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Pseudoeffect algebras are non-commutative generalizations of effect algebras, which can serve as 
models of both quantum structures and non-commutative logics. The main contribution of this study is 
twofold. Firstly, we initiate an order-theoretic extension of pseudoeffect algebras, called partially 
ordered pseudoeffect algebras (abbreviated po-PEAs). Secondly, we investigate the fuzzy ideal theory 
of po-PEAs. In particular, we show that a fuzzy ideal in a po-PEA is finitely generated if and only if it is 
finitely valued, and every fuzzy ideal in a Noetherian po-PEA is finitely generated. 
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INTRODUCTION 
 
In recent years, modelling of uncertainty has received 
much attention and become an increasingly active 
research area. In fact, researchers working in economics, 
engineering, environmental science, sociology, medical 
science and many other fields need to deal with the 
complexity of uncertain data almost everyday. The nature 
of the uncertainties appearing in diverse domains could 
be very different. In addition to probability theory, 
researchers have developed some other mathematical 
tools for dealing with various kinds of uncertainties. 
These tools include fuzzy sets (Zadeh, 1965), rough sets 
(Pawlak, 1982) and the newly-emerging theory of 
Molodtsov’s soft sets (Molodtsov, 1999). The study on 
comparison and combinations of soft sets, fuzzy sets and 
rough sets can be found in (Feng et al., 2011, 2010a). It 
is worth noting that soft set theory is also related to 
description logic (Jiang et al., 2010, 2011b) and has 
proved to be very useful in decision making under 
uncertainty (Anisseh and Yusuff, 2011; Cagman and 
Enginoglu, 2010; Feng et al., 2010b, c; Jiang et al., 
2011a). Moreover, many authors have discussed the 
application of soft sets in various algebraic structures 
(Feng et al., 2008; Atagun and Sezgin, 2011; Sezgin et 
al., 2011; Sezgin and Atagun, 2011a, b). 

The concept of fuzzy sets introduced by Zadeh (1965) 
is regarded as a fundamental approach to vagueness. 
Rosenfeld (1971) applied fuzzy sets to the study of 
algebraic   structures   and  initiated  the  notion  of  fuzzy 
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groups. He started a burst of papers on the topic of fuzzy 
algebras (Davvaz and Corsini, 2007; Jun and Song, 2006; 
Shabir et al., 2010a, b; Shabir and Khan, 2010; Zhan and 
Dudek, 2007). Fuzzy structures may give rise to more 
useful models in some practical applications. For 
instance, fuzzy lattices have proved to be useful in neural 
computing (Kaburlasos and Petridis, 1998, 1999, 2000). 

The logic underlying classical theory of computation is 
Boolean (two-valued) logic. With the developing of 
theories modelling uncertainty, it is natural and necessary 
to establish some rational logic systems as the logical 
foundation for uncertain modelling and reasoning. 
Various non-classical logic systems and their algebraic 
counterparts have thus been proposed and extensively 
studied by many researchers. For instance, MV-algebras 
are algebraic counterparts of the Lukasiewicz infinite 
many valued propositional logic; while BL-algebras are 
algebraic models of Hajek’s basic fuzzy logic (Hajek, 
1998). Note that BCK/BCI-algebras are two important 
classes of algebras of logic, since most of the algebras 
related to the t-norm based logic, such as BL-algebras, 
MV-algebras, MTL-algebras and Boolean algebras are 
subclasses of BCK-algebras. 

To establish the mathematical foundation for quantum 
mechanics, many researchers have contributed to the 
area of quantum logics and related quantum structures. 
Pseudoeffect algebras (Dvurečenskij and Vetterlein, 
2001a, b) are non-commutative generalizations of effect 
algebras (Foulis and Bennett, 1994). They were 
proposed by Dvurečenskij and Vetterlein for modelling 
unsharp measurements in quantum mechanical systems. 
It  is  interesting  to  see  that several attempts have been 
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made to discover the connections between pseudoeffect 
algebras and the aforementioned algebraic models of 
fuzzy logic (Vetterlein, 2004, 2005). Moreover, Jun and 
Walendziak (2006) applied the concept of fuzzy set to 
pseudo-MV algebras. They introduced the notions of 
fuzzy ideals and fuzzy implicative ideals in pseudo-MV 
algebras, gave characterizations of them and provided 
conditions for a fuzzy set to be a fuzzy ideal and a fuzzy 
implicative ideal. 

The present paper can be seen as an attempt toward 
the study of pseudoeffect algebras by combining 
algebraic approach with fuzzy set theory. Based on the 
observation that a pseudoeffect algebra can be viewed 
as a poset equipped with a partial algebraic operation, we 
introduce partially ordered pseudoeffect algebras 
(abbreviated po-PEAs), which can be viewed as a new 
type of quantum structures. Generally, po-PEAs extend 
(standard) pseudoeffect algebras by substituting an 
arbitrary compatible order for the natural order derived 
from the partial addition. In contrast to existing studies 
which focus essentially on crisp ideals of pseudoeffect 
algebras, our study is mainly devoted to the discussion of 
fuzzy ideal in po-PEAs. The main purpose of this study is 
to establish a theory of great generality, in view of the fact 
that every crisp ideal of pseudoeffect algebra can be 
seen as a fuzzy ideal in the corresponding (naturally 
ordered) po-PEA. 
 

 

PSEUDOEFFECT ALGEBRAS AND po-PEAS 
 
Here, we first recall some basic notions and results in the 
theory of pseudoeffect algebras. Then, we shall introduce 
an order-theoretical extension of pseudoeffect algebras, 
called partially ordered pseudoeffect algebras. Birkhoff 
and Neumann (1936) realized that quantum mechanical 
systems are not governed by classical logical laws. Their 
pioneering work motivated more research works 
concerning the logic foundation of quantum mechanics. 
With the development of quantum logics, a number of 
algebraic structures have been proposed as their models 
(Miklós, 1998). Foulis and Bennett (1994) introduced 
effect algebras for modelling unsharp measurements in 
quantum mechanical systems. Dvurečenskij and 
Vetterlein (2001) introduced the following non-
commutative generalizations of effect algebras. 
 
 
Definition 1  

 
A structure ( ; ,0,1)E  , where + is a partial binary 

operation and 0, 1 are constants, is called a pseudoeffect 

algebra if for all , ,a b c E , the following hold 

(Dvurečenskij and Vetterlein, 2001a):  
 

(P1): a b  and ( )a b c   exist if and only if b c  and 

( )a b c  exist, and in this case, ( ) ( )a b c a b c     .  

 
 
 
 

(P2): There is exactly one d E  and exactly one e E , 

such that 1a d e a    .  

(P3): If a b  exists, there are elements ,d e E , such 

that a b d a b e     .  

(P4): If 1 a  or 1a   exists, then 0a  . 

 

Note that we write a b c   for the element 

( ) ( )a b c a b c      if the hypothesis of (P1) is satisfied. 

Indeed, we may denote arbitrary finite sums of elements 
of a pseudoeffect algebra without brackets since (P1) 

holds. For convenience, we write a b  if a b  exists. In 

view of (P2), we may define two unary operations ~  and 
  on E by requiring ~ 1a a a a     for any .a E  

 
A pseudoeffect algebra is said to be commutative if for all 

,a b E , a b  if and only if b a , in which case a + b = 

b + a. As mentioned in the earlier, a pseudoeffect algebra 
is a non-commutative generalization of an effect algebra 
by dropping commutativity. Thus, it is clear that the notion 
of effect algebras coincides with the notion of 
commutative pseudoeffect algebras. Darnel (1995) gave 
an example of a pseudoeffect algebra which is non-
commutative and thus, is not an effect algebra. This 
shows that the class of effect algebras forms a proper 
subclass of the class of pseudoeffect algebras. The 
following basic results on pseudoeffect algebras were 
established (Dvurečenskij and Vetterlein, 2001a). Note 
that for any equation to hold, we mean that all sums that 
occur in it exist, and it holds.  
 
 
Lemma 1 
 

Let ( ; ,0,1)E   be a pseudoeffect algebra (Dvurečenskij 

and Vetterlein, 2001a). Then, the following hold in E for 

all , ,a b c E :  

 
(1) 0 0 .a a a     

(2) 0a b  , implies 0.a b   

(3) ~ ~0 0 1,1 1 0.      

(4) ~ ~ .a a a    

(5 a b a c    implies ,b c  and b a c a    implies 

.b c  

(6) a b c   iff ~( )a b c    iff ~( )b c a  . 

 
In any pseudoeffect algebra E, one can define a binary 

relation N  on E by ( )Na b c E a c b      . For all a, 

b ∈ E. As shown by Dvurečenskij and Vetterlein (2001a), 

N  is a partial order on E, which will be called the natural 

order on E in the sequel. Clearly, 0 is the least element 
and 1 is the greatest element in E, with respect to the 
natural order. Moreover, from (P3), it is easy to see that 

for all a, b ∈ E, a N  b, if and only if d + a = b for  some  d 



 
 
 
 

∈ E. This says that 
N  is two-sided, which is in fact the 

main motivation for choosing the axiom (P3). 
 
 

Lemma 2 
 

Let ( ; ,0,1)E   be a pseudoeffect algebra (Dvurečenskij 

and Vetterlein, 2001a). Then, the following hold in E for 

all 
1 1, , , ,a a b b c E : 

 

(1) 
N  is a partial order on E.  

(2) 
Na b  iff 

Nb a   iff ~ ~ .Nb a  

(3) If a ⊥ b, 
1 Na a  and 

1 Nb b , then 
1 1a b  exists.  

(4) a ⊥ b iff 
Na b  iff ~ .Nb a  

(5) If b ⊥ c, then a 
N b iff a ⊥ c and a + c 

N b + c. If c ⊥ 

b, then a 
N  b iff c ⊥ a and c + a 

N  c + b. 

 
By Lemma 2, we know that the natural order on a 
pseudoeffect algebra E is compatible with the partial 
binary operation + on E. In other words, E equipped with 
the natural order on it, becomes an ordered partial 
algebraic structure. This observation motivates us to 
introduce the following order-theoretical extensions of 
pseudoeffect algebras. 
 
 

Definition 2  
 
A partially ordered pseudoeffect algebra (abbreviated po-

PEA) is a structure ( ; ,0,1, )E   , such that: 

 
(O1): (E; +, 0, 1) is a pseudoeffect algebra.  
(O2): (E; ≤) is a poset.  
(O3): ≤ is compatible with the partial binary operation + 
on E. That is, for all a, b, c ∈ E with a ≤ b, if a ⊥ c and b ⊥ 
c then a + c ≤ b + c; If c ⊥ a, and c ⊥ b, then c + a ≤ c + b. 
 
In what follows, (E; +, 0, 1, ≤) is also denoted by (E; +, ≤) 
or simply by E. A po-PEA (E; +, ≤) is said to be naturally 
ordered if ≤ = ≤N, that is, the partial order ≤ on E 
coincides with the natural one. Now it is easy to see how 
pseudoeffect algebras are characterized among po-PEAs; 
that is, every pseudoeffect algebra may be considered as 
a po-PEA equipped with the natural order. Moreover, a 
pseudoeffect algebra E is also a po-PEA with respect to 

the dual natural order, namely 1

N N

  . 

The following example gives a class of po-PEAs arising 
from intervals in partially ordered groups. 

 
 

Example 1  
 
Let (G; +, ≤) be a po-group and u a positive element of G 
(Dvurečenskij and Vetterlein, 2001a). We denote by (G, u) 
the structure (G; +, ≤, u), obtained by adding the  element 
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u as a constant. The po-group (G, u) is said to be unital if 
u is a strong unit of G, that is, if for all g ∈ G, there is an n 
∈ N such that −nu ≤ g ≤ nu. The set Γ(G, u) = {g ∈ G | 0 ≤ 
g ≤ u} is called the unit interval of (G, u). The structure 
denoted (Γ(G, u); +, 0, u, ≤ ) is constituted of the unit 
interval of (G, u), the partial binary operation + which is 
the restriction of the group addition to those pairs of 
elements of Γ(G, u) whose sum lies again in Γ(G, u), the 
neutral element 0, the positive element u and the order of 
the po-group G restricted to Γ(G, u). It is easy to verify 
that (Γ(G, u); +, 0, u, ≤) is a naturally ordered po-PEA. 

It is worth noting that there exist po-PEAs which are not 
naturally ordered. For illustration, we provide two 
examples as follows: the first one is a simple variation 
(Dvurečenskij and Vetterlein, 2001a). 
 

 

Example 2  
 
Let G = Z × Z × Z. Define for every two elements of G: 
  

1 2

1 1 1 2 2 2

2

   if is even,
( , , ) ( , , )

otherwise,

V a
a b c a b c

V


  


 

 
where V1 = (a1 + a2, b1 + b2, c1 + c2), V2 = (a1 + a2, b2 
+ c1, b1 + c2), and define (a1, b1, c1) ≲ (a2, b2, c2) to 
hold if a2 < a1 or a2 = a1, b2 ≤ b1 and c2 ≤ c1. Then, as 
pointed out by Dvurečenskij and Vetterlein (2001a), (G; +, 
≳) is a lattice ordered group. Here, ≳ denotes the dual of 
the order ≲ defined earlier. Taking u = (1, 0, 0), the unit 
interval Γ(G, u) = {(0, b, c) | b, c ≥ 0} ∪ {(1, b, c) | b, c ≤ 0} 
equipped with the restriction of the order ≳, becomes a 
naturally ordered po-PEA with the sum and constants 
defined according to Example 1. On the other hand, it is 
clear that ≳ is not the trivial order. Hence, one easily 
sees that the structure (Γ(G, u); +, (0, 0, 0), u, ≲) is a po-
PEA which is not naturally ordered. Moreover, one can 
observe that (0, 1, 2) + (1, −2, −2) = (1, 0, −1), but (1, −2, 
−2) + (0, 1, 2) = (1, −1, 0). This indicates that Γ(G, u) is 
not an effect algebra since it is noncommutative. 

The second example gives a small concrete po-PEA 
consisting of four elements which is linearly ordered, but 
not naturally ordered.  
 

 

Example 3  
 
Let E4 = {0, a, b, 1} be an effect algebra with its Cayley 
table given as follows: 
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Figure 1. 

Hasse 
diagram of 
(E4; ≤) 
(necklace). 

 
 
 
Let (E4; ≤) be a linear poset with the Hasse diagram 
(Figure 1). 

By definition, one can verify that (E4; +, 0, 1, ≤) is a po-
PEA which is linearly ordered. On the other hand, it is 

easy to see that equipped with the natural order N , E4 

becomes a poset whose Hasse diagram is as shown in 
Figure 2. 

Evidently, ≤N and ≤ are different partial orders on E4. 
Hence, we deduce that (E4; +, 0, 1, ≤) is a po-PEA that is 
not naturally ordered. 
 
 
Definition 3  

 
A nonempty subset I of a pseudoeffect algebra E is said 
to be an ideal in E, if it satisfies the following 
(Dvurečenskij and Vetterlein, (2001c):  
 

(D1): If x ∈ I, y ∈ E and Ny x , then y ∈ I.  

(D2): If x, y ∈ I and y ⊥ x (equivalently, ~

Nx y ), then y + 

x ∈ I. Note that N  denotes the natural order on E. 

 
It is clear that 0 ∈ I for any ideal I in a pseudoeffect 
algebra E. Wu (2004) gave the following equivalent 
characterization of ideals in pseudoeffect algebras.  

 
 
Proposition 1 
 
Let I be a nonempty subset of a  pseudoeffect  algebra  E 

 
 
 
 

 
 

Figure 2. Hasse diagram of (E4; N ) 

(diamond). 

 
 
 
(Wu, 2004). Then, I is an ideal in E if and only if it 
satisfies the following:  
 

(D1): If a ∈ I, b ∈ E and ,Nb a  then b ∈ I.  

(D2’): If a ∈ I, Na b  and ~ ~{( ) ,( ) } ,b a a b I      

then b ∈ I. 
 
As one might suspect from the analogy with the case of 
pseudoeffect algebras, the notion of an ideal in a po-PEA 
can be defined as follows, which extends ideals in 
pseudoeffect algebras in a natural way. 
 
 
Definition 4 
 
Let (E; +, ≤) be a po-PEA. A nonempty subset I of E is 
said to be an ideal in E if it satisfies the following:  
 
(I1): If x ∈ I, y ∈ E and y ≤ x, then y ∈ I.  
 
(I2): If x, y ∈ I and y ⊥ x, then y + x ∈ I. 
 
Note that ≤ is the partial order on E (may not be the 

natural order N ). 

 
 
FUZZY IDEALS IN po-PEAS 
 
In recent years, various types of ideals in quantum 
structures have been actively studied by many authors 
(Shang and Li,  2003,  2007;  Wu,  2004).  An  ideal  of  a 



 
 
 
 
pseudoeffect algebra can be interpreted as a series of 
measurement outcomes (satisfying certain conditions) of 
a physical experiment (Busch et al., 1995). Here, we shall 
initiate the concept of fuzzy ideals in po-PEAs and focus 
on the ideal theory of po-PEAs in a fuzzy setting. 
 
 
Definition 5 
 
Let (E; +, ≤) be a po-PEA and µ be a fuzzy set in E. Then 
µ is called a fuzzy ideal in E if it satisfies the following:  
 
(F1): If x ≤ y, then µ(x) ≥ µ(y).  
(F2): If y ⊥ x, then µ(y + x) ≥ min{µ(x), µ(y)}. 
 
For illustration of the aforementioned definition, we revisit 
the pseudoeffect algebra E4 = {0, a, b, 1} in Example 3. 
Let µ be a fuzzy set in E4 given by µ(0) = 1, µ(b) = 0.5 
and µ(a) = µ(1) = 0. Then, one easily verifies that µ is a 
fuzzy ideal in both the linearly ordered po-PEA (E4; +, 0, 

1, ≤) and the naturally ordered po-PEA (E4; +, 0, 1, N ). 

The following result gives an equivalent characterization 
of fuzzy ideals in naturally ordered po-PEAs. 

 
 
Proposition 2  

 
Let (E; +, ≤) be a naturally ordered po-PEA and µ be a 
fuzzy set in E. Then µ is a fuzzy ideal in E if and only if it 
satisfies the following:  

 
(F1): If a ≤ b, then ( ) ( )a b  .  

(F2’): If a ≤ b, then 
~ ~( ) min{ ( ),max{ (( ) ), (( ) )}}.b a a b b a        

 
 
Proof: We only need to show the equivalence between 

(F2) and (F2’). Note, also that N  since by the 

hypothesis, E is a naturally ordered po-PEA. First 
assume that (F2) holds and a ≤ b in E. Let x a  

and ~( )y b a  . Then y
−
 = b

−
 + a = b

−
 + x, and so x ≤ 

y
−
. Hence, ~y x  by Lemma 2 (2). Thus, by (F2), we 

have µ(x + y) ≥ min{µ(x), µ(y)}. 

But ~( ) ,x y a b a b      it follows that  
~( ) min{ ( ), (( ) )}.b a b a      

On the other hand, by taking x a  and ~( )y a b   , 

we obtain ~( ) min{ ( ), (( ) )}b a a b      in the same way. 

Hence, we have 
~ ~( ) min{ ( ),max{ (( ) ), (( ) )}},b a a b b a        showing 

that (F2’) holds.  
Conversely, suppose that (F2’) holds and y ⊥ x in E. 

Taking a = x and b = y + x, we have y + a = b. Then a ≤ b 

and ~( )y a b    by Lemma 1  (6).  Hence,  by  (F2’),  we 
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have 
~( ) min{ ( ),max{ ( ), (( ) )}} min{ ( ), ( )}.b a y b a a y          

Therefore ( ) min{ ( ), ( )}y x x y     and thus (F2) 

holds. This completes the proof. 
 
 
Theorem 1  
 
Let (E; +, ≤) be a po-PEA and A be a nonempty subset of 
E. Let µ be a fuzzy set in E defined by: 
  

if ,
( )

otherwise,

s x A
x

t



 


 

 
for all x ∈ E, where s > t in [0, 1]. Then µ is a fuzzy ideal 
in E if and only if A is an ideal in E. 
 
 
Proof: Suppose that µ is a fuzzy ideal in E. Let x ∈ A, y ∈ 
E and y ≤ x. Then µ(y) ≥ µ(x) = s, which gives µ(y) = s. 
Thus, y ∈ A, and so A satisfies (I1). Moreover, let x, y ∈ A 
and y ⊥ x. Then µ(x) = µ(y) = s and by (F2), it follows that 
µ(y + x) ≥ min{µ(x), µ(y)} = s. Thus, µ(y + x) = s, and so y 
+ x ∈ A. This shows that A also satisfies (I2). Therefore 
we conclude that A is an ideal in E. 

Conversely, assume that A is an ideal in E. Let x ≤ y in 
E. If y ∈ A, then x ∈ A. Hence µ(x) = s = µ(y), and so µ(x) 
≥ µ(y). On the other hand, if y ∈ A, then µ(y) = t and 
clearly we deduce µ(x) ≥ µ(y). Thus we have that µ 
satisfies (F1). Furthermore, let x, y ∈ E and y ⊥ x. If x, y ∈ 
A, then y + x ∈ A by (I2). Hence, µ(x) = µ(y) = µ(y + x) = s 
and it is clear that µ(y + x) ≥ min{µ(x), µ(y)}. In addition, if 
either one of x, y does not belong to A, then we have µ(y 
+ x) ≥ t = min{µ(x), µ(y)}. This shows that µ also satisfies 
(F2), and so µ is a fuzzy ideal in E as required. 

The aforementioned assertion shows that (crisp) ideals 
and fuzzy ideals in po-PEAs are closely related. In 
particular, if the characteristic function is chosen as the 
fuzzy set µ, then one easily deduces the following result 
which states that an ideal in a po-PEA is a fuzzy ideal 
when it is identified with its characteristic function. As 
mentioned in the previously, every pseudoeffect algebra 
may be considered as a po-PEA equipped with the 
natural order. Hence, all results obtained, in the present 
paper, on fuzzy ideals in po-PEAs can also applied to 
ideals in pseudoeffect algebras. 
 
 
Corollary 1 
 
Let (E; +, ≤) be a po-PEA and A be a nonempty subset of 

E. Then, A is an ideal in E if and only if A  is a fuzzy 

ideal in E, where A  is the characteristic function of the 

set A. 
Let µ be a fuzzy set over a universe E. For any t ∈ [0, 1], 

U (µ; t) = {x ∈ E | µ(x) ≥ t} is called a t-level set, or  a  t-cut  
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of the fuzzy set µ. If t is not clearly specified, we simply 
say level set of µ. In fuzzy set theory, it is known that a 
fuzzy set can be related to a family of crisp sets through 
the notion of level sets. In fact, level sets of a fuzzy set µ 
over E can be used to define a nested family of subsets 
of E. Conversely, a fuzzy set µ can be reconstructed from 
its level sets by means of the formula µ(x) = sup{t | x ∈ U 
(µ; t)}.  

This observation is commonly summarized by a 
representation theorem of fuzzy sets, which states that 
there is a one-to-one correspondence between a family 
of crisp sets satisfying certain conditions and a fuzzy set. 
This linkage indicates the inherent structure of a fuzzy set. 
Motivated by the representation theorem of fuzzy sets, 
we established as follow a connection between fuzzy 
ideals and (crisp) ideals in po-PEAs by using level sets. 
 
 
Theorem 2  
 
Let (E; +, ≤) be a po-PEA and µ be a fuzzy set in E. Then, 
µ is a fuzzy ideal in E if and only if the level set U (µ; t) of 
µ is an ideal in E for all t ∈ [0, 1], whenever it is nonempty. 
 
 
Proof: Suppose that µ is a fuzzy ideal in E and U (µ; t) is 

nonempty for t ∈ [0, 1]. Let x ∈ U (µ; t), y ∈ E and y ≤ x. 
Then µ(y) ≥ µ(x) ≥ t, and so y ∈ U (µ; t). Hence, U (µ; t) 
satisfies (I1). Moreover, let x, y ∈ U (µ; t) and y ⊥ x. Then, 
we have µ(x) ≥ t and µ(y) ≥ t. By (F2), it follows that µ(y + 
x) ≥ min{µ(x), µ(y)} ≥ t, and so y + x ∈ U (µ; t). This shows 
that U (µ; t) satisfies (I2). Hence, U (µ; t) is an ideal in E, 
as required.  

Conversely, assume that the level set U (µ; t) is an 
ideal in E whenever it is nonempty. Let x, y ∈ E and x ≤ y. 
If we choose t0 = µ(y), then U (µ; t0) is nonempty since y 
∈ U (µ; t0). Thus, by hypothesis, U (µ; t0) is an ideal in E 
and x ∈ U (µ; t0). It follows that µ(x) ≥ t0 = µ(y), and so µ 
satisfies (F1). It remains to show that µ also satisfies (F2). 
Let x, y ∈ E and y ⊥ x. Taking t0 = min{µ(x), µ(y)}, then it 
is clear that x, y ∈ U (µ; t0) and U (µ; t0) is an ideal in E. 
Hence, y + x ∈ U (µ; t0) by (I2), and so we have µ(y + x) ≥ 
t0 = min{µ(x), µ(y)}. This completes the proof. 

The following argument shows that the intersection of a 
collection of fuzzy ideals in a po-PEA is also a fuzzy ideal 
in it. 

 
 
Proposition 3  

 
Let (E; +, ≤) be a po-PEA and {µt | t ∈ Λ} be a collection of 
fuzzy ideals in E. Let µ be a fuzzy set in E defined by µ(x) 
= inf {µt(x) | t ∈ Λ} for all x ∈ E. Then µ is a fuzzy ideal in 
E. 

 
 
Proof: Let x, y ∈ E and x ≤ y. Then for any  t  ∈  Λ,  µt(x) ≥ 

 
 
 
 
µt(y) since µt is a fuzzy ideal in E. Hence, we have µ(x) = 
inf{µt(x) | t ∈ Λ} ≥ inf{µt(y) | t ∈ Λ} = µ(y), which shows that 
µ satisfies (F1). It remains to show that µ satisfies (F2). In 
fact, let x, y ∈ E and y ⊥ x. Then, by hypothesis, we 
deduce that µt(y + x) ≥ min{µt(x), µt(y)} ≥ min{µ(x), µ(y)} 
for all t ∈ Λ. Therefore, µ(y + x) ≥ min{µ(x), µ(y)} as 
required. 

By combining Corollary 1 and Proposition 3, we have 
the following immediate consequence. 
 
 

Corollary 2 
 
Let {At | t ∈ Λ} be a collection of ideals in a po-PEA E. 

Then { }tA t∣  is an ideal in E.  

 
 

Proposition 4 
 
Let (E; +, ≤) be a po-PEA and Λ be a linear poset. Let 
{At | t ∈ Λ} be a collection of ideals in E such that t < s 

if and only if As ⊂ At for all s, t ∈ Λ. Then { }tA t∣  is 

an ideal in E. 
 
 
Proof: Denote by A is the union of ideals {At | t ∈ Λ}. Let x 

∈ A, y ∈ E and y ≤ x. Then 
0t

x A for some t0 ∈ Λ. Since 

0t
A  is an ideal in E, we have 

0t
y A  and so y ∈ A. This 

shows that A satisfies (I1). Furthermore, let x, y ∈ A and y 

⊥ x. Then, there exist 1 2,t t   such that 
1t

x A  and 

2t
y A . If t1 = t2, then 

1t
y x A A   . Otherwise, we may 

assume that t1 < t2 without loss of generality. Then, by 

hypothesis, 
2 1t tA A  and it follows that 

1t
y x A A   . 

Hence, we conclude that A also satisfies (I2), which 
completes the proof. 
 

 

Theorem 3  
 
Let (E; +, ≤) be a po-PEA and Λ ⊂ [0, 1]. Let {At | t ∈ Λ} 
be a collection of ideals in E satisfying the following:  
 

(1) { }.tE A t ∣  

(2) t < s if and only if As ⊂ At for all s, t ∈ Λ.  

 
If we define a fuzzy set µ in E by µ(x) = sup{t ∈ Λ | x ∈ At} 
for all x ∈ E, then µ is a fuzzy ideal in E. 
 

 

Proof: By Theorem 2, it suffices to show that the level set 

U (µ; s) of µ is an ideal in E for any s ∈ [0, 1] such that 

( ; )U s  . To do this, note first that if { }t t s  ∣ , 

then one easily verifies that U (µ; s) = E, which is 
evidently an ideal in E. Otherwise, we  shall  consider  the 
following two cases: 



 
 
 
 
 

(1) sup{ }s t t s  ∣ ;  

(2) sup{ }s t t s  ∣ . 

 
For the first case, we claim that ( ; ) { }tU s A t s  ∣ , 

which is an ideal in E by Corollary 2. In fact, let 

{ }tx A t s ∣ . Then, for any t ∈ Λ with t < s, we have x 

∈ At and so µ(x) = sup{t ∈ Λ | x ∈ At} ≥ t. It follows that µ(x) 
≥ sup{t ∈ Λ | t < s} = s, showing that x ∈ U (µ; s). 
Conversely, let x ∈ U (µ; s). Then µ(x) = sup{t ∈ Λ | x ∈ At} 
≥ s. For any t ∈ Λ with t < s, we claim that there exists 

some t1 ∈ Λ such that 
1t

x A  and t < t1, otherwise we 

shall deduce that s ≤ t, which leads to a contradiction. 

Thus,
1t tx A A   and so { }tx A t s ∣ as required. 

For the second case, note first that there exists ε > 0 

such that ( , )s s   . Then, we claim that 

( ; ) { }tU s A t s  ∣ , and so by Proposition 4, U (µ; s) is 

an ideal in E. To see this, let { }tx A t s ∣ . Then 

tx A  for some t ≥ s, and thus we have µ(x) ≥ t ≥ s. 

Therefore x ∈ U (µ; s). Conversely, let x ∈ U (µ; s). Then 
we have µ(x) ≥ s. If s > t for all t ∈ Λ such that x ∈ At, then 
by hypothesis, we easily deduce t < s −ε for all t ∈ Λ such 
that x ∈ At. But it follows that 

( ) sup{ }tx t x A s s      ∣ , which leads to a 

contradiction. Hence, there exists t0 ≥ s such that 
0t

x A , 

and so
0

{ }t tx A A t s  ∣ . This completes the proof. 

 
 

Theorem 4 
  

Let (E; +, ≤) be a po-PEA and { }nA n∣  be a family of 

ideals in E which is nested, that is, 1 2E A A   . Let 

µ be a fuzzy set in E define by 
 

1if for some ,
( ) 1

1 otherwise,

n n

n
x A A n

x n 


 

 



‚
 

for all x ∈ E. Then µ is a fuzzy ideal in E. 

 
 
Proof: Let x, y ∈ E and x ≤ y. Note first that if n

n

y A


 , 

then clearly n

n

x A


  since n

n

A


 is an ideal in E by 

Corollary 3.7. Hence by definition of µ, we have µ(x) = 
µ(y) = 1, and so µ(x) ≥ µ(y). On the other hand, assume 

that y ∈ Ak \ Ak+1 for some k ∈ N. If n

n

x A


 , then µ(x) =  

1 ≥ µ(y). Suppose that x ∈ Ar \ Ar+1 for some r ∈ N. But by 
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hypothesis, we also have x ∈ Ak. Therefore k ≤ r and it 

follows that ( ) ( ).
1 1

r k
x y

r k
   

 
 Thus we conclude 

that µ satisfies (F1).  

To show that µ also satisfies (F2), let x, y ∈ E and y ⊥ 

x. If , n

n

x y A


 , then clearly n

n

y x A


  . Hence µ(x) = 

µ(y) = µ(y + x) = 1, and so µ(y + x) ≥ min{µ(x), µ(y)}. Now 

let us assume that x ∈ Ak \ Ak+1 and y ∈ Ar \ Ar+1 for k r ∈ 
N. Without any loss of generality, let k ≤ r. Then y + x ∈ 

Ak and it follows that ( ) min{ ( ), ( )}.
1

k
y x x y

k
    


 

Furthermore, suppose that n

n

x A


  and y ∈ Ak \ Ak+1 

for some k ∈ N. Then y + x ∈ Ak , and so we also have 

( ) min{ ( ), ( )}.
1

k
y x x y

k
    


Finally, if n

n

y A


  and 

x ∈ Ak \ Ak+1 for some k ∈ N, we deduce that µ(y + x) ≥ 

min{µ(x), µ(y)} in much the same way. Hence µ is a fuzzy 
ideal in E as required. 
 
 

 
 
FINITELY GENERATED AND FINITELY VALUED 
FUZZY IDEALS  
 

For any subset A of a po-PEA E, denote by〈A〉the 

intersection of all ideals in E containing A, which we call 

the ideal generated by A. It is easy to see that 〈A〉 is 

the smallest ideal in E containing A. Similarly, if µ is a 
fuzzy set in E, then the smallest fuzzy ideal in E 
containing µ is called the fuzzy ideal generated by µ, and 

is denoted by f  . A fuzzy set µ in E is said to be n-

valued if µ(E) is a finite set of n elements. Note that µ is 
called finitely valued if no specific n is intended. Moreover, 
we say that a fuzzy ideal ν in E is finitely generated if 

f     for some finitely valued fuzzy set µ in E. 
 
 
 

Theorem 5  
 

Let (E; +, ≤) be a po-PEA and µ be a fuzzy set in E. 

Define a fuzzy set *  in E by 
*( ) sup{ [0,1] ( ; ) }x t x U t    ∣  for all x ∈ E. Then *  

is the fuzzy ideal in E generated by µ. 
 
 

Proof: By Theorem 3.5, it suffices to show that the level 

set U ( * ; s) of *  is an ideal in E for any s ∈ [0, 1] such 

that *( ; )U s  . In fact, it is easy to see that if s = 0, 

then U ( * ; s) = E, clearly an ideal in E. If s = 0, we define 

a sequence {sn} ⊆ [0, 1] as follows: 
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1 1
if 0,

0 otherwise.
n

s s
s n n


  

 



 

 

We claim that *( ; ) ( ; )n

n

U s U s 


   . To see this, note 

first that if *( ; )x U s , then *( )x s  , and so *( ) nx s   

for all n . This implies that for any n , there exists 
* [0,1]t   such that *( ; )x U t   and *

nt s . It follows that 
*( ; ) ( ; )nU t U s  and so *( ; ) ( ; )nx U t U s      . 

Hence we have ( ; )n

n

x U s


   . Conversely, 

let ( ; )n

n

x U s


   . Then it is clear that 

{ [0,1] ( ; ) }ns t x U t   ∣  for all . Thus we have 
*sup{ [0,1] ( ; ) } ( )ns t x U t x     ∣ for all n . 

Consequently, we have *( )s x  and hence *( ; )x U s  

as required. 

To show that *  contains µ, note first that for any x ∈ 

E, we have { [0,1] ( ; )} { [0,1] ( ; ) },t x U t t x U t      ∣ ∣  

since ( ; ) ( ; )U t U t    . Then it follows that 

*( ) sup{ [0,1] ( ; )} sup{ [0,1] ( ; ) } ( ).x t x U t t x U t x          ∣ ∣

Therefore *  contains µ as required. 

It remains to show that *  is the least fuzzy ideal 

containing µ. Assume that ν is a fuzzy ideal in E that 

contains µ. For any x ∈ E, if * (x) = 0, then evidently we 

have * (x) ≤ ν(x). Let * (x) = s and s = 0. Then we 

have *( ; ) ( ; )n

n

x U s U s 


    . It follows that x ∈ 〈U 

(µ; sn)〉, and so ν(x) ≥ µ(x) ≥ sn for all . Hence 

ν(x) ≥ s = * (x), which says that ν contains * . This 

completes the proof. 
 
 

Theorem 6  
 

Let ν be a fuzzy ideal in a po-PEA E. Then ν is finitely 
valued if and only if it is finitely generated. 
 
 

Proof: Note first that if ν is a finitely valued fuzzy ideal in 

E, then it is clear that ν is finitely generated since f    . 

Conversely, let µ be an n-valued fuzzy set in E with n 

distinct values 1 2 nt t t   . Denote by G
i 
the inverse 

image of ti under µ. That is, { ( ) }i

iG x E x t  ∣ .  

Let
1

j
j i

i

A G


  
. We obtain the following chain of ideals in E:  

1 2 .nA A A E    Define  a  fuzzy  set  ν  in  E  by  

 
1

1

1

if ,
( )

if , {2,3, , },j j

j

t x A
x

t x A A j n




 
 

  ‚

 

 
 
 
 
 

for all x ∈ E. We shall show that ν is the fuzzy ideal in 

E generated by µ.  

Suppose that x, y ∈ E, x ≤ y and k is the smallest 

integer such that y ∈ A
k
. Since A

k
 is an ideal in E, we 

immediately have x ∈ A
k
 and so ν(x) ≥ tk = ν(y). This 

shows that ν satisfies (F1). Moreover, suppose that x, y 

∈ E, y ⊥ x and r, k are the smallest integers such that 

x ∈ A
r
 and y ∈ A

k
. Without loss of generality, we may 

assume that r ≥ k. Then A
k
 ⊆ A

r
, and so y + x ∈ A

r
. It 

follows that ( ) min{ , } min{ ( ), ( )}.r r ky x t t t x y      Thus 

we conclude that ν is a fuzzy ideal in E.  
It remains to show that ν is generated by µ. To see this, 

let x ∈ E and µ(x) = tj for some {1,2, , }j n . Then it is 

clear that j jx G A  , and so we have ( ) ( )jx t x   . 

This shows that ν contains µ. Moreover, let ρ be a fuzzy 

ideal in E containing µ and {1,2, , }j n . Then it is easy 

to see that 
1

( ; ) ( ; )
j

i

j j

i

G U t U t 


   Consequently, 

1

( ; )
j

j i

j

i

A G U t


    . Let x ∈ E and ν(x) = tj. It 

follows that ( ; )j

jx A U t   and so ( ) ( )jx t x   . 

Hence ρ contains ν and we conclude that f    . 

Finally, note that ν is finitely valued by its definition, 
completing the proof. 
 
 

Definition 6 
 
A po-PEA E is said to be Noetherian if it satisfies the 
ascending chain condition on ideals in E, that is, if for 

every chain 1 2A A   of ideals in E, there is an integer 

n such that i nA A  for all i ≥ n.  

 
 

Theorem 7 
 
If E is a Noetherian po-PEA, then every fuzzy ideal in E is 
finitely valued. 
 
 
Proof: Assume that µ is a fuzzy ideal in E which is not 
finitely valued. Then there is a descending 

chain 1 2(0) t t     of distinct numbers, where 

( )i it x  for some ix E . It is easy to see that this 

sequence induces the following ascending chain  

1 2( ; ) ( ; )U t U t   of distinct nonempty level sets. But 

by Theorem 2, these  level  sets  are  indeed  ideals  in  E.  
Therefore we obtain an ascending chain of distinct ideals 
in E, which leads to a contradiction. 
The following result is an immediate consequence of 
 



 
 
 
 
Theorem 6 and 7.  
 
 

Theorem 8  
 
If E is a Noetherian po-PEA, then every fuzzy ideal in E is 
finitely generated. 
 
 

CONCLUSIONS 
 
We introduced a new type of quantum structures, namely 
partially ordered pseudoeffect algebras (po-PEAs), which 
can be seen as an order-theoretic extension of 
pseudoeffect algebras. We then focused on studying the 
ideal theory of po-PEAs in a fuzzy setting, so as to 
establish a theory of great generality. Specifically, we 
defined and investigated (finitely generated and finitely 
valued) fuzzy ideals in po-PEAs, obtaining many 
interesting results in relation to the characterizations, 
connections with crisp ideals and several useful 
constructions. To extend this study, one could examine 
other types of ideals (or even dual concepts such as 
filters) in various quantum structures. 
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