
International Journal of the Physical Sciences Vol. 6(5), pp. 1213-1232, 4 March, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.092
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Addressing a critical success factor for software
projects: A multi-round Delphi study of TSP

Mohd Hairul Nizam Md Nasir1* and Shamsul Sahibuddin2

1
Faculty of Computer Science and Information Technology, University of Malaya, Malaysia.

2
Advanced Informatics School, Universiti Teknologi Malaysia, Malaysia.

Accepted 25 February, 2011

A five-round Delphi study was conducted to determine the degree to which the Team Software Process
(TSP) can address the identified critical success factors for software projects. Three high-reputation
and high-calibre experts participated in this study. Our results found agreement among the experts that
the TSP provided the ‘Best Practises’ for addressing 14 critical success factors. The experts also
agreed that the TSP provided a ‘Very Good’ framework for addressing 4 critical success factors. Our
findings further suggested that 6 critical success factors were addressed by the TSP at a ‘Good’ level;
only 1 critical success factor was addressed to a limited degree and none of the critical success factors
were addressed at the ‘Fair’ level. The only critical success factor not addressed by the TSP was the
‘good performance by vendors/contractors/consultants’ factor. From an expert’s perspective, the TSP
provides an operational framework that addresses 21 critical success factors software projects. We
believe that each framework or method on its own cannot address all the identified critical success
factors. However, by combining a software process improvement and project management framework
or other excellent software development process models, all of the critical success factors can be
better addressed.

Key words: Team Software Process (TSP), critical success factors, Delphi study, software process
improvement, software development, project management.

INTRODUCTION

Software development projects are known for being
completed far over budget and behind schedule (Gray
and Larson, 2008). In the United States, a survey
conducted by the Standish Group (1995) in 1994
reported that data from several thousand information
technology (IT) projects revealed a software project
success rate of only 16%. Meanwhile, 31% of projects
failed, and the remaining 53% had cost overruns, time
overruns and impaired functionality. Of these projects,
the average cost overrun was 189% and the average
time overrun was 222%. Another recent report by the
Standish Group (2009) showed a slight improvement in

*Corresponding author. E-mail: hairulnizam@um.edu.my.

shamsul@utm.my.

the year 2008; however, the figures remained
troublesome, with a success rate of less than 40%.

Despite the widespread use of sound project
management practises and process improvement models
over the last several years, the failure of software
projects remains a challenge to organisations. In striving
to address software industry challenges, several models,
frameworks and methods have been developed to
improve software processes to produce quality software
on time, under budget and within pre-agreed
functionalities. One of the most widely practised methods
is the Team Software Process (TSP), which has been
implemented in a wide range of organisations worldwide
and has afforded positive results (Davis and Mullaney,
2003).

Several published studies have reported that TSP
teams are delivering essentially defect-free software on

1214 Int. J. Phys. Sci.

schedule while improving productivity. To highlight a few
recent results, Davis and Barbara (2009) reported the
TSP team at Adobe produced 5 million lines of code that
was 20 times better than the industry average, as
measured in terms of system test and test density.
Wilson (2010) reported that a software trouble report at
the final product evaluation test found no problems after
the United States Naval Air Systems Command
(NAVAIR) system engineering team adopted TSP.
Another study reported by Battle (2009) found that the
system test-delivered defects averaged 0.9 per kilo lines
of code, and customer-delivered defects averaged less
than 0.5 per kilo lines of code after the United States
Naval Oceanographic Office (NAVO) adopted TSP.

Although, TSP was designed to provide an operational
framework for establishing an effective team environment
and guiding engineering teams in their work, we believe
that there are several components and processes in the
TSP (e.g., project planning, information distribution,
realistic budget and schedule and leadership) that
significantly contribute to software project success. Each
framework or method on its own cannot address all of the
identified critical success factors. Thus, we predicted that
the TSP would contribute to addressing the identified
critical success factors.

A primary aim of this article is to determine to what
degree the TSP addresses the critical success factors for
software projects. Critical success factors are factors
that, if addressed appropriately, will significantly improve
the chances of project success (Pinto and Rouhiainen,
2001). Thus, in the first phase of our study, we attempted
to identify the critical factors affecting the success of
software projects by conducting an extensive literature
search. In the second phase, a multi-round Delphi study
was conducted to determine the degree to which the TSP
could address all the critical success factors. Two
research questions motivated the investigation reported
here:

1. Research question 1 (RQ1): What factors, as identified
in the study, have a positive impact on determining
software project success?
2. Research question 2 (RQ2): To what degree, as
agreed upon by the experts, can the TSP address critical
factors, given a particular set of critical success factors
for software projects?

TEAM SOFTWARE PROCESS (TSP)

The TSP is a prescriptive process for projects consisting
of a set of process scripts, forms, standards, procedures,
methods and tools for project teams to produce high-
quality software products on schedule and within pre-
agreed budget constraints (Humphrey, 2000, 2002,
2006). The TSP provides clear and concise guidance on
software development processes, with emphasis on

mutual support and leadership among software project
team members. The purpose is to build effective
teamwork through collaborative and disciplined work
within productive team working environments, where
everyone knows exactly what they are supposed to do
and where roles and responsibilities are clearly defined.
The outcome is a well-defined and well-planned work
process. The operational processes in TSP are
presented in the form of scripts, supplemented with
specific forms to guide the team members throughout the
project implementation.

The TSP is built upon the Personal Software Process
(PSP), which acts as a set of operational procedures and
a process structure to build and guide software
engineering teams in developing software-intensive
products. If the PSP deals with methods and guidance on
how software engineers can continually improve their
performance at the individual level, the TSP is designed
to help PSP-trained engineers build self-directed teams
of 3 to 20 members capable of planning and tracking their
work, establishing goals, and taking ownership of their
processes and plans (Humphrey, 1998, 2000). The
process scales up by using the TSP Multi-team (TSPm)
process, which allows multiple teams of 3 to 15 members
using the TSP to work together on larger projects. A
TSPm project uses special processes designed to
address the additional complexity and communication
issues related to large teams. Meanwhile, functional TSP
(TSPf) is for teams in which each member usually works
independently. Maintenance project teams are a good
example of where TSPf could be adopted, as each
member normally handles separate features of a product
enhancement that require them to work on their own.

The TSP can be fit to all phases in the software
development life cycle, including requirements elicitation,
design, implementation and coding, testing and
maintenance. It can also be used to develop various
kinds of software products, ranging from real-time
embedded control systems to commercial desktop client-
server applications (Davis and Mullaney, 2003). The
scaled-down academic version of TSP, TSPi, is intended
for use in undergraduate or postgraduate courses or
software projects.

The strategy of TSP is an iterative and evolving
process that is continuous until the intended finished
product is delivered. Each cycle starts with a TSP Launch
that is conducted as a series of nine meetings over a 3-
to 4-day period. The launch process is defined in eleven
process scripts, which include the overall launch script, a
script for each of the nine launch meetings, and a script
for the launch post-mortem. In the first cycle of the
launch, the team works together to create an overall
estimate for the full project plan and a detailed plan
covering the next 3 months. The team also decides on
appropriate resource utilisation.

After the launch, the team works on the planned
activities. The team holds weekly status meetings that

help them to track, control, and manage the plan and the
project. Because the roles and responsibilities of project
management are distributed among the team members,
monitoring and control activities are easier and more
manageable. Every manager can focus on their main
controlling and monitoring tasks. In addition, the Planning
Manager assists the TSP team by aggregating team data
to track project progress against the plan and reports and
reviews the project status with the team weekly. The next
Launch in the following cycle is called the Re-Launch.
During Re-Launches, a re-planning may occur if the team
notices any issues, such as schedule deviations,
requirement changes, or lack of resources, to bring the
project back on track.

CRITICAL SUCCESS FACTORS

Critical success factors are factors that, if addressed
appropriately, will significantly improve the chances of
project success (Pinto and Rouhiainen, 2001). Over the
past several decades, numerous research studies (Pinto
and Mantel, 1990; Belassi and Tukel, 1996; Tukel and
Rom, 2001; White and Fortune, 2002) have been
performed in the area of project management to identify
critical factors that influence the success and/or failure of
projects. However, the critical factors are usually
identified for projects in various industries, such as
engineering, manufacturing, construction and training,
rather than focusing on software development or IT
projects. Managing a software project is different from
managing any other project due to the complexity,
conformity, visibility and malleability of the software itself
(Brooks, 1995; Galin, 2004; Jain, 2008) and because
software development is intellectually intensive work
(Fairly, 2009). Additionally, software has certain unique
characteristics (Brooks, 1995; Galin, 2004; Jain, 2008)
that cause software development projects to differ from
other typical engineering projects. Most researchers
agree that there are differences in project management
among different industry types (Cooke-Davies and
Arzymanow, 2002; Ibbs and Kwak, 2000; Zwikael and
Globerson, 2006), and Dvir et al. (1998) suggested that
project success factors are not universal to all projects.
Thus, the critical success factors identified in other
industries cannot be used as valid critical factors for
software projects. In this research study, however, we did
not differentiate between IT projects and software
development projects because IT projects also involve
software (Royal Academy of Engineering and the British
Computer Society, 2004).

Many articles have reported on the critical success
factors specific to software and IT projects (Standish
Group, 2010; Sauer and Cuthbertson, 2003; Taylor,
2000). However, each of these studies is specific to one
particular country. There has been no reported
comprehensive study on different project sizes in various

Nasir and Sahibuddin 1215

domains and in multiple countries. Such a thorough
analysis is necessary for identifying factors that are
critically important to software projects.

In this research study, the four well-known online
journal databases: www.Sciencedirect.com,
www.ieeexplore.ieee.org, www.springerlink.com and
www.Emeraldinsight.com were extensively searched. As
a result, we found 76 articles consisting of case studies,
surveys and views of practitioners and experts. Of these
76 articles, only 43 articles were related to software
projects, and 33 non-software projects were excluded.
The remaining articles were analysed to develop a list of
critical factors that specifically affect the success of
software projects. The occurrences of each factor in the
literature have been identified to determine the relative
importance of each factor.

Data collection and analysis methods

In this research study, each article was carefully reviewed
and a list of factors was compiled. There were three
types of articles. First, in the articles describing the
results of empirical studies (that is, surveys and case
studies), it was easy to identify the factors because the
authors often provided a summary of success or failure
factors. Well-known surveys, such as reports published
by the Standish Group and the British Computer Society,
belong to this category. Second, there were articles in
which the authors (that is experts and practitioners)
described success and/or failure factors based on their
wide range of experiences. Third, there were a few
articles in which software or IT project failures were
discussed, but the authors did not provide a summary of
success or failure factors. In this case, each article was
read carefully to avoid misunderstandings and
misinterpretations. This research study subsequently
analysed 29 published sets of empirical data from case
studies, 9 published empirical data sets from surveys and
5 articles written by experts and practitioners between
1990 and 2010. Only 2 publications were found from
before 1990, namely those published by Schmitt and
Kozar (1978) and Wingrove (1986), and they were not
included in this analysis.

To analyse and produce a list of critical success factors
from the extensive literature, the content analysis method
was adopted. Content analysis is an approach to the
quantification of qualitative data (Holsti, 1969). Although it
was originally developed for the analysis of human
communication in the social sciences, several empirical
software engineering studies (Rainer et al., 2003; Rainer
and Hall, 2003) have adopted this method as part of their
research methodology. Babbie (2010) defined content
analysis as the “study of recorded human
communications” including various forms of
communication such as books, magazines, web pages
and letters. In this research, the communications to be

1216 Int. J. Phys. Sci.

analysed were published articles. Seaman (1999)
described this method as follows: an “analysis method
based on counting the frequency of occurrence of some
meaningful lexical phenomenon in a textual data set.”
Meanwhile, Weber (1996) described the method of
measurement in content analysis as “counting the
occurrences or calculating percentages of meaning units
such as specific words, phrases, content categories and
themes, and later transfer to control document.” This
method enables the application of frequency analysis by
extracting quantitative data from qualitative data in an
article and recording it in frequency tables for the purpose
of analysis.

Prior to performing the frequency analysis, the articles
were read to generate appropriate categories for
responses. Different factors that contributed to the same
meaning were grouped into one category. For example,
focused and hardworking staff, team commitment, team
morale and motivated personnel were grouped together
in the ‘committed and motivated team’ category. This
process was repeated until distinct sets of categories
were obtained. Each category then represented a critical
success factor for software projects.

The method of content analysis was adopted in this
study rather than the data extraction method or the
frequency analysis method because some of the factors
described by the authors in the articles were not explicit
and required careful reading to produce accurate
findings. Because different authors use different terms to
identify the same factors in the analysed literature, it can
be quite complicated to determine to which category a
given factor belongs. It is not enough to simply count the
occurrence of words (factors), as is done in data
extraction or frequency analysis methods. It is revealing
that no study has used content analysis in articles
published from 1978 to 2010. However, one article by
Wateridge (1998) produced a list of success criteria using
only frequency analysis, and White and Fortune (2006)
produced a list of success factors using only frequency
analysis.

Inter-rater reliability was verified to ensure that there
was no substantial bias or subjectivity in the identification
and grouping processes. Another researcher, who was
not familiar with the current issues being discussed, was
asked to identify factors that appeared in all the articles.
The results were compared to those of the previous lists,
and no major disagreements were found among the
results.

To perform frequency analysis, the occurrence of each
success factor in each article in the literature search was
recorded. The numbers and percentages of the
occurrence of each factor were then tabulated and
transferred to a frequency table. By comparing the
occurrences of a critical success factor in a number of
articles against the occurrences of other factors in the
same articles, the relative importance of each critical
success factor could be calculated, and the success

factors could be compared and ranked.

Critical success factors for software projects

To answer RQ1, Table 1 shows the list of critical success
factors for software projects identified in 43 publications.
Based on the analysis of our extensive literature search,
26 critical success factors were found to be related to
project success. The total frequency of occurrences was
372. Although some of the factors had a low frequency,
we decided to treat them as critical factors because the
criticality depends not on the frequency but on the
literature in which the critical success factors were
highlighted.

The extensive literature search revealed that most of
the practitioners considered clear requirements and
specifications, clear objectives and goals, and a realistic
schedule to be the three most critical success factors that
contribute to project success. These three critical
success factors could thus be considered pre-project
execution aspects that need to be made clear and
solidified before commencing and executing software
projects. Although 88% of the publications included at
least one of these three factors, only 26% cited all three.
This finding was very much in line with the research
studies conducted by Wateridge (1995) and Fortune and
White (2006), which found that there was no broad
consensus among researchers and practitioners in
determining critical success factors for projects. We have
performed details analysis and discussion in relation to
these 26 critical success factors in Nasir and Sahibuddin
(2011).

Based on these results, we asked our experts to
determine the degree to which the TSP can address
these critical success factors for software projects.
Because we intended to gain more insight into success
factors, we did not limit the list of factors that we thought
were useful in a Delphi study.

HOW THE TSP ADDRESSES THE CRITICAL
SUCCESS FACTORS FOR SOFTWARE PROJECTS

As discussed previously in ‘critical success factors’ we
showed a rank-order of critical success factors for
software projects. We used these findings as a baseline
to conduct a multi-round Delphi study with three experts
in the field who have years of experience in software
industries and in-depth knowledge of the TSP. On our
own, our analysis and assessment of how the TSP
addresses critical success factors would have been
influenced by various biases (e.g., limited knowledge and
experience).

The Delphi method allowed us to capitalise on the
varied experience and in-depth knowledge of the experts
and to provide complete knowledge of the phenomena

Nasir and Sahibuddin 1217

Table 1. Critical success factors identified throughout 43 publications.

 Critical success factor Literature citation

Citation count

in the literature (n = 43)

Freq. %

1
Clear requirements and
specifications

Schmidt et al., 2001; Keil et al., 2002; Taylor, 2006, 2000;
Kappelman et al., 2006; Standish Group, 1995, 2001, 1999,
2006; Whittaker, 1999; May, 1998; Yeo, 2002; Jiang and Klein,
2000; Jiang et al., 1999; Baccarini et al., 2004; Oz, 1994;
Boehm, 1991; Ariane 501 Inquiry Board, 1996; Nuseibeh, 1997;
Charette, 2005; Royal Academy of Engineering and the British
Computer Society, 2004; Reel, 1999; Clegg et al., 1997; Oz and
Sosik, 2000; Jones, 1996; Sauer and Cuthbertson, 2003.

26 60.5

2
Clear objectives and
goals

Schmidt et al., 2001; Keil et al., 2002; Taylor, 2006, 2000; Sauer
and Cuthbertson, 2003; Kappelman et al., 2006; Standish
Group, 1995; Whittaker, 1999; Yeo, 2002; Beynon-Davies, 1999;
Glaser, 2004; Ewusi-Mensah, 1997; Standing et al., 2006;
Charette, 2005; Reel, 1999; Clegg et al., 1997; Standish Group,
2006, 2009; Procaccino et al., 2002; Milis and Mercken, 2002;
Oz and Sosik, 2000; Humphrey, 2005; Drummond, 1998;

24 55.8

3 Realistic schedule

Schmidt et al., 2001; Taylor, 2006; Jones, 2006; Kappelman et
al., 2006; Jones, 1996; Jones, 1995; Whittaker, 1999; May,
1998; Yeo, 2002; Beynon-Davies, 1999; Drummond, 1998;
Ewusi-Mensah, 1997; Oz, 1994; Ewusi-Mensah and
Prazasnyski, 1994; Boehm, 1991; Charette, 2005; Standish
Group, 2001; Clegg et al., 1997; Standish Group, 1999;
Procaccino et al., 2002; Oz and Sosik, 2000; Humphrey, 2005;
Sauer and Cuthbertson, 2003.

23 53.5

4

Effective project
management
skills/methods (project
manager)

Schmidt et al., 2001; Sauer and Cuthbertson, 2003; Kappelman
et al., 2006; Standish Group, 1995; Yeo, 2002; Jiang and Klein,
2000; Perkins, 2006; Beynon-Davies, 1999; Humphrey, 2005;
Oz, 1994; Nuseibeh, 1997; Charette, 2005; Clegg et al., 1997;
Standish Group, 2006, 2001, 1999, 2009; Royal Academy of
Engineering and the British Computer Society, 2004; Taylor,
2000; Milis and Mercken, 2002; Reel, 1999; Standing et al.,
2006; Oz and Sosik, 2000.

23 53.5

5
Support from top
management

Schmidt et al., 2001; Sauer and Cuthbertson, 2003; Kappelman
et al., 2006; Standish Group, 1995, 2006; Whittaker, 1999; OGC,
2005; Yeo, 2002; Beynon-Davies, 1999; Baccarini et al., 2004;
Glaser, 2004; Ewusi-Mensah, 1997; Standing et al., 2006;
Ewusi-Mensah and Prazasnyski, 1994; Taylor, 2000; Standish
Group, 2001, 1999, 2009; Procaccino et al., 2002;, Taylor, 2000;
Milis and Mercken, 2002; Oz and Sosik, 2000.

22 51.2

6 User/client involvement

Schmidt et al., 2001; Keil et al., 2002; Sauer and Cuthbertson,
2003; Kappelman et al., 2006; Standish Group, 1995 2006,
2001, 1999, 2009; May, 1998; Yeo, 2002; Jiang and Klein, 2000;
Jiang et al., 1999; Glaser, 2004; Standing et al., 2006; Ewusi-
Mensah and Prazasnyski, 1994; Charette, 2005; Clegg et al.,
1997; Milis and Mercken, 2002; Oz and Sosik, 2000.

20 46.5

7
Effective communication
and feedback

Schmidt et al., 2001; Keil et al., 2002; Kappelman et al., 2006;
May, 1998; OGC, 2005; Yeo, 2002; Jiang et al., 1999; Baccarini
et al., 2004; Humphrey, 2005; Mahaney and Lederer, 2003;
Ewusi-Mensah and Prazasnyski, 1994; Leveson, 2004;
Charette, 2005; Standish Group, 2009; Royal Academy of
Engineering and the British Computer Society, 2004; Procaccino
et al., 2002; Taylor, 2000; Milis and Mercken, 2002; Oz and
Sosik, 2000; Sauer and Cuthbertson, 2003.

20 46.5

1218 Int. J. Phys. Sci.

Table 1. Contd.

8 Realistic budget

Schmidt et al., 2001; Jones, 1996, 1995; Whittaker, 1999;
May, 1998; OGC, 2005; Beynon-Davies, 1999; Baccarini et al.,
2004; Drummond, 1998; Ewusi-Mensah, 1997; Ewusi-Mensah
and Prazasnyski, 1994; Boehm, 1991; Charette, 2005;
Standish Group, 2001, 2006; Clegg et al., 1997; Oz and Sosik,
2000; Oz, 1994; Sauer and Cuthbertson, 2003.

19 44.2

9 Skilled and sufficient staff

Schmidt et al., 2001; Keil et al., 2002; Sauer and Cuthbertson,
2003; Kappelman et al., 2006; Standish Group, 1995, 2001,
1999, 2009; May, 1998; Jiang and Klein, 2000; Beynon-
Davies, 1999; Baccarini et al., 2004; Ewusi-Mensah, 1997;
Ewusi-Mensah and Prazasnyski, 1994; Boehm, 1991; Milis
and Mercken, 2002; Reel, 1999; Oz and Sosik, 2000

18 41.9

10 Frozen requirement

Schmidt et al., 2001; Jones, 1996, 1995; Yeo, 2002; Jiang and
Klein, 2000; Beynon-Davies, 1999; Drummond, 1998; Oz,
1994; Jiang et al., 2001; Nuseibeh, 1997; Taylor, 2000; Oz
and Sosik, 2000; Taylor, 2006; Kappelman et al., 2006;
Baccarini et al., 2004; Boehm, 1991; Sauer and Cuthbertson,
2003.

17 39.5

11
Familiarity with technology/
development methods

Schmidt et al., 2001; Standish Group, 1995; Whittaker, 1999;
Jiang and Klein, 2000; Beynon-Davies, 1999; Jiang et al.,
1999; Baccarini et al., 2004; Drummond, 1998; Oz, 1994;
Ewusi-Mensah and Prazasnyski, 1994; Jiang et al., 2001;
Charette, 2005; Royal Academy of Engineering and the British
Computer Society, 2004; Oz and Sosik, 2000; Sauer and
Cuthbertson, 2003.

15 34.9

12 Proper planning

Schmidt et al., 2001; Jones, 2006, 1995; Kappelman et al.,
2006; Standish Group, 1995, 2001, 1999; Whittaker, 1999;
May, 1998; Humphrey, 2005; Oz, 1994; Taylor, 2000; Milis
and Mercken, 2002; Standing et al., 2006; Sauer and
Cuthbertson, 2003.

15 34.9

13
Appropriate development
processes/ methods
(process)

Schmidt et al., 2001; Jones, 1995; OGC, 2005; Beynon-
Davies, 1999; Jiang et al., 1999; Drummond, 1998; Mahaney
and Lederer, 2003; Jiang et al., 2001; Nuseibeh, 1997;
Charette, 2005; Standish Group, 2009; Milis and Mercken,
2002; Oz and Sosik, 2000; Sauer and Cuthbertson, 2003.

14 32.6

14
Up-to-date progress
reporting

Jones, 2006, 1995; Whittaker, 1999; May, 1998; Baccarini et
al., 2004; Humphrey, 2005; Ewusi-Mensah, 1997; Oz, 1994;
Charette, 2005; Reel, 1999; Oz and Sosik, 2000; Royal
Academy of Engineering and the British Computer Society,
2004.

12 27.9

15
Effective monitoring and
control

Schmidt et al., 2001; Jones, 1996; OGC, 2005; Beynon-
Davies, 1999; Humphrey, 2005; Mahaney and Lederer, 2003;
Ewusi-Mensah, 1997; Royal Academy of Engineering and the
British Computer Society, 2004; Reel, 1999; Oz and Sosik,
2000; Baccarini et al., 2004; Sauer and Cuthbertson, 2003.

12 27.9

16 Adequate resources

Kappelman et al., 2006; Standish Group, 1995; Jiang and
Klein, 2000; Baccarini et al., 2004; Ewusi-Mensah and
Prazasnyski, 1994; Milis and Mercken, 2002; Oz and Sosik,
2000; Jones, 2006; Standish Group, 2006; Beynon-Davies,
1999; Leveson, 2004.

11 25.6

17 Good leadership

Schmidt et al., 2001; OGC, 2005; Baccarini et al., 2004;
Glaser, 2004; Humphrey, 2005; Drummond, 1998; Ewusi-
Mensah, 1997; Standing et al., 2006; Reel, 1999; Clegg et al.,
1997; Oz and Sosik, 2000.

11 25.6

Nasir and Sahibuddin 1219

Table 1. Contd.

18 Risk management

Whittaker, 1999; OGC, 2005; Yeo, 2002; Jiang et al., 1999;
Ewusi-Mensah, 1997; Leveson, 2004; Nuseibeh, 1997;
Charette, 2005; Royal Academy of Engineering and the British
Computer Society, 2004; Oz and Sosik, 2000.

10 23.3

19
Complexity, project size,
duration, and number of
organisations involved

Schmidt et al., 2001; Sauer and Cuthbertson, 2003; Yeo,
2002; Jiang and Klein, 2000; Beynon-Davies, 1999; Glaser,
2004; Humphrey, 2005; Drummond, 1998; Jiang et al., 2001;
Charette, 2005.

10 23.3

20
Effective change and
configuration management

Schmidt et al., 2001; Taylor, 2006; Kappelman et al., 2006;
Jones, 1995; Whittaker, 1999; Baccarini et al., 2004; Royal
Academy of Engineering and the British Computer Society,
2004; Taylor, 2000; Oz and Sosik, 2000; Sauer and
Cuthbertson, 2003.

10 20.9

21
Supporting tools and good
infrastructure

Jones, 1996, 1995; Jiang et al., 1999; Ewusi-Mensah, 1997;
Ewusi-Mensah and Prazasnyski, 1994; Leveson, 2004;
Standish Group, 2006, 2001, 2009.

9 23.3

22
Committed and motivated
team

Standish Group, 1995; Beynon-Davies, 1999; Jiang et al.,
1999; Mahaney and Lederer, 2003; Ewusi-Mensah, 1997; Oz,
1994; Standing et al., 2006; Reel, 1999; Milis and Mercken,
2002.

9 20.9

23 Good quality management
Jones, 2006, 1996, 1995; Baccarini et al., 2004; Boehm, 1991;
Leveson, 2004; Ariane 501 Inquiry Board, 1996; Nuseibeh,
1997; Reel, 1999.

9 20.9

24
Clear assignment of roles
and responsibilities

Schmidt et al., 2001; Keil et al., 2002; Jiang and Klein, 2000;
Baccarini et al., 2004; Leveson, 2004; Milis and Mercken,
2002; Sauer and Cuthbertson, 2003.

7 16.3

25
Good performance by
vendors/ contractors/
consultants

Schmidt et al., 2001; Taylor, 2006; Whittaker, 1999; Baccarini
et al., 2004.

4 9.3

26 End-user training provision Beynon-Davies, 1999; Jiang et al., 1999. 2 4.7

(Adler and Ziglio, 1996; Delbeq et al., 1975) through
controlled feedback. We decided on the Delphi method
for two reasons. First, prior research has not yielded a set
of validated measures for the construct of interest (that is,
how the TSP addresses the critical success factors for
software projects). Second, we chose the Delphi method
because of its ability to achieve consensus, something
that was lacking in field interviews and case study
methods. The Delphi method provided a good solution
that allowed us to conduct our investigation with rigor and
internal consistency.

The expert profiles

To ensure the reliability of the experts’ opinions, the
following criteria were established and used to select the

experts: (1) The expert must have at least 15 years of
experience in software industries, (2) The expert must
have at least 10 years of experience in software project
management, (3) The expert must possess knowledge of
the Software Engineering Institute (SEI) Certified Team
Software Process, and (4) The expert must have at least
20 publications related to software process improvement
and/or TSP. The first two criteria ensured that the expert
had a varied experience background, and the last two
criteria ensured expertise and familiarity with the TSP
and general software process improvement. We excluded
experts with experience in non-TSP and non-software
process improvement because our focus was on these
two areas. Other important criteria that we took into
account were (1) Capacity and willingness of the experts
to participate, and (2) Effort and time commitment for
participating in a multi-round Delphi study (Skulmoski et

1220 Int. J. Phys. Sci.

Table 2. Expert profiles.

Expert
Experience in software

industries (Years)
Experience in software

project management (Years)
TSP

coach
Software process improvement

and TSP-related publication

Expert 1 16 13 Yes 24

Expert 2 27 20 Yes 20

Expert 3 27 21 Yes 22

al., 2007).
We invited nine experts to participate in this research

study. Three experts responded and stated their
willingness and commitment to participate. The small
sample size was due to limited expertise in our country
and the difficulty of finding experts who could fulfil our
criteria, especially in terms of effort and time
commitment. However, we had high confidence in the
quality of our experts. The profiles of the three experts,
as shown in Table 2, indicate that all of the experts had
impressive experience in the area of software project
management and software process improvement and
were well qualified.

According to Hakim (1987), small samples can be used
to develop and test explanations, particularly in the early
stages of the work. For example, Lam et al. (2000) used
three experts to develop rules for a ceramic casting
process, Nambisan et al. (1999) recruited six experts to
develop taxonomy of organisational mechanisms and
Gustafson et al. (1973) used four experts to estimate
almanac events in their investigation of Delphi accuracy.
We therefore argue that the number of experts did not
have a significant impact on the outcome of our research.
The experts in this field provided great insight in
analysing, extracting and discussing all the features that
were outlined in the TSP and mapped back to the
identified success factors. Thus, we decided to move our
research forward utilising only three experts, and we
believe that the involvement of experts of such high
reputation and calibre gives weight and rigor to our
results. Furthermore, to increase the reliability and
accuracy of the experts’ opinions, we required all of the
experts to be assisted by a colleague with equivalent
experience for discussion and validation of each of the
opinions given in this study. This led to reduced personal
bias and controlled mistakes made by single experts.

Data collection and analysis methods

A Delphi questionnaire was mailed to the experts to
collect their input in this multi-round Delphi. We first
requested that the experts review our generated list of
critical success factors for software projects, as shown in
Table 1. We provided a definition and description of each
of the factors to ensure that they were all working from a
common list of items with common definitions. The
experts did not highlight any problems with the list of

critical success factors provided. We also asked the
experts about their ability to respond to the questions,
and we confirmed that they felt qualified and able to
respond to the questions. Prior to its mailing, the survey
was pre-tested by five software engineering researchers
for clarity and ease of understanding. No changes were
found to be necessary.

In round 1, the experts were asked to rate how the TSP
addressed the critical success factors for software
projects and to provide descriptions to justify their rating.
We also asked the experts to specifically state the TSP
processes and/or components in their description so that
every critical success factor was clearly addressed by the
TSP processes and/or components.

A six-point classification scale was implemented as
follows:

1. Best practise (5): The TSP provides a very effective
framework for addressing the critical success factors and
has a direct impact on the software project's success.
2. Very good (4): The TSP provides a very good
framework for addressing the critical success factors and
has a significant impact on the software project's
success, but it may not be the most effective way of
doing things.
3. Good (3): The TSP provides a good framework for
addressing the critical success factors, but there are
minor missing processes that may impact the software
project's success.
4. Fair (2): The TSP provides a framework that addresses
the critical success factors to a reasonable degree, but
there are several missing processes and/or incorrect
settings of priorities that impact the software project's
success.
5. Weak (1): The TSP provides a framework that
addresses the critical success factors to a limited degree
but does not cover everything that is required.
6. Not addressed (0): The TSP does not provide any way
to address the critical success factors.

Their responses were reviewed, consolidated and
disseminated anonymously in the subsequent round. In
the next round, we asked the experts to confirm that their
ratings and descriptions were consistent with their
previous responses. To achieve consensus, the experts
were asked to revise, correct, add to and eventually
validate their earlier input after reviewing the feedback
and comments of the other experts. We measured the

Nasir and Sahibuddin 1221

Table 3. Kappa values for each of the Delphi rounds.

Expert
Kappa values(k)

Round 1 Round 2 Round 3 Round 4 Round 5

Expert 1 vs. Expert 2 0.640 0.774 0.774 0.829 0.829

Expert 1 vs. Expert 3 0.372 0.743 0.806 0.873 0.873

Expert 2 vs. Expert 3 0.225 0.534 0.588 0.765 0.765

degree of consensus among the experts using Cohen’s
kappa coefficient (k) for each round between each pair of
experts. This coefficient reflected the extent to which the
observed consensus between experts was superior to
that obtained by chance (Cohen, 1960). In our study, we
iterated this multi-round process until we reached a
kappa value of 0.7 with p < 0.001, indicating an
acceptable level of consensus. A kappa value of 0.85
indicates almost perfect agreement (Landis and Koch,
1977), but a kappa of 0.7 or more is usually considered
an acceptable level of agreement (Cramer, 1997). We
could therefore be confident of the reliability of our output
by confirming a high level of agreement. This approach is
consistent with the basis that the number of rounds was
somewhat flexible and the Delphi iteration process stops
when a reasonable level of consensus is reached
(Delbeq, 1975). We also used standard deviation to
observe agreement among the experts for each of the
critical success factors throughout the round. A low
standard deviation indicated that the ratings tended to be
very close to each other, whereas a high standard
deviation indicated that the ratings were spread out over
a large range. During the final round, we presented the
findings to the experts and asked them to review and
finalise their ratings and descriptions. All the experts
agreed with the final findings, and no changes were
found necessary.

FINDINGS

A five-round Delphi process was used to achieve
consensus among the experts as well as to finalise the
findings. Table 3 reports the kappa value for each Delphi
round. A kappa value from 0.40 to 0.59 was considered
moderate, 0.60 to 0.79 substantial, and 0.80 outstanding
(Landis and Koch, 1977). After we finalised our findings,
the degree of consensus between expert 1 and expert 2
and between expert 1 and expert 3 achieved an
outstanding level (0.829 and 0.873, respectively, with p <
0.001). The degree of consensus between expert 2 and
expert 3 was at the substantial level (0.765 with p <
0.001). Even though we reached a kappa value of 0.7 in
round 4, which indicated a reasonable level of
consensus, we decided to proceed with the next round to
review and finalise the findings.

Table 4 reports our findings for the final round for each
of the critical success factors. In terms of agreement

among the experts, the average standard deviation in
round 1 was 0.861 with a total standard deviation of
22.381; this was reduced to 0.474 with a total standard
deviation of 12.322 in round 2. In round 3, the average
standard deviation was 0.393 with a total standard
deviation of 10.217. Round 4 provided even better
agreement among the experts, where the average
standard deviation was further reduced to 0.194 with a
total standard deviation of only 5.039. These figures
remained stable until the final round. The final results
showed that the agreement among experts for each
critical factor was quite high. Specifically, the standard
deviation for each was equal to or less than 1.000, and
the standard deviation for over 69% of the factors was
0.000. These results also suggested that 18 of the 26
critical factors gained an outright consensus from the
experts. The remaining 7 critical factors showed slight
differences with a standard deviation of 0.577, and only
one critical factor had a standard deviation of 1.000.
As shown in Table 5, the experts agreed that the TSP
provided a very effective framework for addressing 14
(53.85%) critical success factors. The experts also
agreed that the TSP provided a very good framework for
addressing 4 critical success factors (15.38%). Our
findings further suggested that 6 critical success factors
(23.07%) were addressed by the TSP at a ‘Good’ level. In
addition, only 1 critical success factor (3.85%) was
addressed to a limited degree, and none of the critical
success factors were addressed at a ‘Fair’ level. Finally,
only 1 critical success factor (3.85%) was not addressed
by the TSP (‘good performance by
vendors/contractors/consultants’). Tables 4 and 5
address our second research question (RQ2).

Table 6 summarises the opinions of the experts on how
the TSP addressed the critical success factors for
software projects. It also states the TSP scripts and
processes for each of the critical success factors to justify
the degree ratings. As a result, we can see why the TSP
cannot be rated up to ‘Best Practise’ in addressing
several identified critical success factors.

The summary of expert opinions in Table 6 shows that
from an expert’s perspective, the TSP provides an
operational framework aimed at addressing 21 of the
most critical success factors. These 21 critical success
factors exclude user/client involvement, frozen
requirement, complexity, project size, duration and
number of organisations involved, good performance by
vendors/contractors/consultants and end-user training

1222 Int. J. Phys. Sci.

Table 4. Experts’ ratings of how TSP addressed critical success factors: Final round.

 Critical success factor
Expert ratings on TSP

Std. deviation
E1 E2 E3

1 Clear requirements and specifications 5 4 5 0.577

2 Clear objectives and goals 5 5 5 0.000

3 Realistic schedule 5 5 5 0.000

4 Effective project management skills/methods (project manager) 5 5 5 0.000

5 Support from top management 5 5 5 0.000

6 User/client involvement 3 3 4 0.577

7 Effective communication and feedback 3 3 4 0.577

8 Realistic budget 5 5 5 0.000

9 Skilled and sufficient staff 3 3 3 0.000

10 Frozen requirement 3 2 3 0.577

11 Familiar with technology/development methods 3 3 3 0.000

12 Proper planning 5 5 5 0.000

13 Appropriate development processes/methods (process) 5 4 5 0.577

14 Up-to-date progress reporting 5 5 5 0.000

15 Effective monitoring and control 5 5 5 0.000

16 Adequate resources 4 4 5 0.577

17 Good leadership 4 4 4 0.000

18 Risk management 5 5 5 0.000

19 Complexity, project size, duration, and number of organisations involved 3 2 3 0.577

20 Effective change and configuration management 4 3 5 1.000

21 Supporting tools and good infrastructure 4 4 4 0.000

22 Committed and motivated team 5 5 5 0.000

23 Good quality management 5 5 5 0.000

24 Clear assignment of roles and responsibilities 5 5 5 0.000

25 Good performance by vendors/contractors/consultants 0 0 0 0.000

26 End-user training provision 1 1 1 0.000

Table 5. Degree to which TSP addressed the critical success factors in software projects.

Classification degree/level Critical success factors

Best practise (5): The TSP provides a very effective
framework for addressing the critical factor and has a direct
impact on the software project's success.

Clear requirements and specifications.

Clear objectives and goals.

Realistic schedule.

Effective project management skills/practises (project
manager).

Support from top management.

Realistic budget.

Proper planning.

Appropriate development processes/methods (process).

Up-to-date progress reporting.

Effective monitoring and control.

Risk management.

Committed and motivated team.

Good quality management.

Clear assignment of roles and responsibilities.

Very good (4): The TSP provides a very good framework
for addressing the critical factors and has a significant
impact on the software project's success, but it may not be
the most effective way of doing things.

Adequate resources.

Good leadership.

Effective change and configuration management.

Supporting tools and good infrastructure.

Nasir and Sahibuddin 1223

Table 5. Contd.

Good (3): The TSP provides a good framework for addressing
the critical factor, but there are minor missing activities that
may impact the software project's success.

User/client involvement.

Effective communication and feedback.

Skilled and sufficient staff.

Frozen requirement.

Familiar with technology/development methods.

Complexity, project size, duration, and number of
organisations involved.

Fair (2): The TSP provides a framework that addresses the
critical factor to a reasonable degree, but there are several
missing activities and/or incorrect settings of priorities that
impact the software project's success.

None

Weak (1): The TSP provides a framework that addresses the
critical factor to a limited degree but does not cover everything
that is required.

End-user training provision.

Not addressed (0): The TSP does not provide any way to
address the critical factor.

Good performance by vendors/contractors/consultants.

provisions. This indicates that TSP processes cover
many of the software project management aspects. In
addition, the operational framework in TSP is centralised
on the TSP scripts, forms, and clearly defined roles and
responsibilities as well as training for all levels of
management, from senior executives to middle
management to team leaders to the software engineer.

In the case of clear requirements and specifications, for
example, the TSP addresses requirements and
specifications via the requirements process script. The
purpose of the script is to produce a complete, valid, and
accurate system requirements specification (SRS) and
hardware or software engineering requirement
specification (ERS). The process steps in the
requirements process script include Market
Requirements Study, Requirements Elicitation,
Requirements Prototypes, SRS, User Manual Draft,
System Test Plan, SRS Inspection, ERS, ERS
Inspection, ERS Baseline, and requirements process
post-mortem. The TSP establishes a Customer Interface
Manager as one of the standard roles to be assigned to
the team members. One of the main roles of the
Customer Interface Manager is to establish team
standards and procedures for documenting and reviewing
the product requirements. This task includes (1) Leading
the team in development, review and verification of the
product requirements, (2) Ensuring all the product
requirement assumptions are identified, documented,
tracked and verified with the customer, and (3) Ensuring
that the customer agrees with the requirements. In
addition, during TSP launch meeting 4, the first planning
step led by the Design Manager is to assess the
completeness and correctness of the requirement

documentation. If all these activities are performed and
managed successfully by the Customer Interface
Manager and the Design Manager, it will lead to clearer
product requirements and specifications. These
observations indicate that the TSP provides quality
guidance for the team to follow.

Our study also found that the TSP did not provide any
operational framework for 5 critical success factors:
user/client involvement, frozen requirement, complexity,
project size, duration and number of organisations
involved, good performance by
vendors/contractors/consultants and end-user training
provision. This does not mean that the TSP ignores these
critical aspects, but they are beyond the scope of the
TSP.

For critical success factor number 6 (user/client
involvement), there is no direct involvement from the
user/client during the TSP Launch. Customer
representation is generally absent from the launch itself,
so it does not have an opportunity to influence the
planning during the launch. The team and the coach are
therefore on their own when ensuring the high
involvement of the user/client in the project. The experts
suggest that this can be corrected by including
clients/end user representatives during the launch. If this
is done, the mechanisms for ensuring their involvement
are essentially the same for top management.

In respect to the tenth critical success factor (frozen
requirement), the TSP does not provide any mechanism
to ensure requirement freeze because it is nearly
impossible to avoid requirement changes in most
software projects. However, the TSP handles
requirement changes very well. According to the TSP,

1224 Int. J. Phys. Sci.

Table 6. Summary of expert opinions on how the TSP addressed the critical success factors.

Critical success
factor

Experts’ opinions Coverage level

Clear requirements
and specifications

The requirements process script (Script REQ) is used to produce a complete, valid,
and accurate system requirements specification (SRS) and hardware/software
engineering requirement specification (ERS). Additionally, the customer interface
manager leads the team in requirement development, review and verification, and
ensures that the customer agrees with the requirements. Furthermore, during
Meeting 4 of the TSP launch, the first planning step led by the design manager is to
assess the completeness and correctness of the requirement documentation. Scripts
DEV, MAINT, and ANA also provide guidance for requirements specifications.

Best practise (5)

Clear objectives
and goals

In Meeting 1 of the TSP launch, project goals and constraints are briefed to the entire
team, clarified, revised, and agreed. Meeting 1 provides guidance to senior
management and marketing representatives for preparing goals and objectives for
presentation and discussion with the team, including answering team members’
questions on goals and objectives. The entire team is made aware of the goals and
constraints, producing better alignment, a more realistic assessment of the feasibility
of meeting the goals and constraints, a broader sense of ownership, and ultimately a
better plan. Goals are then re-stated in quantitative form. In meeting 2, the team
further reviews management’s goals and objectives and any future revision to the
plan against the goals to ensure compliance and to eliminate unnecessary steps.

Best practise (5)

Realistic schedule

During the TSP launch, the team follows a defined estimation process to produce
project estimates and considers a development strategy. Next, the team produces a
quality plan to ensure that poor quality does not impact schedule and the load
balances the work amongst team members, ensuring all team members contribute to
meeting the schedule. If the project goals cannot be met within the schedule, feature,
quality, and resource constraints are provided by management, and the team comes
up with alternate plans to present to management asking for a more realistic
schedule, more resources, and/or reduction in project scope. Any negotiations on
scope, budget, staffing, etc. are performed in public. Commitments are documented
in the minutes of the meeting to prevent the project manager from privately
acquiescing to unrealistic goals or constraints under pressure from management or
the client.

Best practise (5)

Effective project
management skills/
practises (project
manager)

TSP roles provide a framework for the team in which management responsibilities
are distributed across the entire team and the project manager primarily serves as
team coach or team leader. The team leader attends a mandatory three-day class
called Leading Development Teams to teach team leaders how to lead using the
TSP. Additionally, team members help with different management aspects via the
eight defined team roles on a TSP team. All team members attend TSP training prior
to participating in TSP teams. Developers complete a minimum of 5 days of training,
titled Personal Software Process (PSP) for Engineers. Non-developers attend the 2-
day TSP Team Member Training. All of this training addresses fundamental project
management skills.

Best practise (5)

Support from top
management

The TSP introduction strategy includes training for all levels of management, from
senior executives to middle management to team leaders. The first level of support
required from top management is to attend the one-day TSP Executive Strategy
Seminar. Top management is trained in the concepts of the TSP and agrees to
sponsor TSP by providing resources to train all levels of management as well as
TSP team members. Management also provides TSP coaching services for TSP
teams. Top management has to agree to meet with the teams to provide business
and product goals in launch meeting 1, to be present when teams present their plan
to management during launch meeting 9, to be involved in status review meetings at
the end of each development cycle, and to be involved in periodic status review
meetings.

Best practise (5)

User/client
involvement

In the TSP, the marketing manager role represents the user/client to the team. The
product manager meets with the development team to present the product goals,

Good (3)

Nasir and Sahibuddin 1225

Table 6. Contd.

including user needs, during launch meeting 1 (Script LAU1). The customer interface
manager role also focuses on the user/client, so he/she needs to understand the
customer's wants and needs and to lead the team in providing a product that
satisfies the customer. However, there is no direct involvement from the user/client
in the project.

Effective
communication and
feedback

Communication amongst team members takes place during the launches, re-
launches, cycle post-mortems, project post-mortems, and weekly status review
meetings. Role managers communicate by presenting role status during the team
weekly meetings. Communication amongst team members and the team coach
occurs on an as-needed basis and during TSP checkpoints. Communication with
management happens during launches and re-launches and via status reporting
(Specification STATUS). TSP is excellent at the distribution of information within the
project team and between the team and sponsoring management, but there is
nothing explicitly in TSP about communicating with the organisation as a whole. This
is a weakness, particularly for larger projects, and TSP is very limited with respect to
communications planning as well.

Good (3)

Realistic budget

In the TSP, the principal budget measure is effort hours. When management forms a
project team, the number and availability of the team members represents the initial
budget. Once the project is initiated via a TSP Launch, the team determines the
resources it needs to do the work to meet management’s business and product
goals. The team uses a defined estimation process that uses historical data from
the team, from the organisation, or industry benchmarks. If the resources provided
by management are not adequate, the team asks management for more resources
or an adjustment in the scope and/or schedule.

Best practise

(5)

Skilled and
sufficient staff

The TSP introduction strategy includes in-depth process training for all team
members, thus ensuring some degree of process skill. Team formation guidance
always specifies the formation of teams with technically skilled team members;
however, this is not addressed in the TSP process scripts. In launch meetings 3 and
4, the team estimates the work to be done and determines resource availability. If
sufficient resources are not available, the team produces alternate plans that adjust
schedule, scope, or resources and presents the alternate plans to management.
Even though the process training is very good, it does nothing to address
requirements analysis, architectural design, and high-level testing. TSP also does
very little to address staff acquisition and does not actually produce a staffing plan,
nor does it ensure that the project manager actually knows how to staff the project.
Moreover, there is no mention of planning for staffing lead time, ongoing attrition
rate, or tradeoffs between overtime and additional staff.

Good (3)

Frozen requirement

The support manager is responsible for change management and configuration
management issues. At the beginning of the project, the agreed requirements should
be baselined and retained. If any changes are needed, they go through the Change
Control Board (CCB) for review and approval. Configuration management, on the
other hand, allows only authorised changes to the baselined products and makes
only approved changes to the controlled version of the configuration items. However,
it is difficult to avoid requirement changes in TSP, so the support manager ensures
all the changes are controlled, monitored and tracked.

Good (3)

Familiar with
technology/
development
methodology

The TSP ensures that all team members are trained and familiar with the
development methodology because TSP training is a pre-requisite for membership
on a TSP team. The developers attend a minimum of 5 days of training, and non-
developers attend 2 days. The TSP does nothing to address familiarity with
technology, but most teams identify training needs during a launch.

Good (3)

Proper planning

The heart of the planning process is the TSP Launch, a 3- to 4-day defined planning
process captured in eleven process scripts (that is, Script LAU, Scripts LAU1-LAU9,
and Script LAUPM). TSP teams create several plans: the product plan is a high-level
plan for the entire project, the period plan is a detailed plan for the next few weeks or

Best practise (5)

1226 Int. J. Phys. Sci.

Table 6. Contd.

months of work, and an individual plan is a detailed plan for a team member’s near-
term work. Teams also create a quality plan (Script LAU5), a process plan (Script
LAU3), a support plan (Script LAU3), and a risk management plan (Script LAU7).
Planning is an ongoing process: Small adjustments to the plan are made as needed,
and major changes trigger a re-launch (Script REL). A re-launch is also scheduled at
the end of each development cycle, where the team plans out the next period of work
in detail.

Appropriate
development
processes/ methods
(process)

The TSP is a development process that has been used to develop all kinds of
software: Shrink wrap, embedded, IT, web applications, commercial, defence,
government, financial, game, and many other types. It is appropriate for most (if not
all) development projects involving single-teams of 3 to 15 team members and multi-
team projects with several hundred team members. This is augmented by scripts
REQ and ANA (Requirements Management and Requirements Analysis,
respectively), scripts HLD (High Level Design), IMP6 (Unit Test and Test
Development), INS (Inspections), PMTD (TSP Post-mortem Test Defects), TEST
(TSP Release Test), TEST1 (TSP Product Build), TEST2 (TSP Integration), TEST3
(TSP System Test), and TESTD (TSP Test Defect Handling).

Best practise (5)

Up-to-date progress
reporting

The TSP employs several methods and levels for progress reporting. Schedule
status is planned, tracked, and reported via a simplified earned value reporting
system. Cost status is planned, tracked, and reported via effort hours. Product
quality status is reported by tracking planned vs. actual defect injection and removal
rates as well as other quality measures, such as defect density. Process quality is
reported via measures such as time-in-phase ratios and process quality indexes.
Feature status is reported via feature completion status. Status is reported at least
once a week. Progress reporting is easier if the organisation adopts PSP/TSP
automated tools to automatically track and analyse the project progress.

Best practise (5)

Effective monitoring
and control

The team leader, the team coach, and the eight role managers monitor and control
all aspects of the project (schedule, quality, cost, scope, features, and processes).
Individual team members monitor and control their own work, treating individual
plans as mini-projects. Data is then used to plan and track all work at all levels:
individual, team, and multi-team. Senior management monitors the project less
frequently than the team, on a periodic basis at the end and beginning of each
project cycle and via a weekly, monthly, or quarterly status report. Overall, TSP
techniques for quality control are strong, particularly in quality planning and quality
management, and they explicitly provide a more structured process for status
monitoring.

Best practise (5)

Adequate
resources

During launch meetings 2 to 8, the team develops a plan and determines the
resources it needs to do the work to meet management goals and constraints. If the
resources provided by management are not adequate, the team asks management
in launch meeting 9 for more resources or an adjustment in the scope and/or
schedule. The team continues to monitor actual resource usage. If the team
determines that they underestimated resources needed during the launch, the team
re-estimates resources needed for the remaining work based on the rate of to-date
completion and then asks management for further adjustments to resources, scope,
and/or schedule.

Very good (4)

Good leadership

The TSP encourages the use of the word leader instead of manager. In fact, the TSP
manager training course is called Leading Development Teams. The project
manager of the team is therefore called the team leader. The TSP sets up the
conditions for good leaders to thrive. It provides training as well as team leader role
guidance (Specification Team Leader). The TSP teaches project managers and
senior managers how to transform from managers into leaders and coaches. This
model enables team leaders to lead the team in the right direction, maintain a clear
and continuous focus on the team’s project goals, and motivate, coach and support
the team while dealing with management. The TSP places a tremendous amount of
importance on leadership.

Very good (4)

Nasir and Sahibuddin 1227

Table 6. Contd.

Risk management

Risk management involves risk identification, risk categorisation, risk tracking, and
risk mitigation. The TSP team assesses risks during the TSP Launch in launch
meeting 7, guided by a process script (Script LAU7). Following the launch, risks are
tracked during the TSP weekly status team meeting. In TSP, tracking of specific risks
is assigned to individual team members based on project roles and responsibilities.
The weekly meeting is guided by a process script (Script WEEK), which includes a
step for risk reports from team members who are tracking project risks. The status of
risks is also communicated to management as an item in regular project status
reports (Specification STATUS). During re-launches, the team identifies new risks,
which are in turn mitigated and tracked as needed.

Best practise (5)

Complexity, project
size, duration, and
number of
organisations
involved

TSP is most effective for teams of 3 to 12 engineers. To cater to larger projects,
TSPm (Multiple TSP process) is needed, which allows multiple teams of 3 to 15
people using the TSP to work together on larger projects. A TSPm project uses
special processes designed to address the additional complexity and communication
issues related to larger teams. As the project grows and the number of organisations
involved increases, sub-contract and procurement issues become important, but
these elements are not addressed by TSP.

Good (3)

Effective change
and configuration
management

In TSP, the support manager is responsible for handling change in management
issues. At the beginning of the project, the agreed requirements should be baselined
and retained. If any changes are needed, they go through the Change Control Board
(CCB) for review and approval. During the TSP Launch in meeting 3, the CCB
membership is discussed and the procedure for change management is finalised at
the beginning of the project. This step will ensure that the process is in place and any
changes go through the right channel for approval before they are adopted and
implemented.

Very good (4)

Supporting tools
and good
infrastructure

In the TSP launch meeting 3 (Script LAU3), the Support Manager leads a short
meeting to develop a Support Plan to cater to the team’s needs. The Support
Manager is responsible for overall supporting tools that are needed by the project
team and ensures the team has necessary knowledge and training to use the tools.
The support manager is also responsible for handling the team's configuration
management and change control functions and acting as the team's reuse advocate.

Very good (4)

Committed and
motivated team

TSP has been designed to establish the conditions that characterise an effective
team through team-building principles. TSP facilitates team-building through a well-
defined TSP launch process that has built-in activities and guidelines that can assist
the team leader in effectively bringing together all the team members to begin
working on the project in the most effective way. When management clearly tells the
team what they want the team to do but then lets the team determine how they will
do their work and how long the work will take, the result is motivated and committed
teams.

Best practise (5)

Good quality
management

During meeting 5 in the TSP launch, the quality manager leads the team in
developing the project quality plan for a product and covers the details of how it will
achieve its product quality goals. The quality manager also ensures that the team
plans for defect injection and detection based on historical data, TSP quality planning
guidelines or industry-published data. The plan includes specifics on where defects
will be injected (defect density), what phases will catch these defects and the
estimated final quality of the product. This provides good understanding for the team
members on how to locate the number of defects they are injecting and finding in
each phase. The developed quality plan is then followed and tracked by the team by
comparing the data for any module with the quality plan. If a phase is likely to have a
quality problem (that is, higher defect density), several corrective actions can be
taken. In addition, every team member’s work product is reviewed and inspected by
a qualified effective moderator.

Best practise (5)

Clear assignment of
roles and
responsibilities

During TSP launch meeting 2, the roles and responsibilities are formally defined and
assigned among the team members. The team is built as a self-directed team, and
they produce their own defined work processes in accordance with the established
team goals. There are no clarity issues regarding who is doing what or conflicts due
to overlapping responsibilities. This meeting takes particular care in distributing the
roles and responsibilities across the entire team to avoid bottlenecks and promote
career development.

Best practise (5)

1228 Int. J. Phys. Sci.

Table 6. Contd.

Good performance by
vendors/contractors
/consultants

TSP does nothing in selecting, procuring and measuring
vendor/contractor/consultant performance.

Not addressed (0)

End-user training
provision

Although not directly addressed, the TSP addresses end-user training via team
goals in which the team plans for a business or product goal that includes end-user
training. During TSP Launch meeting 3, the team leader leads the team in defining a
set of comprehensive work products to be produced for the project and for each of
the project phases. If end-user literacy is critical in determining project success,
work products, such as system prototypes, user manuals, training, and installation
guides, can be listed as critical components to be delivered to the customer/end-
user to ensure project success.

Limited (1)

once the requirements have been baselined, changes
occur only after the impact of the change has been
assessed, approved, and reflected upon in updated
plans. Specifically, minor changes are handled by the
team as part of their day-to-day work in maintaining their
plan, and major changes in requirements trigger a re-
launch, where the team systematically follows a defined
process to assess the impact of the change on their plan,
re-plan, and re-commit.

For the nineteenth and twenty-fifth factors, the experts
highlighted that the TSP did not address the issues of
sub-contracts and procurement. If there are any sizable
procurements of materials, any subcontracts, or any
significant outsourcing, this is a critical omission that
could lead to project failure. On occasion, a significant
portion of project management activities centre on
managing subcontracted work, so this is by no means a
minor omission. TSP assumes that the project
management team has these skills and does nothing to
provide them in its manager's training. If TSP is being
implemented in the context of a Capability Maturity Model
Integration (CMMI) based process improvement initiative,
this is not a severe deficiency because project
procurement management is covered by the CMMI
maturity level 2 supplier agreement management process
area. For organisations that are not using TSP within the
context of CMMI, Project Management Professional
(PMP) certification addresses this issue with the Project
Procurement Management knowledge area.

We are also interested in pointing out the expert views
of why the TSP could not be rated to ‘Best Practise’ in
several critical success factors. Among these issues were
external communications between the teams and the
stakeholders, staffing plans, technology familiarity, and
sub-contract and procurement issues. All these issues
are part of the organisation level that is not part of the
TSP. In the staffing plan, for example, TSP includes the
development of a staffing profile, an inventory of skills,
assignment of roles and responsibilities, and
development of a training plan. These are the key inputs
to a staffing plan, but they do not actually produce a
staffing plan and do nothing to ensure that the project

manager actually knows how to staff the project. Failure
to do this effectively is an obvious cause of project failure.
At the organisational level, this responsibility belongs to
the human resources management area.

Similarly, with the issues of sub-contracting and
procurement, TSP does nothing to specifically address
selecting or managing subcontractors and vendors.
However, TSP is relatively strong in addressing post
mortem analysis, but it totally misses the administrative
work related to closing out a contract. Both sub-contract
and procurement issues belong to the procurement
management area. The situation is similar for
communications planning. TSP is excellent at the
distribution of information within the project team and
between the team and sponsoring management, but it
has little to offer a project with a broad array of
stakeholders. This defect is addressed to some degree
by CMMI with the maturity level 2 Project Management
and Control Practise area. In terms of familiarity with
technology, TSP does nothing to address this issue
except in the context of risk identification and mitigation
planning, as most teams identify training needs during a
launch.

An interesting point that is worth considering, as
highlighted by one of the experts, is that a framework or a
model should gain wide acceptance by the customer
community. If a framework or a model cannot gain
traction with the user community, it cannot have much
impact, regardless of how capable or perfect it is.

Throughout this round, we noticed that the Delphi study
provided good commentary and discussion channels.
Although many of the same issues emerged, it was clear
that the experts often focused on different angles when
discussing the same critical success factors.

RESEARCH LIMITATIONS

The critical success factors identified in this research
study were extracted from multiple empirical data sets
and expert views from eight countries (Finland, the
United States, the United Kingdom, Hong Kong,

Singapore, Belgium, Australia, and Canada) concerning
small to large software projects in various domains.
However, the findings are applicable only to software
projects. Although a sample of eight countries is small
and generalisability to the entire software engineering
community worldwide is problematic, we have high
confidence in our research findings. Most of the articles
included were taken from established scientific research
journals and had a minimum of 11 citations, while a few
of them were from well-known survey reports and journal
articles written between 1990 and 2010 by experts and
practitioners who had a wide range of experience in
software-related industries. Often, factors reported in
books were based on the previous work of others and did
not cover the latest research findings, so we did not
consider books in this study. We also decided not to
include conference and workshop proceedings because it
was difficult to determine the quality of the articles in such
forums. Note that this research study was not intended to
localise the findings; thus, we considered it irrelevant to
conduct an empirical study in any particular country.

As with any Delphi-type technique, this research was
limited by the fact that it employed only three experts.
While experts were chosen for their vast experience in
software development and software project management
as well as their in-depth knowledge of software process
improvement and TSP, we can make no claim about the
representativeness of our sample set. The experts were
not randomly chosen, but their selection was based on
the quality and reliability of the set criteria. The profiles of
the three experts (Table 2) indicated that all had
impressive experience in the area of software project
management and software process improvement and
were well qualified. With our careful design and execution
of the Delphi study, we have high confidence in the
quality of the experts and the opinions they contributed.
Also, to increase the reliability and accuracy of the
experts’ opinions, we required all the experts to be
assisted by their colleagues with equivalent experience
for discussion and validation of each of their opinions
given in this study. This practise reduces personal bias
and controls mistakes made by single experts. Despite
the aforementioned limitations, we believe that the results
have both informative and practical implications.

CONCLUSIONS AND FUTURE RESEARCH

We have reported our extensive literature survey of
critical success factors that impact software projects. In
this study, 43 articles were found to make significant
contributions that could be analysed to develop a list of
critical factors that specifically affected the success of
software projects. These 43 articles consisted of 9
published sets of empirical data from case studies, 29
published empirical data sets from surveys and 5 articles
written by experts and practitioners between 1990 and

Nasir and Sahibuddin 1229

2010. The method of content analysis was adopted in this
study rather than the data extraction method or the
frequency analysis method because some of the factors
described by the authors in the articles were not explicitly
clear and required careful reading, understanding and
interpretation to produce accurate findings.

Based on this set of critical success factors, a five-
round Delphi study was conducted to determine the
degree to which TSP could address all the identified
factors. Our results demonstrated that the experts agreed
that the TSP provided a very effective framework for
addressing 14 (53.85%) critical success factors. The
experts also agreed that the TSP provided a very good
framework for addressing 4 critical success factors
(15.38%). Furthermore, our findings suggested that 6
critical success factors (23.07%) were addressed by the
TSP at a ‘Good’ level, only 1 critical success factor
(3.85%) was addressed to a limited degree and none of
the critical success factors were addressed at a ‘Fair’
level. Moreover, only 1 critical success factor (3.85%)
was not addressed by the TSP (‘good performance by
vendors/contractors/consultants’).

From an expert’s perspective, the TSP provided an
operational framework for addressing 21 of the critical
success factors. This indicated that TSP processes
covered many important software project management
aspects.

We were also interested in pointing out the expert
views of why the TSP could not be rated ‘Best Practise’ in
addressing several critical success factors. Among the
issues not rated ‘Best Practise’ were external
communication between the teams and the stakeholders,
staffing plans, technology familiarity, and sub-contract
and procurement issues. All these issues were on the
organisational level that was not part of the TSP.

This research focused on the TSP, one of the Software
Engineering Institutes’ products. A similar approach could
also be used in models other than TSP. For instance,
Project Management Body of Knowledge (PMBOK),
Project in Controlled Environment 2 (PRINCE2),
Capability Maturity Model Integration (CMM-I),
International Standard for Software Process Improvement
and Capability Determination (SPICE), International
Organisation for Standardisation (ISO) 9000, or other
software development process models including agile
processes, Rational Unified Process (RUP), for
determining how these frameworks and methods
addressed these critical factors.

Each framework or method on its own could not
perfectly address all the identified critical success factors.
By blending a software process improvement and project
management framework (or any other excellent software
development process model), we believe that all of the
critical success factors can be more effectively
addressed. Based on our initial research study, for
example, it was found that TSP and PMBOK each
contributed to addressing the identified critical success

1230 Int. J. Phys. Sci.

factors. To highlight ‘effective communication and
feedback’ as an example, TSP was excellent at the
distribution of information within the project team and
between the team and sponsoring management, but it
had little to offer beyond that. Basically, it only addressed
planning status meetings within a team and with the
sponsoring management without including a stakeholder
identification process. By comparison, much more
planning of the appropriate types of communication with
each stakeholder is envisioned in PMBOK.

Communications planning becomes progressively more
important with project size, and failure to perform it
adequately can be a major source of risk in larger
projects. The PMBOK, in contrast, offers a rich set of
processes to ensure effective communication between all
of the identified stakeholders and recommends that
communication activity be considered from several
potential perspectives. The PMBOK also calls for regular
status meetings but provides very little guidance on
content or how to make them effective, especially in the
operational communication process for teams. We can
integrate these two models, however, to complement
each other and to more effectively address critical
success factors for software projects. This approach is
supported by several research efforts that sought
integration between different areas to ensure better
control in managing software projects (e.g., traditional
project management and agile project management
(Hass, 2007), CMMI for Development (CMMI-Dev) and
PMBOK (von Wangenheim, 2010), PMBOK and Rational
Unified Process (Callegari and Bastos, 2007), Agile and
PRINCE (Nawrocki et al., 2006), CMMI and PMBOK
(Jenkins, 2005) and many more).

A study conducted by Bayo et al. (2007) showed that
there has been increasing demand in the knowledge and
application of quality software to improve the country
socio-economic growth. Thus, a comprehensive model is
needed in ensuring the way to produce high quality
software. It is our hope that the findings reported here will
complement existing research in the area of software
engineering, particularly in software process
improvement and software project management, and will
be investigated more thoroughly. Specifically, the findings
provide an indication as to what extent TSP addresses
the critical success factors for software projects.

ACKNOWLEDGEMENTS

We are extremely grateful to the three experts who
participated in this study. We are also sincerely grateful
to the Faculty of Computer Science and Information
Technology, the University of Malaya and the Advanced
Informatics School, Universiti Teknologi Malaysia, for
supporting this research effort.

REFERENCES

Adler M, Ziglio E (1996). Gazing into the Oracle: The Delphi Method

and its Application to Social Policy and Public Health, Jessica
Kingsley Publishers

Ariane 501 Inquiry Board. (1996). Ariane 5: Flight 501 Failure. Report
by the Inquiry Board. Paris: Ariane 501 Inquiry Board. Available at:
http://www.di.unito.it/~damiani/ariane5rep.html.

Babbie ER (2010). The Practice of Social Research, 10th ed., Thomson
Learning Inc.

Baccarini D, Salm G, Love PED (2004). Management of Risks in
Information Technology Projects. Ind. Manage. Data Syst., 104(4):
286-295.

Battle ED (2009). Using TSP at the MSG Level. Proceedings of the TSP
Symposium 2009, Louisiana, Software Engineering Institute.

Bayo ML, Ekene NS, Kenneth AC, Idowu SF (2007). Software
development: An attainable goal for sustainable economic growth in
developing nations: The Nigeria experience. Int. J. Phys. Sci., 2(12):
318-323.

Belassi W, Tukel OI (1996). A New Framework for Determining Critical
Success/Failure Factors in Projects. Int. J. Proj. Manage,. 14(3): 141
-151.

Beynon-Davies P (1999). Human Error and Information Systems
Failure: The Case of the London Ambulance Service Computer-Aided
Despatch System Project. Interact. Comp., 11(6): 669-720.

Boehm BW (1991). Software Risk Management: Principles and
Practices. IEEE Softw,. 8(1): 32-41.

Brooks FP (1995). The Mythical Man-Month: Essays on Software
Engineering, Anniversary ed., Addison-Wesley.

Callegari D, Bastos R (2007). Project Management and Software
Development Processes: Integrating RUP and PMBOK. Proceedings
International Conference Systems Engineering and Modeling.

Charette RN (2005). Why Software Fails. IEEE Spectrum, 42(9): 42-49.
Clegg C, Axtella C, Damodaran L, Farbey B, Hull R, Llyod-Joness R,

Nicholls J, Sells R, Tomlinson C (1997). Information Technology: A
Study of Performance and the Role of Organizational Factors.
Ergonomics, 40(9): 851-857.

Cohen J (1960). A coefficient of agreement for nominal scales. Educ.
Psychol. Meas., 20(1): 37-46.

Cooke-Davies TJ, Arzymanow A (2002). The maturity of project
management in different industries: An investigation into variations
between project management models. Int. J. Proj. Manage., 21(6):
471–478.

Cramer D (1997). Basics Statistics for Social Research, Routledge
Davis N, Barbara S (2009). Experiences Using the Team Software

Process at Adobe Systems. Proceedings of the TSP Symposium
2009, Louisiana, Software Engineering Institute.

Davis N, Mullaney J (2003). The Team Software Process in Practice: A
Summary of Recent Results. Technical Report, Software Engineering
Institute.

Delbecq AL, Van de Ven AH, Gustafson DH (1975). Group techniques
for program planning: A guide to nominal group and Delphi
processes, Scott, Foresman and Company.

Drummond H (1998). Riding a Tiger: Some Lessons of Taurus.
Manage. Decis., 36(3): 141-146.

Dvir D, Lipovetsky S, Shenhar A, Tishler A (1998). In Search of Project
Classification: A Non-Universal Approach to Project Success Factors.
Res. Pol., 27(9): 915-935.

Ewusi-Mensah K (1997). Critical Issues in Abandoned Information
Systems Development Projects. Commun. ACM. 40(9): 74-80.

Fairly ER (2009). Managing and Leading Software Projects, Wiley-IEEE
Computer Society Press.

Fortune J, White D (2006). Framing of Project Critical Success Factors
by a Systems Model. Int. J. Proj. Manage., 24(1): 53-65.

Galin D (2004). Software Quality Assurance-From Theory to
Implementation, Addison-Wesley.

Glaser J (2004). Management’s Role in IT Project Failures. Healthc.
Finance Manage., 58(10): 90-92.

Gray CF, Larson EW (2008). Project Management: The Managerial
Process, 4th ed., Irwin/McGraw-Hill.

Gustafson DH, Shukla RK, Delbecq A, Walster GW (1973). A
comparison study of differences in subjective likelihood estimates
made by individuals, interacting groups, Delphi groups and nominal
groups. Organ. Behav. Hum. Perf., 9(2): 280–291.

Hakim C (1987). Research Design: Strategies and Choices in the

Design of Social Research, Allen and Unwin.
Hass KB (2007). The Blending of Traditional and Agile Project

Management. PM World Today, 9(5): 1-8.
Holsti OR (1969). Content Analysis for the Social Sciences and

Humanities, Addison-Wesley.
Humphrey WS (1998). Three Dimensions of Process Improvement. Part

III: The Team Process. CrossTalk J. Defense Softw. Eng., 11(4): 14-
17.

Humphrey WS (2000). Introduction to Team Software Process,
Addison-Wesley.

Humphrey WS (2002). Relating the Team Software Process SM (TSP
SM) to the Capability Maturity Model for the Software (SW-CMM).
Technical Report, Software Engineering Institute.

Humphrey WS (2005). Why Big Software Project Fail: The 12 Key
Questions. CrossTalk J. Defense Software Eng., 18(3): 25-29.

Humphrey WS (2006). TSP: Coaching Development Teams, Addison-
Wesley.

Ibbs CW, Kwak YH (2000). Assessing Project Management Maturity.
Proj. Manage. J., 31(1): 32–43.

Jain M (2008). Delivering Successful Projects with TSP and Six Sigma:
A Practical Guide to Implementing Team Software Process,
Auerbach Publications.

Jenkins M (2005). Combining Multiple Models to Develop a Software
Project Management Methodology. Proceedings International
Conference Software Engineering and Applications, USA. ACTA
Press.

Jiang J, Klein G (2000). Software Development Risks to Project
Effectiveness. J. Syst. Softw., 52(1): 3-10.

Jiang J, Klein G, Discenza R (2001). Information System Success an
Impacted by Risks and Development Strategies. IEEE T. Eng.
Manage., 48(1): 46-55.

Jiang JJ, Klein G, Balloun JK, Crampton SM (1999). System Analyst’
Orientation and Perceptions of Systems Failure. Inf. Softw. Tech.,
41(2): 101-106.

Jones C (1995). Patterns of Large Software Systems: failure and
Success. Computer, 28(3): 86-87.

Jones C (1996). Our Worst Current Development Practices. IEEE
Softw., 13(2): 102-104.

Jones C (2006). Social and Technical Reasons for Software Project
Failures. CrossTalk J. Defense Software Eng., 19(6): 4-9.

Kappelman LA, Mckeeman R, Zhang L (2006). Early Warning Signs of
IT Project Failure - The Dominant Dozen. Inf. Syst. Manage., 23(4):
31-36.

Keil M, Tiwana A, Bush A (2002). Reconciling User and Project
Manager Perceptions of IT Project Risk: A Delphi Study. Inf. Syst. J.,
12(2): 103-119.

Lam SSY, Petri KL, Smith AE (2000). Prediction and optimization of a
ceramic casting process using a hierarchical hybrid system of neural
networks and fuzzy logic. IIE Trans., 32(1): 83–92.

Landis J, Koch G (1977). Measurement of observer agreement for
categorical data. Biometrics, 33: 159-174.

Leveson NG (2004). The Role of Software in Spacecraft Accidents. J.
Spacecraft Rockets, 41(4): 564-575.

Lloyd S, Simpson A (2005). Project Management in Multi-Disciplinary
Collaborative Research. Proceedings of the International
Professional Communication Conference (IPCC 2005), Ireland. IEEE,
pp. 602-611.

Mahaney RC, Lederer AL (2003). Information System Project
Management: An Agency Theory Interpretation. J. Syst. Softw.,
68(1): 1-9.

May LJ (1998). Major Causes of Software Project Failure. CrossTalk J.
Defense Softw. Eng., 11(7): 1-7.

Nambisan S, Agarwal R, Tanniru M (1999). Organisational mechanisms
for enhancing user innovation in information technology. MIS Q.,
23(8): 365–395.

Nasir MHNM, Sahibuddin S (2011). Critical Success Factors for
Software Projects: A Comparative Study. Sci. Res. Essays, In Press.

Nawrocki J, Olek L, Jasinski M, Paliswiat B, Walter B, Piertrzak B,
Godek P (2006). Balancing Agility and Discipline with XPrince.
Lecture Notes in Comput. Sci., 3943: 266-277.

Nuseibeh B (1997). Ariane 5- Who Dunnit? IEEE Softw., 14(3): 15-16.
OGC Best Practice. (2005). Common Causes of Project Failure.

Nasir and Sahibuddin 1231

Oz E (1994). When Professional Standards are Lax, The CONFIRM

Failure and its Lessons. Commun. ACM, 37(10): 29-36.
Oz E, Sosik JJ (2000). Why Information Systems Projects are

Abandoned: A Leadership and Communication Theory and
Exploratory Study. J. Comp. Inf. Syst., 41(1): 66-77.

Perkins TK (2006). Knowledge: The Core Problem of Project Failure.
CrossTalk J. Defense Softw. Eng., 19(6): 13-15.

Pinto JK, Mantel SJ (1990). The Causes of Project Failure. IEEE T.
Eng. Manage., 34(7): 305-327.

Pinto JK, Rouhiainen PJ (2001). Building Customer-Based Project
Organizations, John Wiley and Sons.

Procaccino JD, Verner JM, Overmyer S, Darter ME (2002). Case Study:
Factors for Early Prediction of Software Development Success. Inf.
Softw. Tech., 44(1): 53-62.

Project Management Institute (2008). PMBOK: A Guide to the Project
Management Body of Knowledge. 4th ed., Project Management
Institute.

Project Management Institute (2009). The Growing Gap between
Project Manager Supply and Demand. PMI Today Supplement, June,
2.

Project Management Institute (2010). PMI Fact File. PMI Today, May,
16.

Rainer A, Hall T (2003). A quantitative and qualitative analysis of factors
affecting software processes. J. Syst. Softw., 66(1): 7-21.

Sauer C, Cuthbertson C (2003). The State of IT Project Management in
the UK 2002-2003. Comput. Wkly., 15 April.

Schmidt R, Lyytinen K, Keil M, Cule P (2001). Identifying Software
Project Risks: An International Delphi Study. J. Manage. Inf. Syst.,
17(4): 5-36.

Schmitt JW, Kozar KA (1978). Management's Role in Information
System Development Failures: A Case Study. MIS Q., 2(2): 7-16.

Seaman CB (1999). Qualitative Methods in Empirical Studies of
Software Engineering. IEEE T. Softw. Eng., 25(4): 557-572.

Skulmoski GJ, Hartman FT, Krahn J (2007). The Delphi Method for
Graduate Research. J. Inf. Technol. Educ., 6: 1-21.

Standing C, Gulfoyle G, Lin V, Love PED (2006). The Attribution of
Success and Failure in IT Projects. Ind. Manage. Data Syst., 106(8):
1148-1165.

Standish Group International (1995). Chaos. Technical Report
Standish Group International (1999). Chaos: A Recipe for Success.

Technical Report.
Standish Group International (2001). Extreme Chaos. Technical Report.
Standish Group International (2006). Chaos. Technical Report.
Standish Group International (2009). Chaos Summary 2009: 10 Laws of

CHAOS. Technical Report.
Standish Group International (2010). Chaos Summary for 2010.

Technical Report.
Taylor A (2000). IT Projects: Sink or Swim. Comput. Bull., 42(1): 24-26.
Taylor H (2006). Critical Risks in Outsourced IT Projects: The

Intractable and the Unforeseen. Commun. ACM, 49(11): 75-59.
Tukel OI, Rom WO (2001). An Empirical Investigation of Project

Evaluation Criteria. Int. J. Oper. Prod. Man., 21(3): 400–416.
von Wangenheim CG, Silva DAd, Buglione L, Scheidt R, Prikladnicki R

(2010). Best Practice Fusion of CMMI-DEV v1.2 (PP, PMC, SAM)
and PMBOK 2008. Inf. Softw. Tech., 52(7): 749-757.

Wateridge J (1995). IT projects: A Basis for Success. Int. J. Proj.
Manage., 13(3): 169-172.

Wateridge J (1998). How Can IS/IT Projects be Measured for Success.
Int. J. Proj. Manage., 16(1): 59–63.

Weber RP (1996). Basic Content Analysis. 2nd

ed., SAGE Publications.

White D, Fortune J (2002). Current Practice in Project Management –
An Empirical Study. Int. J. Proj. Manage., 20(1): 1-11.

Whittaker B (1999). What Went Wrong? Unsuccessful Information
Technology Projects. Inf. Manage. Comput. Security, 7(1): 23-29.

Wilson D (2010). New TSP Paths: System Engineering Team uses TSP
to Manage Software Test Product Development. Proceedings of the
TSP Symposium 2010, Pittsburgh, PA, Software Engineering
Institute.

Wingrove A (1986). The Problems of Managing Software Projects.
Softw. Eng. J., 1(1): 3-6.

Yeo KT (2002). Critical Failure Factors in Information Systems Projects.
Int. J. Proj. Manage., 20(3): 241-246.

1232 Int. J. Phys. Sci.

Zwikael O, Globerson S (2006). From Critical Success Factors to

Critical Success Processes. Int. J. Prod. Res., 44(17): 3433–3449.

