
 

 

 
Vol. 9(15), pp. 332-338, 16 August, 2014 
DOI: 10.5897/IJPS2014.4180 
ISSN 1992 - 1950  
Article Number: B67657247015 
Copyright © 2014  
Author(s) retain the copyright of this article 
http://www.academicjournals.org/IJPS 

International Journal of Physical  
Sciences 

 
 
 
 
 

Full Length Research Paper 
 

Some classifications on  Kenmotsu manifolds 
 

Saadet DOĞAN* and Müge KARADAĞ 
 

Department of Mathematics 44069, Faculty of Arts and Science, Inonu University, Malatya/Turkey. 
 

Received 01 July 2014, Accepted 4 August, 2014 
 

In this paper, we investigate some curvature problems of  Kenmotsu manifolds satisfying some 
certain conditions and we reach some classicifications. We consider  -recurrent  Kenmotsu 

manifolds and we show that  -recurrent  Kenmotsu manifolds are also  -Einstein manifolds. Next, 

we study   -Ricci symmetric  Kenmotsu manifolds and we find this manifolds are Einstein 

manifolds too. In addition, we examine locally  -symmetric  -Kenmotsu manifolds. Later we 

investigate this type manifold with quasi-conformally curvature tensor and concircular curvature 
tensor. In addition to these, we construct an example of  Kenmotsu manifolds and we see that this 
example is a locally  symmetric  Kenmotsu manifold. 

 
Key words:  Kenmotsu manifold,  -recurrent,  -Ricci symmetric, locally  -symmetric, concircular 

curvature tensor, quasi-conformally curvature tensor,  -Einstein manifolds, Einstein manifolds. 

 
 
INTRODUCTION 
 
Janssens and Vanhecke (1981) define  Kenmotsu 
manifolds. These are trans-sasakian of type (0,  ) in J. 
A. Oubina's sense (Oubina, 1985). Öztürk et al. (2010) 
study about  Kenmotsu manifolds satisfying some 
curvature conditions. Dileo (2011) write paper named “A 
classification of certain almost  Kenmotsu manifolds”. 
On the other hand De (2014) study globally  quasi-

conformally symmetric  Kenmotsu manifold and give 
some examples 3-dimensional  Kenmotsu manifolds. 
We generally have interest on conditions about curvature 
tensor, because curvature tensors play important role in 
geometry   and    physics.    For    example;     concircular 

transformation transforms every geodesic circle of a 
Riemannian manifold M into a geodesic circle. An 
interesting invariant of a concircular transformation is the 
concircular curvature tensor (Yano, 1940). In this paper, 
we study  -recurrent  Kenmotsu manifolds. In 

additon to this, we investigate  ricci symmetric 

 Kenmotsu manifolds and show that  ricci 

symmetric  Kenmotsu manifolds are Einstein 
manifolds. In differential geometry and mathematical 
physics, an Einstein manifold is a Riemannian or pseudo- 
Riemannian     manifold     whose      Ricci      tensor      is 
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proportional to the metric. They are named after Albert 
Einstein because this condition is equivalent to saying 
that the metric is a solution of the vacuum Einstein field 
equations (Besse, 1987). Next, we deal with locally 
 symmetric  Kenmotsu manifolds and we prove 

some theorems about the scalar curvature of the 
manifolds. In addition to these, we consider quasi-
conformally flat condition on this type manifolds. We find 
interesting results when we investigate concircularly flat 
condition on locally  symmetric  -Kenmotsu 

manifolds. 
 
 
MATERIALS AND METHODS 

 
Let (M; g) be an (2n + 1)-dimensional Riemannian manifold. We 

denote by   the covariant differentiation with respect to the 
Riemannian metric g. The Ricci tensor of M are defined by 
 
     
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                              (1) 
 

where  1221 ...,,, neee  is a locally orthonormal frame and X, Y 

are vector fields on M. The Ricci operator Q is a tensor field of type 
(1,1) on M defined by 
 

   YXSYQXg ,,                                 (2) 

 
for all vector fields on TM. 

Let M be an (2n+1)- dimensional 
C  manifold and  M  the Lie 

algebra of 
C vector fields on M. An almost contact structure on M 

is defined by (1,1) tensor field  , a vector field   and a 1-form   

on M. If   ,,  satisfy the following condition then   ,,  is 

said to be almost contact structure,  
 

    I2,1                 (3) 

 

0,0                     (4) 

 
where I denotes the identity transformation of the tangent space 

MTp  at the point of p. Then M equipped with   ,,  almost 

contact manifold. M with metric tensor g and with a triple   ,,  

such that  
 

       YXYXgYXg   ,,                (5) 

 
and 
 

   XXg  ,                  (6) 

 

where  MYX , , is an  almost contact metric manifold. 
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Let  gM n ,,,,12 
 be an almost contact metric manifold and 

   YXgYX ,,   is the fundamental 2- form of M. M is 

called almost  -Kenmotsu manifold, if the 1- form   and the 2-

form   satisfy the following conditions: 
 

  2,0 dd                 (7) 

 
  being a non-zero real constant (Janssens and Vanhecke, 
1981). 
We have known that an almost contact metric manifold 

 gM n ,,,,12 
 is said to be normal if the Nijenhius tensor 

 

            YXdYXYXYXYXYXN ,2,,,,, 2 
 

vanishes for any  MYX , . Remarking that a normal almost 

 -Kenmotsu manifold is said to be  -Kenmotsu 

manifold  0  (Janssens and Vanhecke, 1981). Moreover, if 

the manifold M satisfies the following relations  
 

      XYYXgYX   ,               (8) 

 
and 
 

   XXX                                 (9) 

 

then   gM n ,,,,12 
 is called  -Kenmotsu manifold (Pitiş, 

2007). 
A Riemannian manifold (M,g) is called a  recurrent Riemannian 

manifold, if the curvature tensor R  satisfies the following condition: 
 

       ZYXRWAZYXRW ,,2              (10) 

 
where A is 1-form (De et al., 2009; Yıldız et al., 2009).  

A Riemannian manifold (M,g) is called  Ricci symmetric, if its 

Ricci tensor S satisfies the following condition:  
 

   02  YQX                              (11) 
 
for all vector fields X and Y in TM (Shukla and Shukla, 2009).  A 
Riemannian manifold M is said to be locally  symmetric, if  
 

    0,2  ZYXRW                             (12) 

 

for all vector fields X,Y,Z,W orthogonal to  . This notion was 

introduced by Takahashi (Binh et al., 2002), for a Sasakian 
manifold. 

A Riemannian manifold (M,g) is called quasi-conformally flat if its 

quasi-conformal curvature tensor C , 
 

         
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satisfies 0C  , where r is the scalar curvature of (M,g). 
A Riemannian manifold (M,g)  is called concircularly flat if its 
concircular curvature tensor Z, 
  

        YWXgXWYg
nn

r
WYXRWYXZ ,,

122
,),( 


  

 
satisfies Z=0 , where r is the scalar curvature of (M,g). 
On an  Kenmotsu manifold M, the following relations are held 
(Janssens and Vanhecke, 1981): 
 

   XnXS  22,                (14) 

 

      XYYXgYXR   ,, 2
             (15) 

 

      XYYXYXR   2,              (16) 

 

       YXnYXSYXS  2,, 2                        (17) 

 

        YXYXgYX   ,               (18) 

 
 
 -RECURRENT  KENMOTSU MANIFOLDS 

 
Here, we find that a  recurrent  Kenmotsu 

manifold is an  Einstein manifold. 

 
 
Theorem  
 
A  recurrent  Kenmotsu manifold is an 

 Einstein manifold (Dogan, 2014).  

 
 
Proof   
 

Let  gM ,,,,   be a  recurrent  Kenmotsu 

manifold. In this case; Riemannian curvature tensor of M 
satisfy the following equation for all X,Y,Z  and W in TM: 
 

       ZYXRWAZYXRW ,,2   

 
From Equation (3), we get  
 
          ZYXRWAZYXRZYXR WW ,,,       (19)        

 
for all WZYX ,,,  in TM. If we take the inner product of 

Equation (19) with  MU  , we find 

  
        

     UZYXR

UZYXRgUZYXRgWA

W

W

 ,

,,,,




    (20)             

 
 
 
 
for all X,Y,Z,W,U  in TM. Then the sum for 121  ni  

of the relation (20) with ieUX   fields  

 

          ZYRZYSZYSWA WW ,,,   . (21) 

 
If we write   instead of Z, we get  

 

           YRYSYSWA WW ,,,  .   (22)      

 
From  Equations (9), (14) and (16), we get 
 

         
   .

,,122
3

32

YW

WYSYWgnYWAn









    (23)
   
If we write Y  and W  instead Y and W, respectively, 

we find 
  

     ,,,120 3 WYSYWgn                   (24) 

 
From Equations (5) and (17), we have  
 

         WYWYgnWYS  22 ,12,         (25) 

 
for all Y,W in TM. Then , M is an   Einstein manifold. 

 
 
 RICCI SYMMETRIC  KENMOTSU MANIFOLDS 

 
Here, we find that a  Ricci symmetric  Kenmotsu 

manifold is an Einstein manifold. 
 
 
Theorem   
 
Let  gM ,,,,   be a  Ricci symmetric 

 Kenmotsu manifold. Then M is an Einstein manifold. 
 
 
Proof 
 
Suppose that  gM ,,,,   is a  Ricci symmetric 

 Kenmotsu manifold. In this case; Ricci operator of M 
satisfy the following condition: 
 

   02  YQX  

 
for all X,Y in TM. Then, we find  
 

     0  YQYQ XX  .                                 (26) 



 
 
 
 
From this last equation, we have  
 

    0  YQQYYQQY XXXX  (27)                      

 
for all vector fields X,Y in TM. If we take the inner product 

of Equation (27) with  M  , then we find 

 
        0,,   YQQYYQgQYg XXXX (28)              

 
and we continue the process, we get 
 
   

   YQYn

YQYS

XX

XX








22

0,
   

    ,,2 2 YQgYng XX                             (29) 

 
for all X,Y in TM. From  Equations (2) and (29)  
 

22 nQ   

 
and 
 

XnQX 22    

 
for all X in TM. In this case, we have  
 
   

 
 YXgn

YXng

YQXgYXS

,2

,2

,,

2

2











  

 
for all X,Y in TM. Then the proof is complete. 
 
 
LOCALLY  SYMMETRIC  KENMOTSU 

MANIFOLD 
 

Here, we prove that locally  symmetric  Kenmotsu 

manifolds have constant scalar curvature. In addition to if 
this type manifolds are quasi-conformal flat, then the 
manifold is Einstein manifold. On the other hand, we find 
that if locally  symmetric  Kenmotsu manifolds are 

concircular flat, then these manifolds have constant 

curvature and their curvature is given 
 122 nn

r  (r is 

scalar curvature of M). 
 
 
Lemma 1 
 

Let  gM ,,,,   be a locally  symmetric 

 Kenmotsu manifold. Then scalar curvature of M  is 
constant . 
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Proof    
 

Suppose that   gM ,,,,   is a locally  symmetric 

 Kenmotsu manifold. That is; Riemannian curvature 
tensor of M satisfy the following equation 
 

    0,2  ZYXRW  

 
where X,Y,Z and W are orthogonal to  . If we continue 

the process, we obtain 
 

       0,,   ZYXRZYXR WW              (30) 

 
for all X,W,Z orthogonal to  . Then the sum for 

121  ni of the relation (30), we get  
 

       0,,  ZXRZXS WW  . 

 
In this case; 
 

      
    0

,,
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, 





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ZXRZXR

ZXRZXR
ZXS

WW

WW
W 


  

 
 for all X,W,Z orthogonal to  . So, using Equations (9) 

and (15), we obtain, 
 
          

        
            

   .0,

,,,

,,

,,
22

22








ZXR

ZXRWZXRWZWXR

ZWXRXZZXg

XZZXgZXS

W

WW

WWW








 

 
If we continue the process, we get  
 

          
         .

,,,,
23

322

ZXZXW

ZXgWXZgZXgZXS

W

WWW









  (31)              
 
M is locally  symmetric, so  

 

        0 ZWYX  . 

 
Then we find  
 

      .,,, 22 XZgZXgZXS WWW     (32)    
 

If we write ieZX   and we take the sum for 

121  ni  of the relation (32), we obtain  
 

  0Wdr  
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for all vector fields W in TM. Then, the proof is complete. 
 
 
Theorem  
 

Let  gM ,,,,   be a locally  symmetric 

 Kenmotsu manifold. If M is quasi-conformally flat, 
then M is Einstein manifold. 
 
 

Proof 
 

Suppose that   gM ,,,,   is a locally  symmetric 

 Kenmotsu manifold. Then  ZYXC ,  quasi-

conformal curvature tensor of M vanishes for any X,Y,Z in 
TM. That is, 
 

          

       0,,2
2122

,,,,,




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      (33) 
 

for all X,Y,Z in TM. If we write   instead of X and Z and 

later we take the inner product of Equation (33) with 

 MW  , then we get  
 

   
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 (34) 
 
If we use Lemma 1 and we consider locally 

 symmetric then r is constant and     0 WY   

since Y and W orthogonal to  . So we have  

 

   WYgWYS ,,   

 

(














 


 b

n

a

n

r
nba

b
2

212
2

1 22  ). In this 

case, M is Einstein Manifold. 
 
 
Theorem  
 
Let M be a locally  symmetric  Kenmotsu 

manifold. If M  is concircularly flat then M has got 

constant curvature and its curvature is 
 .122 nn

r  

 
Proof  
 
Suppose that M is a locally  symmetric  Kenmotsu 

 
 
 
 
manifold. If M  is concircularly flat then we obtain 
 

        .,,
122

, YWXgXWYg
nn

r
WYXR 


    (35)     

 
If we consider Lemma 1 and the Equation (35), then we 
complete the proof. 
 
 
Example 
 

      0,0,0,,,,, 3  zyxRzyxM , where  zyx ,,  

are the standard coordinates in 3R . The vector fields  
 

z
ze

y
ze

x
ze






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  321  

 
are linearly independent at each point of M. Let g be 
Riemannian metric defined by 
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Then we find  
 

     
      .1,,,

0,,,

332211

322131




eegeegeeg

eegeegeeg
 

 

Let   be the 1-form defined by    3,eXgX   for any 

 .MX   Let   be a  1,1  tensor field defined by 

      0,, 31221  eeeee  . If we define 

   33 ,, eXgXe    for all vector fields X in TM 

and use the linearity of   and g , then we find 

 
           YXYXgYXgXXX   ,,,,1 2

 
for all vector fields X, Y in TM. In this case, 

 gM ,,,,   is an almost contact metric manifold. 

Suppose that  is Levi-Civita connection with respect to 

the metric  g. For all  RRCf ,3 , we get 
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and  
 

   fefee 232 ,  . In this case, from Kozsul’s Formula, 

we find  
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Let cbeaeX  21  and cebeaY  21  be 

vector fields in TM (Where a,b,c, Rcba ,, ). Then we 

get 21 eaebY  . In this case; 

    
 
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,
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2121 2121  

 

for all vector fields X,Y in TM. Hence  gM ,,,,   is 

an  Kenmotsu manifold. With the help of above 
results we can find the following: 
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and  
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Hence, M is an  Einstein manifold. Now, we take 

X,Y,Z  and W  orthogonal to  . Then we can write 
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In this case, if we compute   ZYXRW , , we find 

 
          

.0

,,,,,


 ZYXRZYXRZYXRZYXRZYXR WWWWW

 
Then,  
 

   0,2  ZYXRW  

 
for all vector fields X,Y,Z and W orthogonal to  . In this 

case, this manifold is a locally   symmetric 

 Kenmotsu manifold. In Lemma 1, we show that 
scalar curvature of a locally   symmetric 

 Kenmotsu manifold  is constant. Actually, if we 
compute scalar curvature for all vector fields X,Y 
orthogonal to  , we see that 

 

   YXgYXS ,, 2   
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