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Genome-scale metabolic networks are widely used in industrial and medical biotechnology and 
complex networks methods are increasingly becoming important in the investigation of these models. 
The present paper performed a study of Halobacterium salinarum metabolic network by structural and 
functional analysis. First, we extracted high-quality H. salinarum metabolic network model from a recent 
reconstruction and based on its “bow tie” structure, we then extracted and studied the giant strong 
component (GSC) with its functional significance. Global structural properties such as average path 
length, degree distribution and self-similar exponent were computed and it indicated that the GSC is 
also a small-world, scale-free and self-similar network. Furthermore, the top 10 hub metabolites and 
functional modules in giant strong component were studied with their biological significance. 
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INTRODUCTION 
 
Remarkable advances in systems biology technologies 
(for example, genomics, proteomics, microarrays, etc.) 
enabled us to reconstruct more and more genome-scale 
biological networks (for example, metabolic, protein 
interaction, signaling networks, etc.) (Feist et al., 2009). 
Due to its completeness and reliability, the metabolic 
network plays a central role in biological networks 
research. Current research mainly include its 
reconstruction, structural and functional analysis, aid to 
industrial production, drug target discovery, etc (Feist et 
al., 2009; Barabasi and Oltvai, 2004; Albert, 2005; 
Aittokallio and Schwikowski, 2006; Ma and Goryanin, 
2008; Song, 2009). 

How to understand these large metabolic (or other 
biological) networks is a daunting challenge in the post-
genomic era. As detailed kinetic parameters are hardly 
available, lots of recent studies have focused on 
structural and functional analysis of these networks 
(Barabasi and Oltvai, 2004; Albert,  2005;  Aittokallio  and  
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Schwikowski, 2006; Ma and Goryanin, 2008). Structural-
oriented methods such as complex networks analysis 
(Barabasi and Oltvai, 2004; Albert, 2005; Aittokallio and 
Schwikowski, 2006), Petri nets analysis (Chaouiya, 2007; 
Ding and Li, 2009) and stoichiometric network analysis 
(Palsson, 2006) have been well established gradually. 
Generally, we represented the metabolic networks by the 
so-called metabolite graph in complex networks analysis, 
that is, the nodes (metabolites) are linked by arcs or 
edges (metabolic reactions accordingly). Then, the 
fundamental organizational principles that underlie 
networks could be discovered based on global 
topological structural properties such as “small-world”, 
“scale-free” and “self-similar”. Furthermore, to discover 
the functional units involved in metabolic networks, it is 
suggested that metabolic networks should have 
modularity which is similar to other complex networks, 
such as social networks, internet, worldwide web, etc 
(Guimera and Amaral, 2005). 

Halobacterium salinarum, an extremely halophilic 
marine gram-negative archaeon, has been reconstructed 
and discussed recently (for example, investigation of 
aerobic essential amino acid degradation) (Gonzalez et 
al., 2008).  In  the  present  article,  firstly, we use the high 



 
 
 
 
quality metabolic network model of H. salinarum to 
generate a metabolite graph with 489 nodes and 803 
links. Then, the structure of H. salinarum metabolic 
networks is explained and discussed based on “bow tie” 
structure, with emphasis on the giant strong component 
(GSC) part. At last, the functional significance, global 
structural properties and modularity of giant strong 
component in H. salinarum metabolic networks are 
studied. 
 
 
MATERIALS AND METHODS 
 
Metabolic networks and its bow tie structure 
 
To investigate the topological properties of H. salinarum 
metabolism, we first obtain all metabolic reactions involved in the 
metabolic network of H. salinarum from a recent reconstruction 
(Gonzalez et al., 2008) and then, use the number of each 
metabolite corresponding to compounds in the KEGG LIGAND 
database. For instance, metabolite ID 22 corresponds to compound 
C00022 (pyruvate, PYR) in the KEGG database. Subsequently, to 
reflect biologically, meaningful transformations, all the reactions 
were revised by Ma and Zeng’s database (Ma and Zeng, 2003). 
The advantages of their database are: (1) corrected obvious 
inconsistencies, (2) confirmation of the reversibility of every reaction 
and (3) exclusion of the current metabolites and small molecules 
(for example, ATP, ADP, NADH, etc). At last, the metabolic network 
that is reconstructed is represented by the so-called metabolite 
graph in which the nodes are metabolites and the links are 
reactions. For example, the irreversible reaction, 64 + 26 � 25 is 
represented by two directed arcs 64 � 25 and 26 � 25. 

Since the “bow tie” structure of metabolic networks is proposed, it 
is increasingly recognized as being a conserved property of 
complex networks, as highlighted by recent studies and the results 
suggest that this structure property is functionally meaningful for 
metabolism, disease and the design principle of biological 
robustness (Zhao et al., 2007). Here, the so-called “bow tie” 
structure means that the network could be decomposed into four 
parts: (1) giant strong component (GSC), which is the biggest 
strongly connected component of the metabolic network. Note: the 
strongly connected component of a network is defined as the 
largest cluster of some nodes where any pair of nodes is mutually 
reachable; (2) substrate subset (S), which consists of the nodes 
that can go to the GSC, but cannot come from it; (3) product subset 
(P), which consists of the nodes that can come from the GSC, but 
can not go back to it and (4) isolated subset (IS), which contains 
some isolated nodes that can not come from the GSC and also can 
not go back to it (Zhao et al., 2007; Bondy and Murty, 1976; Ma and 
Zeng, 2003). 
 
 
Global structural properties 
 
It is suggested that average path length of metabolic networks is 
very small, showing itself as the property of “small-world”. Another 
structural parameter is network diameter, which is defined as the 
path length of the longest pathway among all the shortest pathways 
(Barabasi and Oltvai, 2004). Furthermore, the direct reflection of 
difference among numerous metabolites in metabolic networks is 
the connection degree k, which is the link that the node has to 
others, and the degree distribution P(k) gives the probability of a 
node with degree k. One of the most important properties of 
metabolic networks is the power law degree distribution, that is, 
P(k)�k-r (2<r<3) (Barabasi  and  Oltvai,  2004),  which  means  that 
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most of the nodes in the network have a low degree, while a few 
nodes have a very high degree. In other words, metabolic network 
is a sort of typical “scale-free” network (Barabasi and Oltvai, 2004; 
Albert, 2005). The third structural property, “self-similarity”, studied 
here, which relates to that of any part of the network looks like the 
entire property. Generally, the self-similarity of a network could be 
quantitatively characterized by its self-similar exponent (or fractal 
dimension) dB, and dB that could be calculated by a well-known box 
covering algorithm according to NB (�B )/N��B 

–dB, where: NB is the 
minimum number of boxes covering the network fully, �B is the box 
size and N is the number of nodes in the network (Song et al., 
2005; Ding and He, 2010). 
 
 
Modularity and modules identification 
 
Currently, there are too many methods used to module 
identification (da Silva, 2006; Fortunato, 2010), but the most 
important property related to detection of modules is modularity. For 
a presumptive partition of the nodes of a network into modules, the 
modularity M of this partition is defined as follows: 
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where r is the number of modules, ls is the number of links between 
nodes in modules, ds is the sum of the degrees of the nodes in 
module s and L is the total number of links in the network. It is 
suggested that maximization of the modularity function would yield 
the most accurate results for random networks and would be widely 
used for identification of modules (Guimera and Amaral, 2005). 

As simulated annealing is approved as a superexcellent method 
for modules identification in complex networks (especially in 
metabolic networks), thus we mainly engaged the method in this 
study (Guimera and Amaral, 2005). Here, simulated annealing is a 
stochastic optimization technique that could find ‘low cost’ 
configuration without getting trapped in ‘high cost’ local minima. As 
mentioned above, the method based on simulated annealing tries 
to find the optimal partitions of modules by maximizing the network 
modularity and thus the cost is C=�M herein, where M is the 
modularity defined in equation (1). At each temperature T, some 
random updates are performed and accepted with probability: 
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where C2 and C1 are the cost after and before the update 
respectively, while T is computational temperature. Specifically, at 
each temperature T, there would be ni = fS2 nodes individual 
movements from one module to another and nc = fS nodes 
collective movements, where S is the number of nodes in the 
network and f is the recommended range of 0.1 to 1. Certainly, at 
each temperature T, the system would be cooled down to T’= cT. 
 
 
RESULTS AND DISCUSSION 
 
Metabolic network and its bow tie structure 
 
The   metabolite   graph   for   the   metabolic   network of  
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Figure 1. Metabolic network topology structure of H. salinarum. The nodes correspond to metabolites and the 
lines correspond to reactions. The picture was drawn using the Pajek program with Kamada-Kawai layout. 

 
 
 

Table 1. The bow tie structure of H. salinarum metabolic network. Metabolites and reactions in 
giant strong component (GSC), substrate subset (S), product subset (P) and isolated subset (IS). 
 

Subsets GSC S P IS Total 
No. of metabolites 126 47 191 125 489 
Percentage of metabolites 25.8 9.6 39.1 25.5 100 
No. of reactions 273 66 271 193 803 
Percentage of reactions 34 8.2 33.7 24.1 100 

 
 
 
H. salinarum is obtained based on the methods 
introduced in metabolic network and its bow tie structure 
(under materials and methods). The network contains 
489 nodes and 803 links and the global topology 
structure is shown in Figure 1. It is clear that the whole 
network is far from strong component and included many 
isolated reactions. As a result, the whole metabolic 
network of H. salinarum is decomposed into four parts 
based on the “bow tie” structure (Table 1). It should be 
noted that most nodes in S, P and IS part are connected 
by some single link which are not involved herein, while 
the metabolites and reactions involved in the giant strong 
component part (the global topology structure is shown in 
Figure 2) are clearly much less than the whole network 
and would be used to reduce the complexity of applying 
other pathway analysis methods such as extreme 
pathways (Schilling et al., 2000) and elementary modes 
(Schuster et al., 2000). Furthermore, this  may  be  due to 

the fact that the giant strong component: (1) is the 
biggest strongly connected components of a metabolic 
network, (2) determines the structure of the entire 
network at a high degree, (3) plays an important role in 
metabolism, disease and biological robustness and (4) 
have been widely investigated for some other organisms 
(for example, human, B. thuringiensis, etc) (Ma and 
Goryanin, 2008; Zhao et al., 2007; Bondy and Murty, 
1976; Ma and Zeng, 2003; Ma et al., 2007; Ding et al., 
2009), thus a more detailed analysis of H. salinarum is 
given below. 

All of the 273 metabolic reactions in the giant strong 
component are compared to KEGG pathways and it is 
shown that they are mainly concentrated on carbohydrate 
(50.2%) and amino acid (41.0%) metabolism (Table 2). 
The reactions of carbohydrate metabolism accurately 
correspond to glycolysis and TCA cycle, and partly 
correspond    to    pyruvate,   propanoate   and  butanoate  
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Figure 2. Giant strong component topology structure of H. salinarum. The nodes correspond to metabolites and the 
lines correspond to reactions. The picture was drawn using the Pajek program with Kamada- Kawai layout. 

 
 
 

Table 2. Reactions in giant strong component (GSC) of H. salinarum metabolic network. 
 
Reactions in GSC No. of reactions Percentage of reactions 
Carbohydrate metabolism 137 50.2 
Amino acid metabolism 112 41.0 
Lipid metabolism 5 1.8 
Others 19 7.0 
Total 273 100 

 
 
 

Table 3. Average path length (AL) and diameter (D) of multi-organism. 
 
Organisms Abbreviation AL D 
Escherichia coli eco 8.16 23 
Haemophilus influenzae hin 8.35 27 
Saccharomyces cerevisiae sce 9.71 31 
Rattus norvegicus rno 10.99 38 
Homo sapiens hsa 11.33 46 
Caenorhabditis elegans cel 10.87 49 

 
 
 
metabolism. From the point of view of topological 
network, the results show that metabolites in 
carbohydrate metabolism (in particular glycolysis and 
TCA cycle, important part of the central metabolism) have 
the highest probability of more links and stronger 
robustness in network and thus, might have higher attack 
tolerance despite external cues, genetic variation and 
stochastic noise. While reactions of amino acid 
metabolism are mainly concentrated on glycine, serine 
and threonine metabolism; valine, leucine and  isoleucine 

degradation; phenylalanine, tyrosine and tryptophan 
biosynthesis, these might reveal the nutrient requirement 
in H. salinarum. 
 
 
Global structural properties 
 
The average path length is 10.71 and the network 
diameter is 35 for the giant strong component of H. 
salinarum  metabolic  network,  which  is  similar  to  other  
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Figure 3. Log-log plot of the degree distributions for the giant strong component of H. salinarum metabolic network. 

 
 
 

Table 4. The top 10 hub metabolites of the giant strong component of H. salinarum metabolic network. 
 

Degree ID Metabolite name Abbreviation 
17 
15 
14 
12 
10 
10 
9 
9 
9 
9 

22 
111 
118 
311 
441 
579 
25 

251 
158 
877 

Pyruvate 
Glycerone phosphate 
(2R)-2-Hydroxy-3-(phosphonooxy)-propanal 
Isocitrate 
L-Aspartate 
Dihydrolipoamide 
L-Glutamate 
Chorismate 
Citrate  
Crotonoyl-CoA 

PYR 
GlyP 
2HPP 
ICIT 
ASP 
DIHY 
GLU 

CHOR 
CIT 

CrCoA 
 
 
 
multi-organism via Ma and Zeng (2003) (Table 3). As 
such, we then checked the scale-free property of the 
giant strong component of H. salinarum metabolic 
network (Figure 3). As it is known, the nodes with high 
degree of scale-free network would dominate the network 
structure and make the network robust against random 
errors such as mutation and environmental changes. We 
identified 10 primary metabolites with the  highest  degree 

for H. salinarum metabolic network (Table 4). Among 
these top 10 central metabolites, PYR, DIHY and ICIT are 
important intermediates in the glycolysis pathway, while 
GlyP plays a key role in glycolysis pathway, fructose and 
mannose metabolism, glycerophospholipid metabolism, 
carbon fixation, nicotinate and nicotinamide metabolism. 
2HPP is the metabolite linking glycolysis pathway, 
pentose phosphate pathway and carbon fixation, whereas  



Liu et al.        1749 
 
 
 

Table 5. Decomposed results of the giant strong component of H. salinarum metabolic 
network based on simulated annealing algorithm. 
 

Module Nodes Total links Within links Between links 
1 13 17 12 5 
2 14 23 17 6 
3 18 33 23 10 
4 18 27 22 5 
5 16 25 19 6 
6 16 19 15 4 
7 17 27 23 4 
8 14 17 13 4 

Modularity 0.736192    
 
 
 

 
 
Figure 4. Modules in the giant strong component of H. salinarum metabolic network. The picture was drawn using the Pajek 
program with Kamada- Kawai layout (Notes: each module is signed by its module No.; the No. is also used in Tables 5 and 6). 

 
 
 
ASP and GLU are two important amino acids that are 
directly produced in TCA cycle and could be converted to 
many other useful amino acids. In a like manner, CHOR 
links folate biosynthesis, biosynthesis of siderophore 
group, nonribosomal peptides and phenylalanine, 
tyrosine and tryptophan biosynthesis, whereas CIT is an 
important intermediate in TCA cycle, while CrCoA is an 
important intermediate in the butanoate metabolism and it 
links fatty acid metabolism and benzoate degradation via 
CoA ligation. As links among different functional 
metabolic pathways, these hub metabolites with their 
corresponding reactions play a key role in metabolic 
regulation and may be helpful in revealing the biological 
significance of H. salinarum metabolism. At last, 
according to the box covering algorithm, we get the 
relation between the box size �B and the corresponding 
number   of   boxes   NB   for   the   GSC  of  H. salinarum 

metabolism. Following the above expression, the        
self-similar exponent for it is 1.64. The result shows that 
the GSC of H. salinarum metabolism is also self-similar, 
but the self-similar exponent is remarkably lower than the 
entire metabolism (average of 3.5 for 43 metabolic 
networks in Song et al. (2005) and Ding and He (2010). 
 
 
Modularity and modules identification 
 
Several decomposed results of the giant strong 
component of H. salinarum metabolic network based on 
simulated annealing algorithm are obtained due to 
different iteration factor (f) and cooling factor (c) as 
mentioned in ‘modularity and modules identification under 
materials and methods’. At last, we chose the best 
decomposed result (Table 5 and Figure 4) after a number  
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Table 6. The decomposed results of the giant strong component of H. salinarum metabolic network reaffirmed by 
comparison to KEGG metabolic pathways. 
 

Module Pathways in KEGG 
1 Phenylalanine, tyrosine and tryptophan biosynthesis 
2 —— 
3 Pyruvate metabolism and citrate cycle (TCA cycle) 
4 Glycolysis/gluconeogenesis and glycerolipid metabolism 
5 Glycine, serine and threonine metabolism 
6 Valine, leucine and isoleucine degradation and propanoate metabolism 
7 Glycolysis/gluconeogenesis and butanoate metabolism 
8 Tyrosine metabolism and phenylalanine; tyrosine and tryptophan biosynthesis 

 

—— represents that the corresponding module includes several pathways and it is difficult to assign it one or two simple 
pathways. 

 
 
 
of computing. The result shows clearly, a partition with 
the number of metabolites, total links, within-module links 
and between-module links in each module and the 
modularity in the partition of the network is 0.736192. 
Then the decomposed result is also reaffirmed by a 
comparison of KEGG metabolic pathways, that is, most 
modules mainly correspond to one or two KEGG 
pathways (Table 6). For instance, module 1 corresponds 
to phenylalanine, tyrosine and tryptophan biosynthesis 
which demonstrated the anterior one, while module 3 
corresponds to pyruvate metabolism and citrate cycle 
(TCA cycle) which demonstrated the latter one. 
 
 
Conclusions 
 
As the knowledge of interactions between biological 
molecules has been accumulated rapidly, more and more 
genome-scale metabolic networks are being 
reconstructed (Feist et al., 2009). Due to the absence of 
detailed kinetic parameters, a number of topological 
structural based approaches have already been 
developed to discover functional information involved in 
metabolic networks, and as such, the study suggested 
that these computational modeling and analysis could 
contribute a lot to the understanding of the structure and 
function of these networks (Barabasi and Oltvai, 2004; 
Albert, 2005; Aittokallio and Schwikowski, 2006; Ma and 
Goryanin, 2008; Song, 2009; Chaouiya, 2007; Ding and 
Li, 2009; Palsson, 2006; Guimera and Amaral, 2005; Ma 
and Zeng, 2003; Zhao et al., 2007; Ma and Zeng, 2003; 
Song et al., 2005; Ding and He, 2010; da Silva, 2006; Ma 
et al., 2007; Ding et al., 2009). 

Taken together, this study provides an attempt at 
exploring the fundamental organizational principles that 
underlie H. salinarum metabolic network. We have 
initiated the study by integrating data from a recent 
reconstruction of H. salinarum and then represented the 
model by a metabolite graph. Considering the many 
isolated   reactions   included   in   the   whole    metabolic 

network, we extracted the most important part, which is 
the giant strong component and analyzed its global 
structural properties and biological implication. We 
validated the “small-world”, “scale-free” and “self-similar” 
characters and analyzed the first 10 hub metabolites of 
the giant strong component accordingly. Finally, the 
functional modules in the giant strong component were 
studied with their biological significance. 
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