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INTRODUCTION 
 
Variational inequalities, which were introduced and 
studied by Stampacchia (1964), are being used to study 
a wide class of diverse unrelated problems arising in 
various branches of pure and applied sciences in a 
unified framework. Variational inequalities have been 
extended and generalized in different directions using 
some new and novel methods (Giannessi and Maugeri, 
1995, Giannessi et al., 2001; Glowinski et al., 1981; Khan 
and Rouhani, 2007; Kinderlehrer and Stampacchia, 1980; 
Noor, 1975, 1988, 1997, 2002, 2004, 2004a, 2009; Noor 
et al., 1993, 2011, a, b, c). It is well known that a 
minimum of a sum of differentiable convex function and 
non differentiable convex function on the convex set can 
be characterized by a class of variational inequalities, 
which are called the mixed quasi variational inequalities 
involving the bifunction. There are a substantial number 
of numerical methods including projection technique and 
its variant forms, Wiener-Hopf equations, auxiliary 
principle, and resolvent equations methods for solving 
variational inequalities. However, it is known that pro-
jection, Wiener-Hopf equations, and resolvent equations 
techniques cannot be extended and generalized to 
suggest and analyze similar iterative methods for solving  
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mixed quasi variational  inequalities due to the presence 

of the function (.,.) . This fact motivated us to use the 

auxiliary principle technique of Glowinski et al. (1981). In 
this paper, we use this technique of the auxiliary principle 
in conjunction with the Bregman function coupled with the 
principle of iterative regularization. It was introduced by 
Bakushinskii (1979) in connection with variational 
inequalities. An important extension of this approach is 
presented by Alber and Ryazantseva (2006). In this 
approach, the regularized parameter is changed at each 
iteration which is in contrast with the common practice for 
parameter identification of using a fixed regularization 
parameter throughout the minimization process. 

In this paper, we suggest and analyze an iterative 
algorithm based on auxiliary principle technique and 
principle of iterative regularization to solve a class of 
mixed quasi variational inequalities. For the convergence 
analysis of the explicit iterative algorithm, we use partially 
relaxed strongly monotone operator which is weaker 
condition than strongly monotonicity. In this respect, our 
results represent an improvement of the results of Khan 
and Rouhani (2007). We also suggest implicit type 
version of this algorithm. The convergence of the implicit 
iterative methods only requires the monotonicity and the 
skew symmetry of the bifunction. Our results present an 
improvement of the previously known results. We hope 
that the  technique  and  the  idea  of  this paper  may  be 
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extended for mixed quasi variational-like inequalities and 
equilibrium problems. The interested readers are invited 
to explore new applications of the auxiliary principle 
technique for solving the dynamic type variational 
inequalities and its variant forms. 
 
 
PRELIMINARIES 
 
Let H be a real Hilbert space, whose inner product and 

norm are denoted by .,.  and .  respectively. Let K  

be a nonempty closed set in H. First of all, we recall the 
following well-known results and concepts. 

For a given nonlinear operator :T H H  and 

continuous bifunction (.,.) , we consider the problem of 

finding u H  such that 

 

, ( , ) ( , ) 0, .Tu v u v u u u v H             (1)  

 
An inequality of Type (1) is called the mixed quasi 
variational inequality. The existence of a solution of (1) 
and other aspects of the mixed quasi variational 
inequalities is given in Noor (2004, 2004a), Kinderlehrer 
and Stampacchia (1980) and Giannessi and Maugeri 
1995, Giannessi et al., (2001). 

If (.,.) (.)  , then the problem (1) is reduced to the 

problem of finding u H  such that 

 

, ( ) ( ) 0, .Tu v u v u v H        (2)  

 
which is called mixed variational inequality or variational 

inequality of the second type. If the function (.)  is a 

proper, convex and lower-semicontinous, then problem 

(2) is equivalent to finding u H  such that  

 
 
 

 
 
 
 

0 ( ),Tu u   

 
which is known as the variational inclusion. This problem 
is also known as finding the zero of the sum of two 
operators. 

If (.)  is an indicator function on the closed convex set 

K  in the real Hilbert space H , that is, 
 

0,
( )

, ,

if u K
u

if u K



 

 
 

 

then problem (2) is equivalent to finding u K  satisfying 

 

, 0, ,Tu v u v K        (3) 

 
which is known as the classical variational inequality 
introduced and studied by Stampacchia (1964). 

For suitable and appropriate choice of the operators 
and spaces, one can obtain a number of known and new 
classes of variational inequalities and related optimization 
problems. Applications, formulation, numerical methods, 
sensitivity analysis, dynamical system and other aspects 
of the variational inequalities and related problems are 
given in Giannessi and Maugeri 1995, Giannessi et al. 
(2001), Glowinski et al. (1981), Khan and Rouhani 
(2007), Kinderlehrer and Stampacchia (1980), Noor 
(1975, 1997, 2002, 2004, 2004a, 2009) and Noor et al. 
(1993, 2011, 20111a, 2011b).  

We now recall some basic concepts and results, which 
are well known. 
 
 

Definition 1 
 

A function f  is said to be a strongly convex function on 

K  with modulus μ, if 

2
( ( ))  (1 ) ( )  ( ) (1 ) , , , [0,1].f u t v u t f u t f v t t v u v u K t            

 

Clearly, a differentiable strongly convex function f  is 

equivalent to 
 

2
( ) ( ) ( ), , , .f v f u f u v u v u v u K        

 
 
Definition 2  
 

An operator :T H H  is said to be: 

1. Monotone, if and only if, 

, 0, , .Tu Tv u v u v H      . 

2. Partially relaxed strongly monotone, if and only if, there 

exists a constant 0   such that  
 

2
, , , , .Tu Tv z v z u u v z H         

 

We would like to point out that, for z u , partially 

relaxed strong monotonicity reduces to monotonicity of 

the operator T .   
 

 

Definition 3  
 

The bifunction (.,.) : H H H   is said to be skew- 



 

 
 
 
 
symmetric, if 

( , ) ( , ) ( , ) ( , ) 0, , .u u u v v u v v u v H          

If the bifunction (.,.) is linear in both arguments, 

then, 
( , ) ( , ) ( , ) ( , ) ( , ) 0, , .u u u v v u v v u v u v u v H              

This shows that the bifunction (.,.) is nonnegative 

(Noor, 2004). 
The following well known lemma plays an important 

role in convergence analysis 
 
 
Lemma 1  
 

2 21
2 , , , .

2 2
u v u v u v H




     

 
 

ITERATIVE REGULARIZATION METHODS 
 
Here,    we    suggest    and    analyze     some     iterative  
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regularization methods for solving the mixed quasi 
variational inequality (1) using the auxiliary principle tech-
nique coupled with the principle of iterative regularization. 
This is the main motivation of this paper. 

For a given u H , consider the problem of finding 

w H such that 

 

( ) ( ), ( , ) ( , ) 0, ,Tw E w E u v w v w w w v H          

                                                                (4) 
 
which is called the auxiliary mixed quasi variational 
inequality. We note that, if w u , then w u  is a 

solution of (1). Using (4), we also consider the 
regularized auxiliary principle problem associated with 
the mixed quasi variational inequality (1).  

For a given u H , consider the problem of finding a 

solution w H  satisfying the auxiliary variational 

inequality: 
 
 

( ) ( ), ( , ) ( , ) 0, .n n n nTw w E w E u v w v w w w v H              
      

(5) 

 

where  
1n n





 be a sequence of positive real, and 

 
1n n





 be a decreasing sequence of positive real such 

that 0n   as n. 

Note that, if w u  and 0n   as n, then w  is 

a solution of (1). We now consider the regularized version 

of (1) as follows: For a fixed but arbitrary n N  and for 

0n  , find 
n

u H  such that 

  

, ( , ) ( , ) 0, .
n n n n n nnTu u v u v u u u v H             

 
(6) 

                                                     

Note that if w u  and 0n   as n, then w  is a 

solution of mixed quasi variational inequality (1). This 
simple observation enables us to suggest implicit iterative 
method for solving (1) and this is one of the motivations 
of this paper.  

 
 
Algorithm 1  
 

For a given 
0u H  , compute 

1nu H   from the 

iterative scheme  

1 1 1 1 1 1 1( ) ( ) ( ), ( , ) ( , ) 0,

,

n n n n n n n n n n n n nT u u E u E u v u v u u u

v H

           
        

 
(7)

 

 
which is known as proximal point (or implicit) algorithm 
for solving regularized mixed quasi variational inequality. 

If ( , ) ( )u v u  is the indicate = or function of the 

convex set K then Algorithm 1 reduces to the following 
Algorithm for solving the variational inequality (3) and 
appears to be a new one. 
 
 

Algorithm 2 
 

For  a   given   0u H  ,  find   the  approximate  solution 

1nu H   
by the following iterative scheme 

1 1 1 1( ) ( ) ( ), 0, ,n n n n n n n nT u u E u E u v u v K    
       

                                                                                       

(3) 

 
which is known as proximal-point (or implicit) algorithm 
for solving regularized variational inequality  

In a similar way, for suitable and appropriate choice of 
the operator, bifunction and the space, one can obtain a 
number   of   implicit   iterative   methods for solving the 
variational inequalities and related optimization problems. 

We now study the convergence analysis of Algorithm 1 
using the technique of Khan and Rouhani (2007) and this 
is the main motivation of our next result.  
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Theorem 4  
 

Let T be a monotone operator. For the approximation 
nT  

of T , assume that there exists { }n  such that 0n   

and a constant c such that  

 

( ) ( ) (1 ), .n nT u T v c u u H       (8)   

 

If, for the sequences{ }n , { }n  and{ }n , we have 

 

2 2 2

0 0 0 0

, ( ) , , .n n n n n n n

n n n n

      
   

   

           

                                               (9) 
 
 
 

 
 
 
 
 

approximate solution
1nu H   obtained from Algorithm 1 

converges to an exact solution u H  satisfying (1). 
 
 

Proof 
 

Let 
n

u H   satisfying the regularized mixed variational 

inequality (6), then replacing v  by 
1nu 
, we have 

 

1 1( ), ( , ) ( , ) 0.
n n n n n nn n n n n nTu u u u u u u u                 

                                                                 (10) 
 

Let 
1nu H   be the approximate solution obtained from 

(7). Replacing v  by 
n

u
, we have 

 

1 1 1 1 1 1 1( ) ( ) ( ), ( , ) ( , ) 0.
n nn n n n n n n n n n n n nT u u E u E u u u u u u u            

       
(11) 

 
 

For the sake of simplicity, we take 
n nT F   and 


nn nT F   in (3.7) and (11) respectively. Adding the 

resultant inequalities and using Definition 2.4, we have  

 


1 1 1( ) ( ), 0,

n n
nn n n n n n nF u F u E u E u u u    

     

 
from which, we have 

 


1 1 1 1( ) ( ), ,

n n n
nn n n n n n n nE u E u u u F u F u u u      

     

                                                                              
(12) 

 
We consider the Bregman function 

 

( , ) ( ) ( ) ( ), || ||,B u w E u E w E w u w u w     
 

 
from which one can find 

  

1 1 1 1
( , ) ( ) ( ) ( ), || ||,

n n n nn n n n nB u u E u E u E u u u u u   
   

       

 
and  

 

1 1 1 1 1( , ) ( ) ( ) ( ), || || .
n n n nn n n n nB u u E u E u E u u u u u       

     

 
Considering the difference 

 

 

1

1 1

1

1

1

1

1 1 1

1 1

1 1 1

1

( , ) ( , )

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ), ( ),

( ) ( ) ( ),

n n

n n

n n

n n n

n

n n n

n n

n n n

n n n

n n

n n n n n n n

n n

B u u B u u

E u E u E u u u

E u E u E u u u

E u E u E u u u

E u E u E u u u E u u u

E u E u E u u u

 

 

 

  



  



 









  

 

  





   

   

   

      

   



1

1

1

1

1

1

1

2

1 1

1 1

2

1

1 1

2

1

22

1

( ), ,

( ) ( ) ( ) ( ),

( ),

( ) ( ) ,

( ), .

( ) (

n

n n n

n n

n n n n

n n

n n

n n n n

n n n

n n n

nn n n n

n n n

n n

n

E u u u u u

E u E u E u E u u u

E u u u u u

E u E u F u F u u u

E u u u u u

u u u u

E u E



  

 

   

 

 









 















 

 



 





   

      

   

     

   

   

  



1

1 1

),

,

n n n

n n
nn n n n

u u u

F u F u u u

  

 



 



  

1

1 1

1

1

1

1

1 1 1

1 1

1 1 1

1

( , ) ( , )

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ), ( ),

( ) ( ) ( ),

n n

n n

n n

n n n

n

n n n

n n

n n n

n n n

n n

n n n n n n n

n n

B u u B u u

E u E u E u u u

E u E u E u u u

E u E u E u u u

E u E u E u u u E u u u

E u E u E u u u

 

 

 

  



  



 









  

 

  





   

   

   

      

   



1

1

1

1

1

1

1

2

1 1

1 1

2

1

1 1

2

1

22

1

( ), ,

( ) ( ) ( ) ( ),

( ),

( ) ( ) ,

( ), .

( ) (

n

n n n

n n

n n n n

n n

n n

n n n n

n n n

n n n

nn n n n

n n n

n n

n

E u u u u u

E u E u E u E u u u

E u u u u u

E u E u F u F u u u

E u u u u u

u u u u

E u E



  

 

   

 

 









 















 

 



 





   

      

   

     

   

   

  



1

1 1

),

,

n n n

n n
nn n n n

u u u

F u F u u u

  

 



 



  

 



 

 
 
 
 

Since T  is a monotone operator, 
n nF T    is strongly  
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monotone with constant ( )n n     . If we have 

 

 



1 1

1

22

1 1

2

1 1

( , ) ( , )

( ) ( ),

, ,

n n n n

n n n

n n

n n n n

n

nn n n n n n n n

B u u B u u u u u u

E u E u u u

u u F u F u u u

   

  

 

 

  

 



 

 

    

   

    



1 1

1

22

1 1

2

1 1

( , ) ( , )

( ) ( ),

, ,

n n n n

n n n

n n

n n n n

n

nn n n n n n n n

B u u B u u u u u u

E u E u u u

u u F u F u u u

   

  

 

 

  

 



 

 

    

   

    



1 1

1

22

1 1

2

1 1

( , ) ( , )

( ) ( ),

, ,

n n n n

n n n

n n

n n n n

n

nn n n n n n n n

B u u B u u u u u u

E u E u u u

u u F u F u u u

   

  

 

 

  

 



 

 

    

   

    
 

 
from which, we have 
 

1 1

2 2

1 1

2

1 1 2

( , ) ( , )

,

n n n n

n

n n n n

n n n

B u u B u u u u u u

u u

   



 

   

  



    

   
(13) 

 
where   
  

1

1

1

2 2
2 2

2

( ) ( ),

1
.

2 2

n n n

n n n

n

n

E u E u u u

u u u u

  

  



 







   

    

 

 

Using Lemma 1 and Lipschitz continuity of operator E , 
we have  

 

1

2
2 2

1 .
2 2n n n

n n
n

n n

u u u u  

  


  
    

 (14)

 

 

Solving for 
2 ,we have  

 




2 1 1 1

2 2
2 22

1 1 12

,

.
2 2 2

n

n

nn n n n n

n n n
n n n n n n n n n

F u F u u u

F u F u F u F u u u





 

    



  

  

   

      
 

 
Using (8), we obtain 
  

2 2 2 2 2
222

2 1 1 12
[1 ] .

2 2 2 n

n n n n n
n n n n n

c
u u u u u u

      



  


        

  
 
Here we have used the Lipschitz continuity of 

( )n nF T    with constant ( )n n    . 

Now, we have 

 
2 2 2 2 2

222

2 1 1 12

2 2 2 2 2
222

1 1 12

[1 ]
2 2 2

[ ] .
2 2 2

n

n n

n n n n n
n n n n n

n n n n n
n n n n

c
u u u u u u

c
t u u u u u u



 

      




      



  

  


      


      

 

  

Thus for any 1
nnt u u   ,   

 2
2 2 2 2 2 2 2

2 1

2 2
22

1 12
.

2 2

n

n

n n n n n

n n n
n n n

c t c u u

u u u u





      

   





 

   

   
 (15)

 

 
From (13) to (15), we have 
 

 

 

              

1 1

1

1

2 22

1 1 1

2
2 2

2 2 2 2

1

2 2
2 222 2 2

1 1 12

2 22

1 1

( , ) ( , )

2 2

2 2

( )
2

n n n n n

n n n

n n

n n n

n n n n n n n

n n
n n n

n n

n n n
n n n n n n

n
n n n n n n n

B u u B u u u u u u u u

u u u u c t

c u u u u u u

u u C u u u u

    

  

 

  

   

  
  

 

   
  




    

 





  



  



      

    

     

      

2 2 2
2 2

2 2

2 1( ) .
2 n n

n n n
n n n n

n

c t
u u C u u 

  
 


     

1 1

1

1

2 22

1 1 1

2
2 2

2 2 2 2

1

2 2
2 222 2 2

1 1 12

2 22

1 1

( , ) ( , )

2 2

2 2

( )
2

n n n n n

n n n

n n

n n n

n n n n n n n

n n
n n n

n n

n n n
n n n n n n

n
n n n n n n n

B u u B u u u u u u u u

u u u u c t

c u u u u u u

u u C u u u u

    

  

 

  

   

  
  

 

   
  




    

 





  



  



      

    

     

      

2 2 2
2 2

2 2

2 1( ) .
2 n n

n n n
n n n n

n

c t
u u C u u 

  
 


     

 

 

Using conditions (8), we have 

 

1

2

1 1( , ) ( , ) ( ) .
2n n

n
n n n nB u u B u u u u 




       

  

If 
1n nu u  , it is easily shown that 

nu  is a solution of the 

mixed quasi variational inequality (1). Otherwise, the 

assumption 2n   implies that 

1 1( , ) ( , )
n nn nB u u B u u    is non-negative and we must 

have  
     

1lim 0n n
n

u u


  .                                       (16) 

    

From (16), it follows that the sequence  nu is bounded. 

Let û H  be a cluster point of the sequence  nu and 

let the subsequence  
inu  of this sequence converges to 

û H . Now essentially using the technique of Zhu and 

Marcotte (1996), it can be shown that the entire 

sequence  nu  converges to the cluster point û H  

satisfying the mixed quasi variational inequality (1).   
To implement the proximal method, one has to 

calculate the solution implicitly, which is itself a difficult 
problem. We again use the auxiliary principle technique 
to suggest another iterative method; the  convergence  of  
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which requires only the partially relaxed strongly 
monotonicity of the operator.  

For a given u H , consider the problem of finding 

w H such that 

 

( ) ( ), ( , ) ( , ) 0, .Tu E w E u v w v w w w v H           

                                                                   (17)  
 
Note that, t if w u , then (17) reduces to (1). Using (17), 

we develop an iterative scheme for solving (1). 

For a givenu H , consider the problem of finding a 

solution w H  satisfying the auxiliary variational 

inequality 
 

( ) ( ), ( , ) ( , ) 0, .n n n nTu u E w E u v w v w w w v H               , 

                                                                 (18) 
 

where  
1n n





 be a sequence of positive real, and 

 
1n n





 be a decreasing sequence of positive real such 

that 0n   as n. 

Note that, if w u  and 0n   as n, then w  is 

a solution of (1). 
 
 
Algorithm 3  
 

For a given 
0u H  , compute 

1nu H   from the 

iterative scheme  
 

1 1 1 1 1( ) ( ) ( ), ( , ) ( , ) 0,

,

n n n n n n n n n n n n nT u u E u E u v u v u u u

v H

         
       

 

                                                                     (19) 
 

where 
1{ }n n 


 be a sequence of positive real and 

1{ }n n 


 be a decreasing sequence of positive real such 

that 0n   as n. 

Using the technique of Theorem 4, one can prove the 
convergence of Algorithm 3, we include its proof for the 
sake of completeness. 
 
 

Theorem 4  
 

Let T  be a partially relaxed strongly monotone operator 

with constant 0  . For the approximation nT  of T , 

assume that (8) holds. If, for the sequences{ }n , { }n  

and{ }n , (9) is satisfied and (.,.) is skew symmetric, 

then the approximate solution 1nu H   

 
 
 
 
obtained from Algorithm 4 converges to an exact solution 

u H  satisfying (1). 

 
 
Proof 
 

Let 
n

u H   satisfying the regularized mixed variational 

inequality (17), then replacing v  by 
1nu 
, we have 

 

1 1( ), ( , ) ( , ) 0.
n n n n n nn n n n n nTu u u u u u u u               

                                                           (20) 
 

Let 
1nu H   be the approximate solution obtained from 

(19). Replacing v  by 
n

u
, we have  

   

1 1 1 1 1( ) ( ) ( ), ( , ) ( , ) 0.
n nn n n n n n n n n n n n nT u u E u E u u u u u u u          

       

                                                                               
 (21) 

 

For the sake of simplicity, we take 
n nT F   and 


nn nT F   in (20) and (21) respectively. Adding the 

resultant inequalities, we have  
 

1 1( ) ( ), 0,
nn n n n n n n n nF u F u E u E u u u   

        

 
from which, we have 
 

1 1 1( ) ( ), ,
n n nn n n n n n n n nE u E u u u F u F u u u     

     

.                                                        (21) 
 
Now, we investigate the difference 
 

 

                       

1 1 1

1

1

1

1 1 1

1 1

2

1 1

( , ) ( , ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ), .

n n n n

n n

n n n

n

n n n n n

n n n

n n

n n n n

B u u B u u E u E u E u u u

E u E u E u u u

E u E u E u u u

E u u u u u

   

 

  

 

  







  

 

 

    

   

   

   

1 1 1

1

1

1

1 1 1

1 1

2

1 1

( , ) ( , ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ), .

n n n n

n n

n n n

n

n n n n n

n n n

n n

n n n n

B u u B u u E u E u E u u u

E u E u E u u u

E u E u E u u u

E u u u u u

   

 

  

 

  







  

 

 

    

   

   

   

 

 

Here we used the strongly convexity of E .

 

Since T  is partially relaxed strongly monotone with 

constant 0  , n nF T    is partially relaxed strongly 

monotone with constant ( )
4

n
n


   , then we have  

1 1 1

22
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From which, we have 
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Here we used the Lipchitz continuity of operator E . 

Taking 
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Solving for
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Using (8), we obtain 
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Combining all the results aforementioned, we have 
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Using conditions (9), we have 
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1n nu u  , it is easily shown that 

nu H  is a solution 

of the mixed quasi variational inequality (1).  

Otherwise, the assumption 2n   implies that 

1 1( , ) ( , )
n nn nB u u B u u    is non-negative and we must 

have 1lim 0n n
n

u u


  . Using the similar technique 

used in the proof of Theorem 3.1, we can show that 
solution converges strongly.  
 
  
Conclusion  
 
In this paper, we have used the auxiliary principle 
technique coupled with regularization principle to suggest 
and analyze some explicit and proximal point algorithms 
for solving the mixed quasi variational inequalities. We 
have also discussed the convergence criteria of the 
proposed new iterative methods under some suitable 
weaker conditions. In this sense, our results can be 
viewed as refinement and improvement of the previously 
known results. Note that the auxiliary principle technique 
does not involve the projection and the resolvent of the 
involved operators. Results proved in this paper may 
inspire further research in this area.  
 

 

FUTURE DIRECTIONS 
 

We would like to mention that the problem considered in 
this paper can be  studied  from  different  point  of  views  
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such as sensitivity analysis, dynamical and stability 
analysis. It is an interesting problem from both application 
point of view and numerical analysis to verify the 
implementation and efficiency of the proposed iterative 
methods for solving the mixed equilibrium variational 
inequalities. This is another direction of future research in 
the dynamic and fast growing field of mathematical and 
engineering sciences. The ideas and technique of the 
auxiliary principle technique may be extended for solving 
the mixed quasi variational-like inequalities and the 
equilibrium problems. We hope that this direction of 
research will yield some new and novel applications of 
these techniques. 
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