδ δ≤ ∞ −

 

Finally we need to compare the Merrifield-Simmons 

indices of 4
(1, 1, 1, 1)8 7C S n∞ −

 and 3
(1, 1, 1)6 5C S n∞ −

. Let 

G =
4

(1, 1, 1, 1)8 7C S n∞ −
 and 

3
(1,1,1)6 5G C Sn

′ = ∞ − . 

By direct calculation, we obtain 
8 6

( ) 2 22 2 3 22
n n

Gδ
− −

= ⋅ + ⋅ +  and 

3 4
( ) 2 2 8

n n
Gδ

− −
′ = + + , respectively. 

Since 
7

( ) ( ) 2 7 14 0 ( 10 ).
n

G G nδ δ
−

′ − = ⋅ − > ≥ , we 

complete the proof. 

THE SECOND MAXIMAL VALUE OF MERRIFIELD-

SIMMONS INDEX IN 
3

Un  

 
In this section, we characterize the cycle-3-regular graph 
with the second maximal Merrifield-Simmons index. Let 

3
(1, 1, 1) (1, 1, , 2 )1 6T C T= ∞ L  and 

3
(1, 1, 1) ( , )2 6 6 2T C S Sn= ∞ −

 (Figure 5). 

 
 
Theorem 11  
 
Let 1 0n ≥  be an integer, 

3 3
{ (1, 1, 1) }.6 5G U C Sn n∈ − ∞ −

Then 
8

( ) 2 2 3
n

Gδ
−

≤ ⋅ −  

with equality if and only if .2G T≅  

 
 

Proof 
 

Suppose that G  has the second maximal Merrifield-

Simmons index in 
3

Un . By Lemmas 6 and 7, we conclude 

that G  must be of the form 1T  or 2T . In the following, we 

will get the second maximal Merrifield-Simmons index in 

3
Un . By direct calculations, we get: 

 

( ) ( { , }) ( [ ]) ( [ ])1 1 1 1T T u v T v T uδ δ δ δ= − + − + −  

3 8 3 3
( (1,1,1) ) 2 ( (1,1,0)) ( (1,1,1) )6 7 5 6 7

3 8 3
2 ( (1,1,1) ) 2 ( (1,1,0))6 7 5

n
C S C C Sn n

n
C S Cn

δ δ δ

δ δ

−
= ∞ + + ∞− −

−
= ∞ +−

 

 

and  
 

( ) ( { , }) ( [ ]) ( [ ]) ( [ ] [ ])2 2 2 2 2T T u v T u v T v u T v uδ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′= − + − + − + −U U U
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n－9 

n－9 

T3 

 

T4 

 

v′ 

u′ 

 
 
Figure 6. The graphs in Theorem 12. 

 
 
 

3 8 3 3 8 3
( (1,1,1) ) 2 ( (1,1,0)) ( (1,1,1) ) 2 ( (1,1,0))6 7 5 5 7 4

n n
C S C C S Cn nδ δ δ δ

− −
= ∞ + + ∞ +− − , 

respectively. Where uv  be pendent edge of 1T  and u′ , v′  

be different pendent vertices of 2T . 

Hence, 
 

3 8 3 3
( ) ( ) ( (1,1,0) ) 2 ( (1,0,0)) ( (1,1,1) )2 1 5 7 4 6 7

3 8 3 3
( (1,1,0) ) 2 ( (1,0,0)) [ ( (1,1,0) ) T(1,1, 1,3))]5 7 4 5 7

n
T T C S C C Sn n

n
C S C C Sn n

δ δ δ δ δ

δ δ δ δ

−
− = ∞ + − ∞− −

−
= ∞ + − ∞ +− − L（

 

 
8 3 8 3 8

2 ( (1,0,0)) ( (1,1, ,1,3) 2 ( (1,0,0)) [2 ( ) ( )]4 4 3 2

8 8 8
2 (2 ( ) 1) 2 ( ) ( ) 2 2 3 0 ( 10).2 3 2

n n n
C T C P P

n n n
P P P n

δ δ δ δ δ

δ δ δ

− − −
= − = − ⋅ +

− − −
= ⋅ + − ⋅ − = ⋅ − > ≥

L

 

 
This completes the proof of Theorem 11. 

 
 
THE THIRD MAXIMAL VALUE OF MERRIFIELD-

SIMMONS INDEX IN 
3

Un  

 
In this section, we characterized the cycle-3-regular 
graph with the third maximal Merrifield-Simmons index. 

Let 3
(1,1,1) ( , )3 6 7 3T C S Sn n= ∞ − −

 

, 3
(1, 1, 1) ( , (1, 1, 1, 2 ))4 6 2T C S T= ∞ L , (Figure 6) 

 
 
Theorem 12  

 

Among   all   graphs   in   3
U n

   with   10n ≥ ,    the   graph  

Table 1. Some results on Hosoya index. 
 

Hosoya index Largest Smallest 

Trees of order n 
n

P  
n

S  

Unicycle graphs of order n 
n

C  
n

S e+  

Bicycle graphs of order n 
0

H  or 
2,3

K  
0

F  

 
 
 
Table 2. Some results on Merrifield-Simmons index. 
 

Merrifield-Simmons Largest Smallest 

Trees of order n 
n

S  
n

P  

Unicycle graphs of order n 
n

S e+  or 
4

C  
n

C  

Bicycle graphs of order n 
0

F  
0

H  or 
2,3

K  

 

where 
0

F  is obtained from 
n

S  by adding two adjacent edges. 
0

H  is 

the graph connecting two 3-cycle by a path of length 5n − . 
2,3

K  is 

the bipartite graph (Hanyuan et al., 2006; Pedersen and Vestergaard, 
2005; Gutman, 1990; Hanyuan, 2008a; Prodinger and Tichy, 1982; 
Hanyuan, 2008b). 

 
 
 

3
(1, 1, 1) (1, 1, , 1, 2 )6C T∞ L , (that is, 

1T ) has the 

third maximal Merrifield-Simmons index, and 

7
( ) 3 2 81

n
Tδ

−
= ⋅ + . 
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Proof  
 

We denote by G  the graph in 
3

Un  with the third largest 

Merrifield-Simmons index, by Lemma 6 and 7, G  must 

be the form of ,1 3T T  or 4T  (Figure 6). By Lemma 7, we 

obviously have ( ) ( ).4 1T Tδ δ<  Next, we will show that 

( ) ( ).1 3T Tδ δ>  For ,u v  are adjacent in 1T , by Lemma 3, 

we have: 
 

( ) ( { , }) ( [ ]) ( [ ])1 1 1 1T T u v T v T uδ δ δ δ= − + − + −  

3 8 3
2 ( (1, 1, 1) ) 2 ( (1, 1, 0 ))6 7 5

n
C S Cnδ δ

−
= ∞ +−

 

 

 

3 9 3 8 3
2[ ( (1,1,1) ) 2 ( (1,1, 0))] 2 ( (1,1, 0))6 8 5 5

3 7 3
2 ( (1,1,1) ) 2 ( (1,1, 0))6 8 5

n n
C S C Cn

n
C S Cn

δ δ δ

δ δ

− −
= ∞ + +−

−
= ∞ +−

 

 

If ,u v′ ′  are not adjacent in 
3T ,  then by Lemma 4, we 

have 
 

( ) ( { , }) ( [ ]) ( [ ]) ( [ ] [ ])3 3 3 3 3T T u v T u v T v u T v uδ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′= − + − + − + −U U U  

 
3 3 3

( (1,1,1) ) ( (1,1, 0) ) 2 ( (1,1, 0) )6 8 5 8 5 8

9 3 9 3 3
2 2 ( (1,1, 0)) 2 [ ( (1,1, 0)) ( (1,1, 0))]4 5 4

C S C S C Sn n n

n n
C C C

δ δ δ

δ δ δ

= ∞ + ∞ + ∞− − −

− −
+ ⋅ + +

 

 
3 3

( (1,1,1) ) 3 ( (1,1, 0) )6 8 5 8

9 3 9 3
3 2 ( (1,1, 0)) 2 ( (1,1, 0)).4 5

C S C Sn n

n n
C C

δ δ

δ δ

= ∞ + ∞− −

− −
+ ⋅ +

 

 

For the difference of contribution for ( )1Tδ  and ( )3Tδ , 

we get: 
 

3 3
( ) ( ) [ ( (1,1,1) ) 3 ( (1,1, 0) )]3 1 3 6 8 5 8

9 3 9 3
[2 3 ( (1,1, 0)) 3 2 ( (1,1, 0))]5 4

T T C S C Sn n

n n
C C

δ δ δ δ

δ δ

∆ = − = ∞ − ∞− −

− −
+ ⋅ − ⋅

 

 
3

[ ( (1, 1, , 1, 3) 2 ( (1,1, 0) )]5 8

9 3 3
2 3[ ( (1,1, 0)) ( (1,1, 0))]5 4

T C Sn

n
C C

δ δ

δ δ

= − ∞ −

−
+ ⋅ −

L

 

 
9

( (1, 1, , 1, 3 ) 4 ( ) 2 3 ( ).8 3

n
T S Pnδ δ δ

−
= − − + ⋅−L  

 
By Lemma 5, we have 

 
 
 
 

9 9 9
[ ( ) 2 ( )] 4 ( 2 1) 2 33 3 2 5

9 9 9
2 4( 2 1) 2 35 4 5

8 7 8
2 2 4 2 3 7 0 ( 10).5 4

n n n
P P F

n n n
F F F

n n n
F F n

δ δ
− − −

∆ = − ⋅ + − + + ⋅

− − −
= − ⋅ − − + + ⋅

− − −
= ⋅ − − − = ⋅ − > ≥

 

Which gives ( ) ( ).1 3T Tδ δ>  This proves the present 

theorem. When 6 9n≤ ≤ , all results in this paper still 

hold. 
 
 
Remark 3 
 
It is surprising that the graphs with the largest Merrifield-
Simmons index among the cycle-3-regular unicycle graph 
are the same as those with the smallest energy (Maolin 
and Hongbo, 2008b).   

Finally, we survey some results on the extremal graphs 
for the Hosoya index and Merrifield-Simmons index in 
trees, unicycle graphs and bicycle graphs (Tables 1 and 
2). From the survey, we posed a problem. 
 
 
Problem 
 
Within any given set of nontricial connected graphs, is the 
graph with maximal Merrifield-Simmons index just one 
with minimal Hosoya index?  

Obviously, the answer to this problem is positive for the 
sets tree, unicycle graphs and bicycle graphs, 
respectively. But for other general given sets of graphs 
(such as cycle-3-regular graph), the answer to it is still 
unknown, maybe it will be an interesting topic for the 
further research in the future. 
 
 

CONCLUSIONS 
 
In this paper, we considered a new class of unicycle 
graph cycle-3-regular unicycle graph and the famous 
Merrifield-Simmons index. We introduced an efficient 
graph operation method. Using this new method, we 
were able to provide a simplified proof of the above 
mentioned orders of the cycle-3-regular unicycle graphs. 
It seems that the graph with the first three largest 
Merrifield-Simmons index in cycle-r-regular unicycle 

graphs ( 4r ≥ ) should have a similar structure as the 
one in cycle-3-regular unicycle graphs. So, the same 
reasoning should work well for discussing the first three 
largest Merrifield-Simmons index for graphs in cycle-r-

regular unicycle graphs ( 4r ≥ ). 
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