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An algorithm that is twice as fast as the original Krawczyk method for finding zeros of nonlinear 
systems of equations is obtained via the procedures of Wolfe’s modification of Krawckzyk method 
using the ideas derived in Uwamusi (2004). The method was implemented using Moore’s interval 
arithmetic. It is shown that whenever the interval arithmetic evaluation exists the Hausdorff distance 
R(f,[X]) and f(m([X])) go linearly to zero with the width w[X] as the desired solution is approached. 
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INTRODUCTION 
 
We consider the following system of equation: 
 
f(x) = 0                                                                         (1.1) 
 
Later in the paper F (as opposed to f) denotes an interval 
extension of f with F:ID IDIRIDIR nn ,, ⊂→ bounded, 
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 is an interval, ][Xx ∈  and 
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−

−−−

−
×××= ],[...],[],[][ 2211 nn xxxxxxX  are a box in the 

sense of Moore (1977) and Neumaier (1990). [X] can be 
found using enclosure theorems for the set of zeros. We 
assume that F possesses a Frechet derivative F /  which 
is continuous on ID. We denote the real solution of (1.1) 
as ∗x nIR∈ . 

In this paper, we assume the existence of a com-
parable initial interval vector ( )0X  = [a,b], where 

)()( bFxaF ≤≤ , and construct a sequence of bounded 
monotone and hence convergence iterate in the sense of 
Schelin (1973) . 

Newton’s method is one of the important methods for 
the enclosure of nonlinear systems (1.1). For conti-
nuously differentiable F for which the determinant of the  
Jacobian ( 0))(/ ≠xF and for which that Jacobian is well 
conditioned, interval computation yields self verifying 
results given that there exists unique solution within small 

boxes with ∗x  reasonably close to the centre –the mid-
point of [X]. 

However, if )(/ xF  is ill conditioned or singular, such 
computations of solution to systems (1.1) will undoub-
tedly break down due to empty intersection of the suc-
cessive iterates. In this circumstance an extended inter-
val division and the concept of topological degree index 
can become useful tools in proving existence and non 
existence of zeros of F. 

The treatment of topological degrees is well known in 
the Literature (Ortega and Rheinboldt, 2000; Kearfott and 
Dian, 2000; Mourrain et al., 2000; Kearfott et al., 2000). 
In Kearfott et al. (2000), a generalization of theory and 
techniques to calculate arbitrary topological index using 
an effective heuristic approach were the main focus of 
studies. The result of these studies was the proof that a 
non zero topological index signified existence of a 
solution.   

Some of the concepts of interval arithmetic used in this 
paper are given below. 
We define a subset of the set of real numbers R of the 
form: 
 
a= ( )Raaaxaaaa ∈≤≤= 212121 ,,],[   

 
as a closed real interval.  

The set of all closed real intervals is denoted by IR. 
When ,21 aa =  then the  interval  a= ],[ 21 aa   is  called  a  
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point interval. In this way one recovers at once the real 
num-bers R and the corresponding real arithmetic when 
IR is restricted to the set of degenerate real intervals 
equipped with the basics of interval arithmetic defined for 
any interval operation. 

For example given that ].[][ 21 aaa =  and 

],[][ 21 bbb =  we define that, 
 

][0]},[],[{][][ bbbaababa ∉∈∈= οο  
 
Let us note that the set ( IR,+, ο) is neither a field nor a 
ring. This is more so since a non degenerate interval [a] 
has no inverse with respect to addition and multiplication. 
The distributive law does not hold in general for interval 
arithmetic, instead it holds for subdistributivity. For exam-
ple: 
 

]][[]][[])[]]([[ cabacba +⊆+  
 
We define a real interval matrix as the matrix the ele-
ments of which are real intervals. The set of nm ×  ma-
trices over the real intervals will be denoted by )(IRA nm× . 
When m=n we speak of an interval matrix of order n. An 
interval matrix which all components are point intervals is 
called a point matrix. 
For an interval matrix A = )( , jia , the following point 

matrices are associative: 
 
the width matrix w(A) = ))(( , jiaw , the mid point matrix 

m(A) = ))(( , jiam  .   

Further details on the discussion of basic tenets in inter-
val methods can be found in Alefeld and Herzberger 
(1983), Alefeld and Mayer (2000) and Neumaier (2000). 
The above preliminary exposition on interval matrices will 
be sufficient for understanding this paper. 
The rest of the paper is organized as follows. 

In section 2, the well known Krawczyk’s algorithm is 
discussed which gives the existence theorem for non 
linear systems of equations by using Moore (1977). In 
section 3, we revisit the Wolfe’s modification of 
Krawczyk’s algorithm using the idea presented in 
Uwamusi (2004). Thus we were able to construct an 
algorithm that is twice as fast as the original Krawckzyk’s 
method. In section 4, we discussed the order of conver-
gence of our proposed method. It is proved that the order 
of convergence of the new method is four. Finally, 
numerical examples have been given to demonstrate 
this. 
 
 
The Krawczyk’s algorithm  
 
The Krawczyk’s  original  algorithm  according  to  Moore 

         
 
 
 
and Jones (1977) is given by: 
 

}{ ( )yXXHfIyfyHyXK −−+−= )()()()( /   (2.1)     
 
where y is a point interval vector chosen from X, H is an 
arbitrary non singular real matrix, and I is an identity 
matrix. 
The functions f(y) and )(/ Xf  have interval extensions 

)(yF and )(/ XF  in the sense of Moore (1977). It can 

easily be verified that if )0()(( XXK k ⊆  (k=0,1,..,.), then  
 

( ) ( ) 1)(/ <− kk XFHI and 

( ) ( ) ( ) ( ) )()(,0)}({ 1lim kkkk

k

XwRXwwhereXw ≤= +

∞→
 

and w is the interval width of the vector X , )(kX  is the 
sequence of Krawczyk’s iterates for k=0,1,…, and 

( ) ( ) ( ) )(/ kkk XFHIR −= .  

Therefore, the intersection of the form  
  
X(k) = X (k) � X (k-1)   (k = 0,1,….)                (2.2)                    
            
provides tight inclusion bounds separating the sought 
zeros of the nonlinear system (1.1). 

Krawczyk’s algorithm does not involve the inversion of 
interval matrices. The existence theorems for Krawczyk 
operator can be found in Moore and Jones (1977), 
Michelli and Miranker (1975)  and Neumaier (1990). 

While the Krawczyk iteration formula discussed above 
can be used to tightly enclose a solution, what is most 
significant is the ability of this Krawczyk method to 
provide a test if a solution exists within a given interval 
and also to check if this solution is unique. 
For this, we will review the following theorem: 
 
Theorem 2.1, Neumaier (1990) 
 

Let A be a strongly regular Lipschitz matrix on 0IDx ∈  

for .: 0
nn IRIRIDF →⊆  Let H be such that the spec-

tral radius .1)( * <=− βρ IHA  

Then Krawczyk’s iteration (2.1) is strongly convergent 
and moreover, as long as φ≠+ )1(kX  we have: 
 

( ) ( ) )(
2
1

)(
2
1 1 kk XXw ∗+• ≤ ββ  with IHA −=*β . 

 
Further more the radius converges linearly to zero with 
asymptotic convergence factor •≤ β . It is assumed that 

)(kHH = varies with k such that it is the inverse of some 
matrix )]([/ kXF . Let us note in passing  that  whenever 



 
 
 
 

1])([/ =− XHFI  implies that ])([/ XF  is singular. 
 
 
Main results- the accelerated Krawczyk’s algorithm 
 
The accelerated Krawczyk’s algorithm mentioned at the 
beginning is developed in this section. 

Our approach is based on that of Wolfe (1980)’s modi-
fication of Krawczyk’s original algorithm which is given by 
the formula:  
 

( ) ( )( )( ))(
1

)(
1

/)(
1

)()(
1

)( )()()( k
i

k
i

kkk
i

kk
i

k
i yXXFHIyfHyXK −−−− −−+−=

(i=1,2,…).                                                                    (3.1) 
 
Here k the iterative step, may be fixed and the iteration in 
method (3.1) may also be allowed to run as many times 
as required as inner loop before a complete cycle is 
obtained. His method is governed by the fixed value of i 
in advance before iteration is begun.  

With the above exposition coming from Wolfe (1980) we 
are in the spirit of presenting our algorithm that will be 
easy to use and interpret as follows.  

Let ( ) ( )nIRX ∈0 and a positive integer q be given. Then 
the following algorithm can be developed using Uwamusi 
[2004] as well as the approach of Wolfe [1980].  
 
 
Algorithm 3.1 
 
Input 
 
Define m as the order of accuracy, 
 

0)( =xf  with nRx ∈ , T
nffff ),...,,( 21=  , 

k,v,q are integers and v=0,1,…,q-1. 
(1) Inflate x by ],[][ )0()0( εε−+= ixX  

(2) Compute )]([ )0()0( Xmy =  

(3) Compute  1)0(/)0( ))]([( −= XFmH  

(4) Compute )]([ )0(/)0()0( XFHIR −=  

(5) Set k=0,and v=0,1 with q=2 fixed 
(6)  Set 
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(7)  Compute 
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(8) if   ( ) =+1][ kX ]([ )(kXK ) � ( ) φ=][ kX  
 
Stop this means that )(yF has no solution for some 
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( )kXy ][∈ , else  

(9) Verify that )()1( ][)]([ kk XXK ⊆+      

 Verify that ( ) 1)( 1 <− DRD kρ  , D is the diagonal matrix 

with .,...,2,1,][ nixdd iiii ==  
(10) Set k=0,1,2,…., 
(11)  Repeat operations beginning from steps 2 to 7 

 (12)  if ( ) ( ) mXXK kk ≤−+ ][)]([ 1   

 
Stop, else repeat operation starting from steps 2 to 7 
    Finish, 
    Finish, 
    End. 
 
The computation of H in the algorithm defined above is 
afforded because the product of the inverse midpoint 
matrix H and the interval matrix ])([/ XF transforms gi-
ven expression to almost a diagonal matrix. The optimal 
value for q is found to be 2.The algorithm proposed in the 
above section is different from that used in Uwamusi 
(2004) because Uwamusi (2004) used real floating point 
arithmetic to implement Newtonian steps with Jacobi and 
Gauss-Siedel methods. But here in this paper we are pro-
posing a method which incorporates Krawczyk’s method 
with itself using two steps length per iteration. To the best 
of knowledge from all Literatures available in the internet 
and elsewhere this method for Krawczyk’s method is 
new.   
 
 
Existence 
 
Theorem 4.1  
 

nn IRIRFLet →:  be a continuously differentiable 

function, let nnnnn RHIRxIRy ×× ∈∈∈ ,,  and 
nnIRXF ×⊆])([/  be given. If  
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then there exists some Xyy +∈  with F(y) = 0, where 
y x∈  
 
 

Proof: (Rump (1999). 
 
The convergence analysis of the proposed method goes 
as follow: 
  
First we observe that  
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Table 1. Results from our algorithm for problem 1. 
 
Iterations Results 

)
2
1

(
X  

[1.960714437,  1.960732374] 
[-0.214010613,  -0.214002433] 
[0.536134319,  0.536150220] 
[-0.023389723, -0.023387331] 

)1(X  [1.896531951,  1.896531973] 
[-0.209458296, -0.209458294] 
[0.542592796,  0.542592815] 

[-0.022911082,  -0.022911076] 

)
2
3

(
X  

 

[1.896514009,  1.896514009] 
[-0.210266768, -0.210266768] 
[0.542056132,   0.542056132] 
[-0.023886970,-0.023886970] 
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             (4.1) 

 

which is valid for all ( ) ( ) ][,)]([/ XxXFH kk ∈∈  and , 
( ) ( ) ])([)( kk XFyF ∈ . 

Because ( ) ( )( ))]([/ kk XFHI −   is compact, then there 

exists ∋< 1α    

 ( ) ( )( ) XXXFHI kk α⊂− .)]([/ . 

This shows that in the norm in which ][X  is a ball the 
expression 

( ) 1])([( / <≤− αXdFHI k         (4.2) is valid. 

Equality is satisfied when XX =
^

 and this will imply that 

XHyXKHyXK ⊆⊆ ),,(),,(
^

.   (4.3) 
To prove the order of convergence of our method we 
proceed as follow: 
 

We set  
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k
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Taking norms of both sides we have that 
 

( ) ( ) 0,][[
41 ≥≤
∞∞

+ ββ whereXdXd kk  ,   (4.4) 

 and  
( )0/ ][][,1,0,][]([ XXallfornjiXdXdF ij ⊆≤≤≥≤

∞
αα

. 
The shows that our proposed method is of fourth order of 
convergence as opposed to Original Krawczyk (1969)’s 
and Wolfe (1980)’s algorithms which are quadratically 
convergent. Wolfe (1980)’s algorithm depends mainly on 
inner iterations as we have found in our implementation 
of the method. Our proposed method is different from that 
of Uwamusi (2004) in that it does not depend in knowing 
apriori the eigenvalues of Jacobi and Gauss-Siedel ite-
ration matrices and it is also not dependent on the use of 
Jacobi and Gauss-Siedel iterative methods.  
 
 
Numerical example 
 
Problem 1 (Mancino, 1967) 
 
Consider  

=)(XF  

                       37sincos20 332
2
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421 −=+++ xxx e  
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2
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Tx )08784438.0,6364483.0,3182241.0,0154195.2()0( −−=

Using ε  inflation of 210−  where ),(][ εεε −=  the initial 
inclusion interval is calculated.                              

We present results for method (3.1) as shown in Table 
1. 
 
 
Problem 2 
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Table 2. Results for Wolfe (1980)’s algorithm. 
 

No of inner iterations Results 

1 [1.897186446, 1.897186414] 
[-0.210851902,-0.210851901] 
[0.535873260, 0.535873260 ] 
[-0.023748854, -0.023748626] 

2 [1.896497540, 1.896497540] 
[-0.210287532, -0.210287532] 
[0.536288177, 0.536288178] 

[-0.023867537, -0.023867537] 
3 [1.896494401, 1.896494401] 

[-0.210266697, -0.210266697] 
[0.542477942, 0.542477942] 

[-0.023882900, -0.023882900 ] 
4 [1.896494401, 1.896494401] 

[-0.210266697,-0.210266697] 
[0.542477942, 0.542477942] 

[-0.023882900, -0.023882900] 
 
 
 

Table 3. Results for problem 1 using Krawczyk’s method 
(2.1). 
 

Iterations(k) Results 

0 [2.0054195,2.0254195] 
[-0.32822441,-0.3082241] 

[0.6264483,0.6464483] 
[-0.0974438,-0.0774438] 

)1(X  [1.897205777,1.897236841] 
[-0.209878094,-0.208985383] 
[0.535828321,0.535852697] 

[-0.007828442,-0.004244712] 
)2(X  [1.896521337,1.896521999] 

[-0.210232839,-0.210231329] 
[0.542440341,0.542440487] 

[-0.024116819,-0.023956322] 
)3(X  [1.896515381,1.896515388] 

[-0.21019125,-0.210191203] 
[0.542069585,0.542069607] 
[-0.02389349,-0.023893094] 

 
 
 
The convergence of the proposed algorithm (3.1) is achi-
eved when the predicted values coincide with the eva-
luated results. This usually happens after some few steps 
of iteration have begun. The method is different from that 
of Wolfe (1980)’s algorithm because Wolfe’s method 
allows fixing the iteration step k while allowing the inner 
iteration to be run as many times as possible in each ite-
ration cycle. Thus Wolfe (1980)’s algorithm could be seen 
as a method belonging to Class of stationary Newton’s 
method. This allows the computation of Jacobian matrix 
viz: Predictor –corrector approach and the Jacobian  only 
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Table 4. Results from our algorithm 3.1 for Problem 2. 
 

Iteration Results 
1 [0.498901717,0.498901710] 

[-0.199872459,-0.199873833] 
[-0.530073299,-0.530083371] 

2 [0.498144782,0.498144782] 
[-0.199605179,-0.199605179] 
[-0.528826126,-0.528826126] 

 
 
 

Table 5. Results for Wolfe (1980) algorithm. 
 

No of inner iterations Results 
1 [0.500078018, 0.500081981] 

[-0.153367353, -0.153321046] 
[-0.527034416, -0.526850525] 

2 [0.498913213, 0.498913214] 
[-0.199694064, -0.199693941] 
[-0.527830790, -0.527830448] 

3 [0.498149872, 0.498149872] 
[-0.199583638, -0.199583638] 
-0.528835295, -0.528835295] 

 
 
 
only once throughout the course of computation.  Our 
method requires just two main steps matrix varies 
according to the sizes of [ )(kX ]. It is very easy to use. 
The numerically obtained results are quite good and 
accurate.  
 
 
Conclusion 
 

From Table 1, it can be seen that convergence is attained 
after 1

2
1 successive iterations as the widths of iteration 

sequence of vectors 0→ as ∞→k . 
 
From the numerical results presented it can be seen that 
there is a solution to F(x) =0. Results obtained are in 
agreement with those given in Mancino (1967). 

For q=1 the asymptotic rate of convergence of the q-
step Krawckzyk’s method is precisely the same as that of 
Krawczyk’s original algorithm applied on a nonlinear 
system F(x)=0. It is then to be expected that the q-step 
Krawczyk’s process is q times faster as the one –step 
process, since the corresponding nonlinear problem, one 
iteration of the q-step process amounts to q-Krawczyk’s 
steps. Numerical experiment suggests that for q= 2 one is 
expected to get better accurate results than using q>2 
since higher values of q may not necessarily enhance 
convergence of the method. It is evident from the results 
presented that as iteration step goes to infinity, the mid-
point of interval results obtained are quite good as appro-
ximation to those obtained by Mancino (1967). 
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Results in table 1 appear to be better than those in ta-
bles 2 and 3.This is again demonstrated in problem 2 as 
evidenced in Tables 4 and 5. Also in Table 4, it can be 
seen    that   our   proposed   method   out-performed  the 
Wolfe (1980)’s algorithm due to the results obtained from 
the given problem 2 
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