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In this paper, we investigate some curvature problems of & —Kenmotsu manifolds satisfying some
certain conditions and we reach some classicifications. We consider ¢ -recurrent o — Kenmotsu

manifolds and we show that ¢ -recurrent & —Kenmotsu manifolds are also 77 -Einstein manifolds. Next,
we study @ -Ricci symmetric « —Kenmotsu manifolds and we find this manifolds are Einstein
manifolds too. In addition, we examine locally @ -symmetric « -Kenmotsu manifolds. Later we

investigate this type manifold with quasi-conformally curvature tensor and concircular curvature
tensor. In addition to these, we construct an example of & —Kenmotsu manifolds and we see that this
example is a locally @ —symmetric & — Kenmotsu manifold.

Key words: « —Kenmotsu manifold, ¢-recurrent, @ -Ricci symmetric, locally ¢ -symmetric, concircular
curvature tensor, quasi-conformally curvature tensor, 77 -Einstein manifolds, Einstein manifolds.

INTRODUCTION

Janssens and Vanhecke (1981) define o — Kenmotsu
manifolds. These are trans-sasakian of type (0, « ) in J.
A. Oubina's sense (Oubina, 1985). Oztirk et al. (2010)
study about o — Kenmotsu manifolds satisfying some
curvature conditions. Dileo (2011) write paper named “A
classification of certain almost & — Kenmotsu manifolds”.
On the other hand De (2014) study globally ¢ — quasi-

conformally symmetric a — Kenmotsu manifold and give
some examples 3-dimensional & — Kenmotsu manifolds.
We generally have interest on conditions about curvature
tensor, because curvature tensors play important role in
geometry and physics. For example; concircular

transformation transforms every geodesic circle of a
Riemannian manifold M into a geodesic circle. An
interesting invariant of a concircular transformation is the
concircular curvature tensor (Yano, 1940). In this paper,
we study ¢@-recurrent X — Kenmotsu manifolds. In

additon to this, we investigate @ —ricci symmetric
& — Kenmotsu manifolds and show that ¢ — ricci

symmetric (X — Kenmotsu manifolds are Einstein
manifolds. In differential geometry and mathematical
physics, an Einstein manifold is a Riemannian or pseudo-
Riemannian manifold whose Ricci tensor s
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proportional to the metric. They are named after Albert
Einstein because this condition is equivalent to saying
that the metric is a solution of the vacuum Einstein field
equations (Besse, 1987). Next, we deal with locally
@ —symmetric « Kenmotsu manifolds and we prove

some theorems about the scalar curvature of the
manifolds. In addition to these, we consider quasi-
conformally flat condition on this type manifolds. We find
interesting results when we investigate concircularly flat
condition on locally @ —symmetric « -Kenmotsu

manifolds.

MATERIALS AND METHODS

Let (M; g) be an (2n + 1)-dimensional Riemannian manifold. We

denote by V the covariant differentiation with respect to the
Riemannian metric g. The Ricci tensor of M are defined by

2n+1
S(X,Y)=>R(e, X.Y,¢)
=1 (1)

where {el,ez,...,ezm} is a locally orthonormal frame and X, Y

are vector fields on M. The Ricci operator Q is a tensor field of type
(1,1) on M defined by

g(QX,Y)=5(X,Y) @
for all vector fields on TM.
Let M be an (2n+1)- dimensional C” manifold and }((M ) the Lie

algebra of C” vector fields on M. An almost contact structure on M
is defined by (1,1) tensor field ¢, a vector field & and a 1-form 77

on M. If ((0,§,I7) satisfy the following condition then ((p,f,?]) is
said to be almost contact structure,

n(¢)=1,
& =0,

where | denotes the identity transformation of the tangent space
TpM at the point of p. Then M equipped with (go,f,n) almost

P’ =—l+n®¢& 3)

nop=0 )

contact manifold. M with metric tensor g and with a triple ((0, ¢, 77)
such that

(X, Y )= g(X,Y)=7(X)n(Y) (5)
g(X,&)=n(X) ©)

where X,Y € ;((M ) is an almost contact metric manifold.
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Let (M 2n+l, ®, f, n, g) be an almost contact metric manifold and
CD(X,Y)= g(X ,(DY) is the fundamental 2- form of M. M is
called almost & -Kenmotsu manifold, if the 1- form 77 and the 2-

form @ satisfy the following conditions:

dn=0, dd=2anAd @)

O/ being a non-zero real constant (Janssens and Vanhecke,
1981).
We have known that an almost contact metric manifold

(|V| o, g) is said to be normal if the Nijenhius tensor
N, (X.Y)=[pX, oY |- ploX.Y |- o[X,0Y ]+ °[X,Y ]+ 2d5(X .Y )¢

vanishes for any X,Ye ;((M ) Remarking that a normal almost
& -Kenmotsu & -Kenmotsu

manifold (0( z 0) (Janssens and Vanhecke, 1981). Moreover, if
the manifold M satisfies the following relations

manifold is said to be

(V@)Y =al-g(X,pY)E—n(Y )X | ®)
V& =a(X -n(X)) (©)

then (M 2n+1,(0,§,77, g) is called & -Kenmotsu manifold (Pitis,

2007).
A Riemannian manifold (M,g) is called a ¢ — recurrent Riemannian

manifold, if the curvature tensor R satisfies the following condition:
»*(V,RYX,Y)Z)= AW )R(X,Y )z (10)

where A is 1-form (De et al., 2009; Yildiz et al., 2009).
A Riemannian manifold (M,g) is called @ — Ricci symmetric, if its

Ricci tensor S satisfies the following condition:

P*[(V4Q)Y]=0 (1)

for all vector fields X and Y in TM (Shukla and Shukla, 2009). A
Riemannian manifold M is said to be locally ¢ — symmetric, if

P [(VuRXX,Y)Z]=0 (12)

for all vector fields X,Y,ZW orthogonal to &. This notion was

introduced by Takahashi (Binh et al., 2002), for a Sasakian
manifold.
A Riemannian manifold (M,g) is called quasi-conformally flat if its

quasi-conformal curvature tensor C,

C(X,Y)Z=aR(X,Y)z +b{

S(Y,Z)X =S(X,Z)Y +g(Y,Z)QX
-9(X,z)QY }

r (iubj[g(v,z)x —g(X,z)]

“2n+1l2n

(13)



334 Int. J. Phys. Sci.

satisfies C = 0 , where r is the scalar curvature of (M,9).
A Riemannian manifold (M,g) is called concircularly flat if its
concircular curvature tensor Z,

r

Z(X,Y)W =R(X,Y W ~onn 1)

(v, W)X —g(X,W)v}

satisfies Z=0 , where r is the scalar curvature of (M,g).
On an @ — Kenmotsu manifold M, the following relations are held
(Janssens and Vanhecke, 1981):

S(X,&)=-2na’n(X) (14)
R(EX)Y =a?[-g(X,Y )¢ +n(Y)X] (15)
R(X,Y)E=a?[n(X )Y =n(Y)X] (16)
S(@X, Y )=S(X.Y)+a*2nn(X Jn(Y) (17

(X
(Vi)Y =alg(X,Y)-n(X)n(Y)] (18)

@ -RECURRENT ¢ — KENMOTSU MANIFOLDS

Here, we find that a @ —recurrent « — Kenmotsu

manifold is an 77 — Einstein manifold.

Theorem

A @-recurrent o —Kenmotsu manifold is an

1 — Einstein manifold (Dogan, 2014).

Proof

Let (M 0,1, g) be a @ —recurrent @ — Kenmotsu
manifold. In this case; Riemannian curvature tensor of M
satisfy the following equation for all X,Y,Z and W in TM:
?*[(V,, RXX,Y)Z]= AW)R(X,Y)Z

From Equation (3), we get

(VW RIXY)Z +7[(Vi RXX.Y)Z ] = AW)R(X.Y)Z  (19)

for all X,Y,Z,W in TM. If we take the inner product of
Equation (19) with U € »(M ), we find

AW )g(R(X,Y)zZ,U)=-g((V,RX,Y)zZ,U)
+ U((Vw R)(X Y )Z )77(U ) (20)

for all X,Y,Z,W,U in TM. Then the sum for 1<i<2n+1
of the relation (20) with X =U =g, fields

AW)S(Y,Z)=~(VySXY.Z)+nl(VwRNE.Y )Z]. 21)

If we write & instead of Z, we get

AW)S(Y,&)=~(vy, S)Y. &)+ nl(Vy RIS Y ] (22)
From Equations (9), (14) and (16), we get
—2na® AW p(Y)=(2n+21)a’gW,Y)+as(Y,W)

—a’n(Wn(Y) (23)

If we write @Y and @W instead Y and W, respectively,
we find

0=(2n+1)’g(eW,pY )+ aS(pY, W), (24)
From Equations (5) and (17), we have
S(YW)=—(2n+2)a’g(Y W)+a’n(Y )pW)  (25)

for all Y,Win TM. Then , M is an 77 — Einstein manifold.

@ —RICCI SYMMETRIC o — KENMOTSU MANIFOLDS

Here, we find that a @ — Ricci symmetric a — Kenmotsu
manifold is an Einstein manifold.

Theorem

Let (M 0,1, g) be a @—Ricci symmetric
o — Kenmotsu manifold. Then M is an Einstein manifold.

Proof

Suppose that (M ,¢,§,n,g) is a @ —Ricci symmetric
o — Kenmotsu manifold. In this case; Ricci operator of M
satisfy the following condition:

(02 [(VXQ)Y]:
for all X,Y in TM. Then, we find
~(VxQ) +n[(V, Q¥ =0 (26)



From this last equation, we have

~V,QY +QV, Y +5(V,QY)E-n(QV,Y)é =0 (27)

for all vector fields X,Y in TM. If we take the inner product
of Equation (27) with & € (M ), then we find

- g(VxQY1§)+ g(QVxY7§)+77(VXQY)_”(QVXY)§ :0(28)

and we continue the process, we get
S(V,Y,£)-n(QV,Y)=0

—2na277(VXY)= U(QVXY)
g(-2nav, Y, £)=g(QV,Y. &) (29)

for all X,Y in TM. From Equations (2) and (29)

Q=-2na’
and
QX =-2na’X

for all X in TM. In this case, we have

S(X,Y)=g(Qx.Y)
= g(—2na2X,Y)
=-2na’g(X,Y)

for all X,Y in TM. Then the proof is complete.

LOCALLY =
MANIFOLD

SYMMETRIC o — KENMOTSU

Here, we prove that locally @ —symmetric & — Kenmotsu

manifolds have constant scalar curvature. In addition to if
this type manifolds are quasi-conformal flat, then the
manifold is Einstein manifold. On the other hand, we find
that if locally @ —symmetric & — Kenmotsu manifolds are
concircular flat, then these manifolds have constant
r

curvature and their curvature is given -
2n(2n+1)

(r is
scalar curvature of M).

Lemma1

Let (M,(o,f;‘,n,g) be a locally @ —symmetric

o — Kenmotsu manifold. Then scalar curvature of M is
constant .
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Proof

Suppose that (M 0, &1, g) is a locally ¢ —symmetric
o — Kenmotsu manifold. That is; Riemannian curvature
tensor of M satisfy the following equation

?*[(VWRYX,Y)Z]=0

where X,Y,Z and W are orthogonal to & . If we continue
the process, we obtain

= (Vu RYX,Y)Z +7((Vy

for all X,W,Z orthogonal to &. Then the sum for
1<i < 2n+1of the relation (30), we get

RYX,Y)z]¢=0 (30)

(VwSKX.Z)+7(VWRXX.£)Z)=
In this case;
(7, S)X.2) 4 n| TWROCERZ ~RVWX,€)2

~R(X,V,&)Z -R(X,&)V,,Z

for all X,W,Z orthogonal to &. So, using Equations (9)
and (15), we obtain,

(VuSXX.2)+a*g(X.Z)(Vyé)-a’n(Z)n(Vi X)
+a’g(Vy X,Z)-a*n(Z)n(Vy X )-an(R(X W)2Z)
+an(R(X W)Z)-anW )y(R(X,£)Z)-anW Jn(R(X.£)Z)
-n(R(X,£)V,Z)=0.

If we continue the process, we get

(VuSXX,Z)=-a?9(Vy X,Z)+a?9(Vy Z, X )+ a’nW)g(X,Z)

~a WX n(2)-a*n(X (v, 2) (31)
M is locally @ —symmetric, so
n(X)=n(Y)=nW)=n(z)=0.

Then we find

(Vy,SXX,Z)=-a?g(V, X,Z)+a?g(V,Z,X) (32)

If we wiite X =Z=¢€, and we take the sum for
1<i<2n+1 of the relation (32), we obtain

dr(W)=0
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for all vector fields W in TM. Then, the proof is complete.

Theorem

Let (M,(o,cf,n,g) be a locally ¢ —symmetric
o — Kenmotsu manifold. If M is quasi-conformally flat,
then M is Einstein manifold.

Proof

Suppose that (M 0, &1, g) is a locally ¢ —symmetric

o —Kenmotsu manifold. Then E(X Y )Z quasi-
conformal curvature tensor of M vanishes for any X,Y,Z in

TM. That is,
aR(X,Y)Z +b[S(Y,Z)X =S(X,Z)Y +g(Y,Z)QX - g(X,Z)QY]

r (f+2b)[g(Y,Z)x _g(x,z)V]=0

“2n(2n+1)\ 2

(33)

for all X,Y,Z in TM. If we write & instead of X and Z and
later we take the inner product of Equation (33) with
W e ;((M ) then we get

s(v ,w)=i{aa2 +2nba® + an+1[;]+2b]}g(v,w)
r a
2n+1(2n+2bj},7(v Jw), "

If we use Lemma 1 and we consider locally
@ — symmetric then r is constant and 77(Y )=7n(W)=0

+;{— aa’ —4nba’® -

since Y and W orthogonal to &. So we have

r (i+2bJ}). In this
n+1\2n

case, M is Einstein Manifold.

S(Y,W)=Ag(Y,wW)

(/1=l aa’+2nba’ +
b 2

Theorem

Let M be a locally @—symmetric o — Kenmotsu
manifold. If M is concircularly flat then M has got

constant curvature and its curvatureis "
2n(2n+1)

Proof

Suppose that M is a locally ¢ — symmetric & — Kenmotsu

manifold. If M is concircularly flat then we obtain

RX.Y W =

(2n a7 7) O WX -gBGWY @9

If we consider Lemma 1 and the Equation (35), then we
complete the proof.

Example

M ={(x,y,2)e R® (x,y,2)#(0,00)}, where (x,y,z)

are the standard coordinates in R>. The vector fields

are linearly independent at each point of M. Let g be
Riemannian metric defined by

dx? +dy® +dz°
- a’z?
Then we find
g(el’e3): g(elvez): g(e2’e3)20
g(el’el): g(ezvez): g(e3’e3):1-

Let 77 be the 1-form defined by 7(X )=g(X e, ) for any
X ey(M) Let @ be a (11) tensor field defined by
ole,)=-¢,, ple,)=e, ¢le])=0. If we
E=¢e,, n(X)=g(X,e,) for all vector fields X in T™
and use the linearity of ¢ and g, then we find

define

(X )n(Y)

for all vector fields X, Y in TM. In this case,
(M,(p,cf,n,g) is an almost contact metric manifold.

7(£)=1, *X ==X +n(X)5, g(pX,pY)=g(X.Y)-

Suppose that Vis Levi-Civita connection with respect to
the metric g. Forall f e C(RS, R), we get

[el’ez]f :el(e ( )) ez(el(f))
e, lazf ) e,(azf )
0



[el'eS]f = el(es(f ))_ea(el(f ))
=e, (- azf,)—e,(azf,)
= oz(~ azf )+ az(ezf,, + of )

= ael(f )
and

e,.e,]f =ae,(f). In this case, from Kozsul's Formula,
we find

Ve, =—ce, V.e =0 V.e=0
v.e, =0 V.e,=—ae, V,e,=0
V.es=0€ V e, =08 Ve =0.

Let X —ae +be,+c& and Y =ae, +be, +c& be

vector fields in TM (Where a,b,c,a,b,c € R). Then we
get @Y = Eel —5e2 . In this case;

(Vi@ =V oY —pV,Y
=V e 8~ 28, )~ 0V 0, e, )
—af-(ab-ba)s —c(- ae, +be, )}
= af-g(X. ¥ )& - (Y JoX

for all vector fields X,Y in TM. Hence (M ,¢,§,n,g) is

an o — Kenmotsu manifold. With the help of above
results we can find the following:

9(R(e,, X )V, &,) = —a?(bb +cc)
9(R(e,, X )Y ,¢,)=—a(aa+cc)
a(R(e,, X )Y,e3)=—a2(a5+b5)

and

5(X.¥)= -R(e, X.Y.e)

i=1

S(X,Y)=-a?g(X,Y)-a?n(X n(Y)

Hence, M is an 1 —Einstein manifold. Now, we take
X,Y,Z and W orthogonal to &. Then we can write

X =ae, +be,
Y =ae, +be,
Z =ae, +be,

W =ae, +be,.
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In this case, if we compute (V,,R)X,Y)Z , we find

(VwRXX,Y)Z =V, R(X,Y)Z =R(V,, X,Y)Z -R(X,V,,Y)Z =R(X,Y)V,,
=0.

Then,
9’(V,R)X,Y)Z =0

for all vector fields X,Y,Z and W orthogonal to &. In this

case, this manifold is a locally @— symmetric
a — Kenmotsu manifold. In Lemma 1, we show that
scalar curvature of a localy @—  symmetric

o — Kenmotsu manifold is constant. Actually, if we
compute scalar curvature for all vector fields X,Y
orthogonal to &£, we see that

S(X,Y)=—-a’g(X,Y)
=Z?’:S(ei,ei):—3a2.
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