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INTRODUCTION 
 
Integral equation has been one of the principal tools in 
various areas of applied mathematics, physics and 
engineering. Integral equation is encountered in a variety 
of applications in many fields, including continuum 
mechanics, potential theory, geophysics, electricity and 
magnetism, antenna synthesis problem, communication 
theory, mathematical economics, population genetics and 
radiation, the particle transport problems of astrophysics 
and reactor theory, fluid mechanics etc. Many of these 
integral equations are nonlinear (Voitovich and 
Reshnyak, 1999; Jaswon and Symm, 1977; Schiavane et 
al., 2002; Abdou, 2003; Bloom, 1980; Jiang and Rokhlin, 
2004; Semetanian, 2007). 

In this paper we deal with nonlinear Volterra-Fredholm 
integral equations as follows: 
 

1

1 1 1 2 2 20 0
( ) ( ) ( , ) ( , ( )) ( , ) ( , ( )) ,

x
u x f x k x s s u s ds k x s s u s dsλ ψ λ ψ= + +∫ ∫     

(1)         
 

 

where the parameters 1 2,λ λ  and 
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functions ( )f x , 1( , ( ))s u sψ , 2 ( , ( ))s u sψ , 1( , )k x s  and 

2 ( , )k x s  are known while 
2[0,1)L  and ( )u x  is an 

unknown function. In this work we suppose 

1( , ( )) ( )s u s u s αψ =  and 2 ( , ( )) ( )s u s u s βψ =  where 
,α β  are positive integers (Maleknejad et al., 2011; 

Maleknejad et al., 2010; Yalcinbas, 2002; Yousefi and 
Razzaghi, 2005; Ordokhani, 2006; Babolian et al., 2008; 
Sepehrian and Razzaghi, 2005; Ordokhani and 
Razzaghi, 2008) 

Maleknejad, Hashemizadeh and Basirat solved 
Equation 1 by Bernstein operational matrices method 
(Maleknejad et al., 2011). Maleknejad, Almasih and 
Roodaki reduced these kinds of equations to algebraic 
equations by triangular functions (Maleknejad et al., 
2010). Yalcinbas (2002) applied Taylor series to solve 
Equation 1. Yousefi and Razzaghi (2005) used Legendre 
wavelets for the numerical solution of these equations. 
Ordokhani (2006) used rationalized Haar functions for 
solving these equations and Babolian et al. (2008) used 
Block–Pulse functions to encounter these kinds of NV-
FIEs. 

In this paper we use the hybrid Legendre polynomials 
and Block-Pulse functions as basis for reducing NV-FIEs  
to a system of nonlinear algebraic equations. We present 
hybrid   Legendre   polynomials   and  Block-Pulse  useful 



 
 
 
 
properties such as operational matrix of integration, 
product matrix, integration of the cross product and 
coefficient matrix, and use them to transform our NV-FIE 
to an algebraic system. As shown in our examples, our 
method works better in comparison to the existing 
methods.  

This paper introduces hybrid functions and their 
properties. Application of these set of hybrid functions for 
approximating the solution of NV-FIEs was done, 
convergence analysis given and the proposed method 
tested with some examples; thereafter the results were 
compared with some existing methods results. Thus a 
conclusion was drawn. 
 
 
HYBRID FUNCTIONS OF BLOCK-PULSE AND 
LEGENDRE POLYNOMIALS 
 
The orthogonal set of hybrid functions is 

( ), 1, 2,...,ijh x i n=
, 0,1,..., 1j m= −  in which i  is the 

order for Block-Pulse functions, j  is the order for 
Legendre polynomials, and x  is the normalized time and 

is defined on the interval [0,1)  (Hsiao, 2009). 
 

1(2 2 1), ,
( )

0, otherwise.

j
ij

i iL nx i x
h x n n

−⎧ − + ≤ <⎪= ⎨
⎪⎩                                          (2)           

  

Here, the Legendre polynomials ( )mL x  on the 

interval[ 1,1]− : 

0 1( ) 1,  ( ) ,                                                L x L x x= =  
1 1( 1) ( ) (2 1) ( ) ( ),  1,2,3,....m m mm L x m xL x mL x m+ −+ = + − =  

The set { ( ) : 0,1,...}mL x m =  in Hilbert space 
2[ 1,1]L −  

is a complete orthogonal set. 

A set of Block-Pulse functions ( ), 1,2,..,ib x i n=  on the 

interval [0,1)  is defined as follows: 
 

11, ,
( )

0, .
i

i ix
b x n n

otherwise

−⎧ ≤ <⎪= ⎨
⎪⎩                                                (3)                         

 

The Block-Pulse functions on [0,1)  are disjoint, that 

results for 
, 1,2,...,i j n= , we have: 

( ) ( ) ( )i j ij ib x b x b xδ=
, also these functions have the 

property of orthogonality on [0,1) . Since 
( )ijh x

 is the 
combination of Legendre polynomials and Block-Pulse 
functions which are both complete  and  orthogonal,  thus 
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the set of hybrid functions is complete orthogonal set too. 
 
 
PROPERTIES OF HYBRID FUNCTIONS 
 
Function approximation 
 

Any function 
2( ) [0,1)u x L∈  can be expanded in hybrid 

functions (Hsiao, 2009). 
 

1 0
( ) ( ) ,i j i j

i j
u x c h x

∞ ∞

= =

= ∑ ∑
                                 (4)            

 
where the hybrid coefficients are given by 

( ( ), ( ))
( ( ), ( ))

ij
ij

ij ij

u x h x
c

h x h x
=

 for 1,2,...,i = ∞ , 0,1,..., ,j = ∞  so 

that, (·,·)  denotes the inner product. 
Usually, the series expansion Equation 4 contains an 

infinite number of terms for a smooth ( )u x . If ( )u x  is 
piecewise constant or may be approximated as piecewise 
constant, then the sum in Equation4 may be terminated 
after nm  terms, that is, 
 

1

1 0
( ) ( ) ( ),

n m
T

ij ij
i j

u x c h x C x
−

= =

=∑∑ h
                                     (5)             

 
where 
 

10 1, 1 20 2, 1 0 , 1[ ,..., , ,..., ,..., ,..., ] ,T
m m n n mC c c c c c c− − −=

      (6)             
 

10 1 1 20 2 1 1( ) [ ( ),..., ( ), ( ),..., ( ),..., ( )] .T
m m nmx h x h x h x h x h x− − −=h

       (7)            
 
We can also approximate the function 

2( , ) ([0,1) [0,1))k x s L∈ ×  as follows: 
 

( , ) ( ) ( ),Tk x s x K sh h                                                  (8)             
 
where K  is an nm nm×  matrix that 

( ) ( )

( ) ( ) ( ) ( )

( ), ( , ), ( )

( ), ( ) ( ), ( )

( ( ))
( )( )

i j
ij

i i j j

x k x s s
K

x x s s
=

h h

h h h h  for , 1,2,...,i j nm= . 
 
 
Operational matrix of integration 
 

The integration of the vector ( )xh  defined  in  Equation 7 
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is given by 
 

0
( ) ( ) ,

x
x d x P x′ ′∫ h h

                            (9)                       
 
where P  is the nm nm×  operational matrix for 
integration and is given (Hsiao, 2009; Chang and Wang, 
1983) as: 
 

,

E H H H
O E H H

P O O E H

O O O E

…⎡ ⎤
⎢ ⎥…⎢ ⎥
⎢ ⎥= …
⎢ ⎥
⎢ ⎥
⎢ ⎥…⎣ ⎦

 

 

that E  and H are m m×  matrices that have the 
following shapes, respectively. 
 
 

1 0 0 0
0 0 0 0

1 ,0 0 0 0

0 0 0 0

H
n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  
1 1 0 0 0 0 0 0 0 0
1 10 0 0 0 0 0 0 0

3 3
1 10 0 0 0 0 0 0 0

5 5
1 10 0 0 0 0 0 0 0

7 7
10 0 0 0 0 0 0 0 0

9
1
2 10 0 0 0 0 0 0 0 0

2 9
1 10 0 0 0 0 0 0 0

2 7 2 7
1 10 0 0 0 0 0 0 0

2 5 2 5
1 10 0 0 0 0 0 0 0

2 3 2 3
10 0 0 0 0 0 0 0 0

2 1

E
n

m

m m

m m

m m

m

⎡
⎢−⎢
⎢
⎢ −
⎢
⎢
⎢ −
⎢
⎢

−⎢
⎢
⎢
⎢=
⎢
⎢

−⎢
⎢ −
⎢ − −⎢

−⎢
⎢ − −⎢

−⎢
⎢ − −
⎢ −

−⎣

.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥⎦  

 
 
The integration of the cross product 
 
The integration of the cross product of two hybrid function 

vectors ( )xh  in Equation 7 can be obtained as  
 

1

0
( ) ( ) ,T

L O O
O L O

D x x dx

O O L

…⎡ ⎤
⎢ ⎥…⎢ ⎥= =
⎢ ⎥
⎢ ⎥…⎣ ⎦

∫ h h

                                (10)   

 
 
 
 
where L  is an m m×  diagonal matrix that is given by 
 

1 0 0
10 0

1 3 .

10 0
2 1

L
n

m

…⎡ ⎤
⎢ ⎥
⎢ ⎥…
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥…⎢ ⎥−⎣ ⎦                             (11) 

                                       
The efficacy of matrix D  is used for converting the 
Fredholm part of NV-FIEs to an algebraic equation. 
Because of its diagonal shape, it can increase the 
calculating speed. 
 
 
Product operational matrix 
 

It is always necessary to evaluate the product of ( )xh  

and ( )T xh , that is called the product matrix of hybrid 
functions. Let 
 

( ) ( ) ( ),Tx x x=H h h                                                (12)             
 

where ( )xH  is an nm nm×  matrix. Multiplying the 

matrix ( )xH  in vector C  that was defined in Equation 6, 
we obtain 
 

( ) ( ),x C C x=H h                                                    (13)             
 

where C  is an nm nm×  matrix and is called the 
coefficient matrix. To illustrate the calculation procedure 
in Equation 13 we consider that 4n =  and 3m =  
(Hsiao, 2009; Chang and Wang, 1983; Marzban and 
Razzaghi, 2003). We have 
 

( ) ( ) 0   if   ij klh x h x i k= ≠
, 

0( ) ( ) ( )i ij ijh x h x h x=
, 

1 1 0 2
1 2( ) ( ) ( ) ( )
3 3i i i ih x h x h x h x= +

, 

1 2 1 3
2 3( ) ( ) ( ) ( )
5 5i i i ih x h x h x h x= +

, 

2 2 0 2 4
1 2 18( ) ( ) ( ) ( ) ( ).
5 7 35i i i i ih x h x h x h x h x= + +

 



 
 
 
 
Then we get 
 

( ) ( ) ( )

( ) ( )

( )
( )

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( )

( )
( )

( ) ( )
( )

( )

10 11 12

10
11 11

12

10

12 11

12

40 41 42

40
41 41

42

40

42 41

42

1
23
5

1
2 5

25
7

( ) .

1
23
5

1
2 5

25
7

h x h x h x

h x
h x h x

h x

h x
h x h x

h x

x
h x h x h x

h x
h x h x

h x

h x
h x h x

h x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎣ ⎦

H

○

○

  

The matrix 12 12C ×  in Equation 13 is given by 
 

1

2

3

4

,

C O O O

O C O O
C

O O C O

O O O C

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

where iC , 1, ,4i = …  are given by 
 

0 1 2

1 0 2 1

2 1 0 2

1 2 2 .
3 5 3
1 2 2
5 5 7

i i i

i i i i i

i i i i

c c c

C c c c c

c c c c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎣ ⎦

 

 
With the powerful properties of Equation 13, we can 
convert the Volterra part of NV-FIEs to an algebraic 
equation. 
 
 
OUTLINE OF THE METHOD FOR NV-FIES VIA 
HYBRID FUNCTIONS 
 
Consider the nonlinear Volterra–Fredholm integral 
Equation 1. We put 
 

( ) ( ),Tu x U xh                                                           (14) 
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where U  is an unknown nm -vector and ( )xh  is given 
by Equation 7. 

Likewise 1( , )k x s , 2 ( , )k x s  and ( )f x  are expanded 
into the hybrid functions as follows: 
 

1 1 2 2( , ) ( ) ( ),  ( , ) ( ) ( ),T Tk x s x K s k x s x K sh h h h                (15)             
 

( ) ( ) ,Tf x F xh                                    (16)             
  

where 1 2,K K  are known nm nm× –matrices and F  is 
an nm -vector. 

After substituting the approximate Equations 14, 15 and 
16 in Equation 1, we get 
 

1 1 10
1

2 2 20

( ) ( ) ( ) ( ) ( , ( ))

( ) ( ) ( , ( )) .

xT T T T

T T

U x F x x K s s U s ds

x K s s U s ds

λ ψ

λ ψ

+

+

∫
∫

h h h h h

h h h
     (17)              

 

Functions 1( , ( )) ( ( ))T Ts U s U s αψ =h h  and 

2 ( , ( )) ( ( ))T Ts U s U s βψ =h h  are known which can be 
expanded into the hybrid functions as 
 

( ( )) ( ),  ( ( )) ( ).T Tu s U s u s U sα β
α βh h

            (18)              
 

where 
,U Uα β  are nm –vectors whose elements are 

nonlinear combination of the elements of the vector U  
and are produced as follows: 

From Equations 13 and 14, we have 
 

2

2

( ( )) ( ( ))( ( )) ( ) ( )
( ) ( ),

T T T T

T

u x U x U x U x x U
U U x U x

=
= =
h h h h

h h      (19)              
 

where the vector 2
TU U U=  is an nm –row vector, then 

for 
3( ( ))u s  we get 

  
3

2 2

2 3

( ( )) ( ( ))( ( )) ( ) ( )
( ) ( ).

T T T T

T T

u x U x U x U x x U
U U x U x

=
= =
h h h h

h h     (20) 
                            

Therefore with this method we can approximate ( ( ))u s α
 

and ( ( ))u s β
 for arbitrary α  and β . Suppose that this 

method holds for 1α −  where 
1

1( ( )) ( )u x U xα
α

−
−= h , we 

shall obtain it for α  as follows: 
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1
1

1

1

( ( )) ( ) ( ) ( ( ))( ( ))
( ) ( )

( ) ( ),

T

T T T

T T

u x u x u x U x U x
U x x U

U U x U x

α α
α

α

α α

−
−

−

−

=
=

= =

h h
h h

h h       (21)                             
 

We have a similar relation forβ . So, the components of 
Uα  and 

Uβ  can be computed in terms of components of 
unknown vector U . 

Substituting Equation 18 in Equation 17 produces 
 

1

1 1 2 20 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

xT T T T T TU x F x xK s sUds xK s sUdsα βλ λ+ +∫ ∫h h h h h h h h
 
(19)

     
 

 
Note that by use of Equations 9 and 13 we have 

0 0
( ) ( ) ( ) ( )

x xTs s U ds U s ds U P xα α α= =∫ ∫h h h h
, by this 

relation and Equation 10, we get 
 

 1 1 2 2 ( ) ( ) ( ) ( ) ( )( ).T T T TU x F x x K U P x x K DUα βλ λ+ +h h h h h     (22)                   
 

In order to find U  we collocate Equation 22 in nm  nodal 
points of Newton-Cotes as, 
 

2 1, 1,2, , ,
2p
px p nm
nm
−

= = …
                                       (23)                                  

 
then we have the following system of nonlinear equations 
 

1 1 2 2( ) ( ) ( ) ( ) ( )( ), 1,2, , .T T T T
p p p p pU x F x x KU P x x K DU p nmα βλ λ+ + = …h h h h h

    
                                                                                 

(24)
 
 

 
This nonlinear system of equations can be solved by 
Newton's method. We used the "Mathematica 7" software 
to solve this nonlinear system. After solving nonlinear 
system (Equation 24) we can achieve U , then we will 

have our unknown ( )u x  as ( )TU xh , that is the 
approximate solution of NV-FIE (1). 
 
 
CONVERGENCE ANALYSIS 
 

We assume ( ( ), .C J ‖ ‖ ) the Banach space of all 

continuous functions on [0,1]J =  with norm 

0 1( ) max ( )xf x f x≤ ≤=‖ ‖ ˚ ˚  and the following conditions 

on 1 2,k k  and 1 2,ψ ψ  for Equation 1. We define 
( , )xk k x s≡  for , [0,1]x s∈ : 

 

1. lim 0x xk kτ τ− =‖ ‖ö , [0,1]τ ∈ . 

 
 
 
 

2. 1M ≡  sup 0 , 1 1| ( , ) |x s k x s≤ ≤ < ∞ , 2M ≡  sup 0 , 1 2| ( , )|x s k x s≤ ≤ <∞
. 

3. 1 2( , ) and ( , )s x s xψ ψ  are continuous in [0,1]s∈  and 
Lipschitz continuous in x R∈ , that is, there exist 

constants 1 2, 0C C >  for which 
1 1 1 2 1 1 2 1 2| ( , ) ( , )| | | for all , ,s x s x C x x x x Rψ ψ− ≤ − ∈  
2 1 2 2 2 1 2 1 2| ( , ) ( , )| | | for all , .s x s x C x x x x Rψ ψ− ≤ − ∈  

 
 
Theorem 1 
 
The solution of nonlinear Volterra-Fredholm integral 

equation by hybrid functions converges if 0 1γ< < . 
 
 
Proof: (Maleknejad et al., 2010) . 
 
 
NUMERICAL EXAMPLES 
 
Here, we implemented the proposed method on 3 
different examples. The results achieved by a proper 
value for m  and different values for n . All the results 
are compared with some existing method results. As in 
Tables 1 to 5, the error tends to zero when n  becomes 
greater and in analogy to another methods' results the 
proposed method have better answers in lower n . 
Although, we do not claim that this method shows 
superiority over the other methods from the viewpoint of 
accuracy, but we can say this method is more practical, 
quite accurate with lower calculation. The matrices P  
and D  are sparse, hence are much faster than other 
functions' operational matrices and they reduce the CPU 
time and at the same time keeping the accuracy of the 
solution. In our examples we get the results by 8m =  

and 2,4,8,16n = . In all of them we compared our 
answers with some existing methods. We consider the 

2L -norm of errors for Examples 1 to 3 which are shown 
in Tables 4 and 5 by 
 1

1 2
2

2
0

( ( ) ( ))nmE u x u x dx
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∫

 
 
For implementation of proposed method we used 

7Mathematica . 
 
 
Example 1 
 
Consider the nonlinear Volterra–Fredholm equation given 
by 
 

16 4 2 2

0 0

1 1 5 5( ) ( ) ( ) ( ) ( ) ,
30 3 3 4

x
ux x x x x x su sds x susds=− + − + − + − + +∫ ∫
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Table 1. Approximate and exact solutions for Example 1. 
 

x  
Solution with 

2n =  
Solution with 

4n =  
Solution with 

8n =  
Solution with 

16n =  

Method 
(Ordokhani, 
2006) with 

16k =  

Exact 

0.0 -2.004858 -2.001333 -2.000340 -2.000085 -1.995 -2 
0.1 -1.996105 -1.991671 -1.990420 -1.990104 -1.989 -1.99 
0.2 -1.967892 -1.962063 -1.960511 -1.960125 -1.965 -1.96 
0.3 -1.919818 -1.912286 -1.910599 -1.910152 -1.912 -1.91 
0.4 -1.851187 -1.842838 -1.840683 -1.840174 -1.841 -1.84 
0.5 -1.761040 -1.753034 -1.750775 -1.750195 -1.752 -1.75 
0.6 -1.650618 -1.643166 -1.640844 -1.640208 -1.643 -1.64 
0.7 -1.521064 -1.513388 -1.510834 -1.510204 -1.498 -1.51 
0.8 -1.371005 -1.362753 -1.360742 -1.360192 -1.359 -1.36 
0.9 -1.198995 -1.192383 -1.190576 -1.190149 -1.185 -1.19 
1.0 -1.003603 -1.001267 -1.000339 -1.000086 -0.994 -1 

 
 
 

Table 2. Approximate and exact solutions for Example 2. 
 

x  
Solution with 

2n =  
Solution with 

4n =  
Solution with 

8n =  
Solution with 

16n =  

Method (Sepehrian and 
Razzaghi, 2005) with 

20M =  
Exact 

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0 
0.1 -0.09007 -0.09002 -0.09000 -0.09000                 -0.09000 -0.09 
0.2 -0.16032 -0.16008 -0.16002 -0.16000 -0.16000 -0.16 
0.3 -0.21066 -0.21018 -0.21005 -0.21001 -0.20999 -0.21 
0.4 -0.24094 -0.24027 -0.24005 -0.24001 -0.23999 -0.24 
0.5 -0.25111 -0.25022 -0.25005 -0.25001 -0.24999 -0.25 
0.6 -0.24127 -0.24013 -0.24004 -0.24000 -0.23999 -0.24 
0.7 -0.21167 -0.21025 -0.21002 -0.21001 -0.20999 -0.21 
0.8 -0.16252 -0.16047 -0.16008 -0.16002 -0.15998 -0.16 
0.9 -0.09377 -0.09075 -0.09020 -0.09004 -0.08997 -0.09 
1.0 -0.00503 -0.00113 -0.00027 -0.00006 0.00003 0 

 
 
 
with the exact solution 

2( ) 2u x x= −  [13]. The comparison 
among the hybrid solutions beside the exact solutions are 
shown in Table 1. 
 
 
Example 2 
 
Consider the nonlinear Volterra integral equation 
considered in (Sepehrian and Razzaghi, 2005)  
 

8 7 6 5 2 3

0

15 13 11 9( ) ( ) ( ) ,
56 14 10 20

x
u x x x x x x x x su s ds=− + − + + − + +∫

 
 

with the exact solution 
2( )u x x x= −

.  The  comparison 

among the hybrid solutions with 8m =  and 
2,  4,  8n n n= = =  and 16n =  beside the exact 

solutions are shown in Table 2. 
 
 
Example 3 
 
Consider the nonlinear Fredholm integral equation given 
in (Babolianet al., 2008) by 
 

12 2

0

1 1( )  ( ) ,
12 2

u x x s u s ds= − + ∫  
 

with the exact solution 
2( )u x x= . The comparison 

among the hybrid solutions beside the exact solutions are  
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Table 3. Approximate and exact solutions for Example 3. 
 

x  Solution with 
2n =  

Solution with 
4n =  

Solution with 
8n =  

Solution with 
16n =  

Method (Babolian, 2008) 
with 64m =  

Exact 

0.0 0.020629 0.005630 0.001436 0.000361 0.000054 0 
0.1 0.030629 0.015630 0.011436 0.010361 0.010308 0.01 
0.2 0.060629 0.045630 0.041436 0.040361 0.038140 0.04 
0.3 0.110629 0.095630 0.091436 0.090361 0.092828 0.09 
0.4 0.180629 0.165630 0.161436 0.160361 0.158746 0.16 
0.5 0.270629 0.255630 0.251436 0.250361 0.257867 0.25 
0.6 0.380629 0.365630 0.361436 0.360361 0.361871 0.36 
0.7 0.510629 0.495630 0.491436 0.490361 0.483453 0.49 
0.8 0.660629 0.645630 0.641436 0.640361 0.647515 0.64 
0.9 0.830629 0.815630 0.811436 0.810361 0.807183 0.81 
1.0 1.020629 1.005630 1.001436 1.000361 - 1 

 
 
 

Table 4. Errors 2E  for Examples 1. 
 

m  Method in [10] n  present method 8m =  
4 0.011410886610 2 0.009508596380 
8 0.002852721653 4 0.002578626395 

16 0.000713180414 8 0.000656705013 
32 0.003779018306 16 0.000164921678 

 
 
 

Table 5. Errors 2E  for Examples 2 to 3. 
 
n  Example 2 Example 3 
2 0.001986101366 0.020629858826 
4 0.000407433748 0.005630249634 
8 0.000098383419 0.001363230304 

16 0.000024414251 0.000361078218 
 
 
 
 
shown in Table 3. Our achieved errors for Example 1 is 
comparable with exhibited errors (Maleknejad et al., 
2010), an example is shown in Table 4. As obvious in 
present method with lower n  gets better results. 
 
 
Conclusion 
 
This work presents a numerical approach for solving NV-
FIEs based on the hybrid Legendre polynomials and 
Block–Pulse functions. These hybrid functions 
operational matrices of integration D , operational matrix 

P , product matrix H  and coefficient matrix C  have 
been created to convert NV-FIEs to an algebraic equation 

and   then  by  collocating  this  equation  in  Newton-cuts 
nodes, a nonlinear system of equations that can be 
solved by Newton method, was produced. Illustrative 
examples are given to demonstrate the validity and 
applicability of proposed method. Our compared results 
show that this method works better and faster than some 
existing methods. 
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