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The tourist industry can be considered as a complex system because it is made up of many elements 
(tourist companies) that interact with each other in a non-linear way. In turn, each company can also be 
considered by itself as a complex system because its behavior is non-linear with time, so that some 
aspects of tourism companies can be characterized by a non-linear mathematical tool called fractal 
analysis. In this paper fractal analysis is used to characterize the dynamics of the sales of a restaurant 
in a Great Tourism hotel (GTs). The purpose of applying this fractal analysis is to characterize the 
patterns which rule out the sales dynamic in a restaurant hotel, in order to improve the planning and the 
customer services in the restaurant area. 
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INTRODUCTION 
 
Tourism is recognized as one of the largest world level 
industries (Torres, 2003). Several countries trust in their 
tourism industry dynamics to generate revenues 
(Rodenburg, 1980) employments (Clever et al., 2007) 
and infrastructure development (Gee and Fayos, 1997). 
The economic importance of tourist companies resides in 
the impulse, creation and development of other industries 
(construction, banking, trade) through the multiplying 
effect that characterizes the tourism industry (Figueras, 
2001). Tourism contributes to the 8.2% of Gross 
Domestic Product and generates one out of eleven direct 
and indirect jobs in Mexico. The hosting services present 
an average occupancy of 51.36%. One of the most 
important tourism destinations is Mexico City (SECTUR, 
2008) because of its businesses, which are defined by 
professional activities. 

The study of hospitality services has been approached 
by using different techniques to cope with distinctive 
problems such as improving forecast, modeling demand, 
cost efficiency and analysis of supply chain using 
qualitative and quantitative methods. According to Song 
and Li (2008), it is possible to classify these application 
methods in: a) time series models, b) econometrics 
models, and c) other models. 
 
 
 
*Corresponding author. E-mail: ibadillop@ipn.mx 

The time series methods, explain a variable with regard 
to its own past and a random disturbance term. These 
methods range from the very simple extrapolation, to 
more complex time-series techniques like the 
Autoregressive Integrated Moving Average (ARIMA), 
typically applied to forecast a demand of a destiny (Kim 
and Moosa, 2001; Kulendran and Witt, 2003; Chu, 
2008a). Coshall (2009) used ARIMA to develop an 
estimated demand data added social events that 
disestablish tourism, thus the author describes this like a 
superior combination. Meanwhile the Autoregressive 
Moving Average with Exogenous Variable (ARMAX) 
(Akal, 2004) is a method to outperform the simple 
econometric cause–effect technique in terms of accuracy, 
and the ARAR algorithm (Chu, 2008b) to forecast 
multiple demands. 

There are some examples of techniques adaptable to 
the tourism relations to generate findings, in any case. 
The successful development of these methods is linked 
with the quality input data. However, for applying these 
techniques, it is necessary to fit data to the models 
relation, which means it is not necessary to know the 
exact dynamic behavior of the data. However, some 
models consider the data dynamic like a process, for 
example sales as linear behavior, in which case the 
historical data are related by a normal distribution. 
Nevertheless, the dynamics of a studied real process 
could be non-linear; in such a  case,  the  analysis  would 



 
 
 
 
be incorrect. 

The econometric models deal with casual relations 
between the study phenomenon and its influence 
variables. The main econometric methods are: the 
Autoregressive Distribution like lag model (ADLM), the 
Time Varying Parameter (TVP) (Song and Witt, 2000), 
and the Vector Autoregressive model (VAR) (Song and 
Witt, 2006). The most outstanding study was applied by 
Wong et al. (2006), which was worked with a Bayesian 
focus Bayesian Vector Auto-regression (BVAR). The 
results showed better adjustment to tourism data and the 
authors made it to improve the forecast model. However, 
it does not take into account possible long-run or co-
integration relationships between the variables. On the 
other hand, in the Error Correction Model (ECM), 
Dritsakis (2004) gave an evidence supporting co-
integration, which suggests the existence of an 
equilibrium in a long-run relationship among important 
variables. Therefore, the author demonstrated no single 
forecasting method can be consistently ranked as best 
across different situations (origin-destination country, 
forecasting horizons, accuracy measures etc.). Thus, the 
emergence of combined methods has been more 
successful. Nevertheless, these methods currently are 
limited to the number of variables and possible 
combinations; meanwhile the same condition gives them 
the possibility to discriminate the data. 

There are models composed by diverse methods, 
which (have been using a combination of algorithms to 
analysis tourism. These models include chaos theory 
(Zahra and Ryan, 2007; Russell et al., 1999), probabilistic 
models (Rodriguez and Estéves, 2007), dynamic models 
(Muñoz, 2006; Muñoz and Mattin, 2007) and generated 
algorithms (Hernandez and Cáceres, 2007; Chen and 
Wang, 2007). In a particular study, Chen and Soo (2007) 
constructed a cost function to determinate the relation 
cost in hotel services. Nevertheless, the authors 
recognize that there are other factors affecting the 
outcome of a hotel’s performance such as management 
style, market orientation, hotel image, employee skills 
and other operating characteristics. These elements can 
be considered in the neuronal net techniques (Palmer, 
2006). These methods are flexible instruments for 
researchers interested in forecasting the behaviors which 
occur in the field of tourism (Bloom, 2005; Pattie and 
Snyder, 1996; Tsaur et al., 2002). These are commonly 
used in forecasting, since they do not depend on the 
statistical conditions, such as the type of relation between 
variables or the type of data distribution. However, the 
values of the parameters obtained by these methods do 
not have a practical interpretation, so it is not possible 
analyze the role played by each input variable in the 
forecasting carried out. 

According to McKercher (1999) tourism is described by 
many variables; it behaves as a non-linear system and 
displays the dynamics of a complex system (Runyan and 
Wu, 1979)  Complex  systems  science  offers  enormous 

Briones-Juarez et al.        2423 
 
 
 
possibilities for new research in tourist companies (Farrel 
and Ward, 2004). It is a tool compatible with their 
development and allows a holistic understanding of the 
non-linear nature of the interactions between various 
factors affecting the tourism industry. The fractal analysis 
provides a quantitative tool to characterize complex 
systems, such as the factors of supply and demand that 
affect tourist companies. This method is more robust, so 
it is possible to know the behavior of the phenomena in 
different scales, which means that the change over time 
is associated with a power law that characterizes the 
system structure. 

The work developed in a hotel restaurant is very 
complex not only because it integrates many sequential 
tasks, but also because the order of the services 
depends on the consumer behavior. The uniformity of 
services is difficult to establish because every production 
unit can be different from other. Changes come from the 
consumer requirements and provoke hard possibilities to 
predict the sales level, requirements materials and 
inventory needs. Nevertheless, the managers try to 
obtain the appropriated information to design the 
planning program according to the sales capacity, the 
inventory costs and the revenue of expected volume. The 
vital information is constituted by how many units of 
material are needed to develop the service processes 
and how much time must be considered right for planning 
and scheduling these services. 

The use of appropriate instruments for the optimal 
planning of production capacity is important, since they 
allow reducing cost, increasing profits and supporting the 
services expectations. By the other hand, the application 
of traditional tools is limited to cope with the complex 
behavior of these sort of systems. Therefore, the present 
work aims to carry out a fractal analysis that 
characterizes the dynamics of the fluctuations sales in a 
restaurant system located into Great Tourism hotels. This 
type of analysis is appropriate because the restaurant 
manifests a high degree of complexity due to their service 
schedules, the specification materials, the food offered 
and the productive considerations associated with their 
services. 

The purpose of applying the fractal analysis is to 
characterize the emergence of patterns due to the non-
linear interaction of these and other factors, in a global 
manner that can be used to improve the planning 
services and scheduling of the restaurant. 

The research begins by gathering the sales data of the 
restaurant system, in order to determine the global 
dynamics of the system, the statistical distribution of the 
data, and the self-affine methods to be used. These are 
contrasted with the time series of the data to obtain the 
Hurst exponent, which is finally used to establish the 
fractal characterization of the system under study. 

The organization of this paper is as follows: First is an 
introduction of tourism and the literature review of 
analyzed   methods  applied  to  this  industry.  Next  is  a 
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presentation of basic aspects related to complex systems 
and fractal geometry. This is followed by an application of 
the fractal analysis to the case study, presentation of the 
results, discussions, and then conclusions. 
 
 
Complexity science 
 
Complex systems contain many constituents interacting non-linearly 
in such a way that their behavior is often a balance between non-
stationary and stationary components. Accordingly, a complex 
system is capable of emergent behavior that usually is responsible 
for power-laws that are universal and independent of the 
microscopic details of the phenomenon, e.g., atoms in a solid, cells 
in a living organism, or traders in a financial market (Auyang, 2001). 
A complex system (physical, biological, chemical, or financial, just 
to mention a few) can be defined as a system with a large number 
of degrees of freedom.  

A number of different tools for studying complex, non-linear 
dynamic systems have been developed in the last few decades: 
phase transition, self-organization, growth models, cellular 
automata, hierarchical models, co-adaptation, strange attractors, 
emergence, computability, recursion, and fractal geometry, among 
others. 

The scientific study of complex systems within a fractal analysis 
framework, in general, consists of three major approaches: 
theoretical, experimental, and computational. The goal is to have, 
on the one hand, the simplest and most parsimonious description of 
the phenomena under study and, on the other hand, the most 
faithful representation of the observed characteristics.  

Fractal mathematics has proven to be a useful tool in quantifying 
the structure of a wide range of idealized and naturally- occurring 
objects, from pure mathematics, through physics and chemistry, to 
biology, medicine, sociology, and economics (Klonowski, 2000). 

The term fractal (from Latin fractus –irregular, fragmented) 
applies to objects in space or fluctuations in time, which possess a 
form of self-similarity and they cannot be described within a single 
absolute scale of measurement. Fractals are recurrently irregular in 
space or time, with themes repeated at different levels or scales like 
the layers of an onion. Fragments of a fractal object or sequence 
are exact or statistical copies of the whole created by shifting and 
stretching. Fractal geometry has evoked a fundamentally new view 
of how both non-living and living systems result from the 
coalescence of spontaneous, self-similar fluctuations over many 
orders of time and how systems are organized into complex, 
recursively-nested patterns over multiple levels of space 
(Klonowski, 2000). 

In a strict sense, most time series are one dimensional, since the 
values of the considered observable are measured in 
homogeneous time intervals. Hence, unless there are missing 

values, the fractal dimension of the support is ��0� = 1. However, 
there are rare cases where most of the values of a time series are 

very small or even zero, causing a dimension ��0� < 1 of the 
support. Even if the fractal dimension of support, the information 
dimension ��1� and the correlation dimension ��2� can be studied. 

��2� is in fact explicitly related to all exponents studied in 
monofractal time series analysis. However, usually a slightly 
different approach is employed based on the notion of self-affinity. 
Here, one takes into account that the time axis and the axis of the 
measured value 	�
� are not equivalent. Hence, a rescaling of time 

 by a factor � may require rescaling of the series value 	�
� by a 

different factor �� in order to obtain a statistically similar (that is, 
self-similar) picture.  
 

	�
� → ��	��
�                   (1) 

 
In this case the scaling relation, holds for an arbitrary factor �, 

 
 
 
 
describing the data as self-affine (Feder, 1988). The Hurst 
exponent �(after the hydraulic engineer H. E. Hurst (1951) 
characterizes the type of self-affinity). 

The trace of random walk (Brownian motion) is characterized by 
� = 0.5, implying that the position axis must be rescaled by a factor 
of 2 if the time axis is rescaled by a factor of 4. 

Time series is one dimensional array of numbers 	���, � = 1 … , � 
representing values of an observable 	 usually measured 
equidistant in time. The series analysis allows verification of 
macroscopic models of complex evolution on the basis of data 
analysis (Olemskoi, 2002). The expected relationship between the 

value of a series at time 
 and its value at time τ + t is a measure of 
the correlation present in the series. 

The Hurst exponent H can be used to determine whether a time 
series possesses statistical auto-affine invariance (such as the 
fractional Brownian motion); it can also tell us what kind of 
correlation is presented in the time series. If the Hurst exponent is 
less than 0.5, the time series displays “anti-persistence” or negative 
correlations: positive increments are more likely to be reversed and, 
therefore, the next period’s performance is likely to be below 
average. If the Hurst exponent is greater than 0.5, the process 
displays “persistence” or positive correlations: positive increments 
are more likely to remain above average. If the Hurst exponent is 
equal to 0.5, the process is completely random (no correlation): the 
data do not display any memory, and positive increments are thus 
equally likely to be followed by above-average or below-average 
performance (Morales et al., 2010). 
 
 
Self-affine traced methods 
 
In order to observe fractal scaling behavior in time series, several 
quantitative tools have been developed. In this paper were applied 
four self-affine traced methods to determine the Hurst (�) exponent: 
1) the rescaled-range analysis (R/S), 2) the roughness-length, 
(R/L), 3) the variogram (VG), and 4) the wavelets (WV) method. 
The rescaled-range analysis is one of the oldest and best-known 
methods for determining �. This method was proposed by 
Mandelbrot and Wallis (1969) and it is based on previous 
hydrological studies of Hurst (1951). The rescaled-range � �⁄  is 
defined as the ratio of the maximal range of the integrated signal 
(�) normalized to its standard deviation. For time series 
characterized by long-range correlations, the expected value of 
rescaled-range scales as � �� ∝ ���⁄ . If the time record possesses 

only short-range correlations, then the log-log plot of � �⁄  is also a 
straight line, with slope 0.5. The roughness-length and variogram 
methods are based on the scaling behaviour of the standard 

deviation �� ∝ ����� and the semivariance �� ∝ �!� . Finally, 
wavelets offer an alternative method for analysis of complex time 
series (Struzik, 2001). The wavelets method is based on the fact 
that wavelet transforms of self-affine traces have self-affine 
properties. This method is appropriate for analysis of non-stationary 
series, that is, those in which the variance does not remain constant 
with increasing length of the data set. The aim of the wavelet 
transform is to express an input signal into a series of coefficients of 
specified “energy”. The discrete numbers associated with each 
coefficient contain all the information needed to completely describe 
the series provided one knows which analyzing wavelet was used 
for the decomposition. Wavelet transform applies scaling functions 
that have the properties of being localized in both time and 

frequency. A scaling coefficient " ∝ ���#$ !⁄ , where � denotes a 
scale parameter, characterizes and measures the width of a 
wavelet (Balankin et al., 2004). 
 
 
APPLICATION OF SYSTEM SCIENCE TO THE CASE STUDY 
 
Time   series  of  complex  systems  exhibit  fluctuations  on  a  wide
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Figure 1. (a) Time records of breakfast sales in the 2007 constant Mexican pesos; and (b)-(d) 
realized sales volatility for the period of 1,024 business days for different horizons: (b) n = 3, (c) 
n = 14 and (d) n = 32 business days. All time series correspond to the period from 7 December 
2004 to 26 September 2007. 

 
 
 

 
 
Figure 2. (a) Time records of lunch sales in the 2007 constant Mexican pesos; and (b)-

(d) realized sales volatility for the period of 1,024 business days for different horizons: 
(b) n =3, (c) n =14 and (d) n = 32 business days. All time series correspond to the 
period from 7 December 2004 to 26 September 2007. 

 
 
 
range of time scales and/or broad distribution of the values. In both 
equilibrium and non equilibrium situations, the natural fluctuations 
are often found to follow a scaling relation over several orders of 
magnitudes. Such scaling behavior allows for a characterization of 
the data and the generating complex system by fractal (or 
multifractal) scaling exponents, which can serve as characteristic 
finger spring of the system in comparison  with  other  systems  and 

with models. So that to quantify the scaling dynamics of the Great 
Tourism category hotels in this work, we studied the daily records of 

the sales %�
� and the sale ���%� fluctuations (or volatility) from the 
daily sales of meals (breakfast, lunch, and dinner) provided by a 
Great Tourism Category hotel located in the Mexico City downtown. 
Specifically, the breakfast (Figure 1(a)), lunch (Figure 2(a)), dinner 
(Figure   3(a)),   and   total   (Figure   4(a))  sales  were  analyzed  in
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Figure 3. (a) Time records of dinner sales in the 2007 constant Mexican pesos; and (b)-
(d) realized sales volatility for the period of 1,024 business days for different horizons: (b) 
n =3, (c) n =14 and (d) n = 32 business days. All time series correspond to the period 
from 7 December 2004 to 26 September 2007. 

 
 
 

 
 
Figure 4. (a) Time records of total sales in the 2007 constant Mexican pesos; and 

(b)-(d) realized sales volatility for the period of 1,024 business days for different 
horizons: (b) n =3, (c) n =14 and (d) n = 32 business days. All time series correspond 
to the period from 7 December 2004 to 26 September 2007. 

 
 
 
constant 2007 Mexican pesos over the period from 1

st
 January 

2004 to 27 September 2007, representing 1,365 observations for 
each time series. Then there were constructed 311 time series of 

realized volatility ���%� for each time series  (because  in  finance  is 

typically characterized the price volatility in terms of the standard 
deviation of prices at particular time scale), 
 

����� = &〈%!�
�〉� − 〈%�
�〉�
!                                (2) 
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Figure 5. Horizon dependence of the Hurst exponent (values of ��) in the semilog coordinates (time scale in business 

days, circles and squares: experimental data of the breakfast sales volatility, solid line: data fitting by a power-law). The 
values of �� are obtained from: (a) the rescaled-range method, (b) the roughness length method, and (c) the averaged 
from four methods. 

 
 

 
 
Figure 6. Horizon dependence of the Hurst exponent (values of ��) in the semilog coordinates (time scale in business days, 
circles and squares: experimental data of the lunch sales volatility, solid line: data fitting by a power-law). The values of �� are 
obtained from: (a) the rescaled-range method, (b) the roughness length method, and (c) the averaged from four methods. 

 
 
 
Length * = 1,024 business days (the last 1,024 records of each 
time series) for different time horizons , = 2,3, … ,311 (from two 
business days to three business years), where 
 is the business 
time, 〈… 〉� denotes the business time average within a window of 
size  . In this study, all records of volatility (Figures 2(b)-2(d), 3(b)-
3(d), 4(b)-4(d), and 5(b)-5(d)) correspond to the period from 7 
December 2004 to 26 September 2007. One can see that the sale 
volatility changes day to day in such a way that time series of 

volatilities ���%� realized at different time intervals , look similar.  
 
 
Fractal analysis 
 
To quantify the intensity of long range correlations, the local Hurst  

exponents of each time record ���
� were determined by four self-
affinity traced methods adopted, from the Benoit 1.3 Software: the 
rescaled-range analysis, the roughness length, the variogram, and 
the wavelet methods.  

On the other hand, the statistical distributions of the daily sales of 
meals were analyzed with the help of @Risk Software, which ranks 
the fitted distributions using three test statistics; Chi-Square, 
Anderson-Darling, and Kolmogorov-Smirnov statistics (Conover, 
1980). 
 
 

RESULTS AND DISCUSSION 
 
We find  that  the  realized  volatilities  (Figures  1(b)-1(d), 

2(b)-2(d), 3(b)-3(d), and 4(b)-4(d)) possess self-affine 
invariance within wide ranges of business time scale 
characterized by well defined Hurst exponent �� for each 
horizon , (Figures 5(a)-5(c), 6(a)-6(c), 7(a)-7(c), and 
8(a)-8(b), and Table 1): 
 
�� = 0.58 ∓ 0.02    for breakfast sales volatility             (3) 
 
�� = 0.62 ∓ 0.06    for lunch sales volatility             (4) 
 
�� = 0.80 ∓ 0.05     for dinner sales volatility                  (5) 
 
�� = 0.73 ∓ 0.03      for total sales volatility             (6) 
 
Our findings mean that the long horizon realized 
volatilities (, > 13 for breakfast, , > 12 for lunch, , > 20 
for dinner, and , > 16 for total) are persistent, that is, 
volatility increments are positively correlated in business 
days (a large value is usually followed by a large value 
and a small value is followed by small value), whereas 
the short-horizon volatilities (, < 13 for breakfast, , < 12 
for lunch, , < 20 for dinner, and , < 16 for total) display 
negative correlations in business days (a large value is 
usually followed by a  small  value  and  a  small  value  is
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Figure 7. Horizon dependence of the Hurst exponent (values of ��) in the semilog coordinates (time scale in business days, circles 

and squares: experimental data of the dinner sales volatility, solid line: data fitting by a power-law). The values of �� are obtained 
from: (a) the rescaled-range method, (b) the roughness length method, and (c) the averaged from four methods. 

 
 
 

 
 

Figure 8. Horizon dependence of the Hurst exponent (values of ��) in the semilog coordinates (time scale in business days, circles 
and squares: experimental data of the total sales volatility, solid line: data fitting by a power-law). The values of �� are obtained from: 
(a) the rescaled-range method, (b) the roughness length method, and (c) the averaged from four methods. 

 
 
 
Table 1. The best fitted values of Hurst exponents for the sale 
volatilities. 
 

Method Breakfast Lunch Dinner Total 

R/S 0.58 0.56 0.75 0.70 

R-L 0.57 0.68 0.84 0.75 

Average 0.60 0.66 0.80 0.73 

 
 
 
usually followed by a large value). 

The crossover (change point of the scaling exponent 
value) from anti-persistent to persistent behavior 
indicates the existence of intrinsic horizon scale of sales 
volatility, , ≈ 14. To get a deeper insight into the sales 
volatility dynamics, there was also performed the 
statistical analysis of the time series volatilities. 

We   find   for  short   time   horizons,   , ≤ 13,  that  the 

conditional probability of realized volatilities is best fitted 
by the light-tailed Beta General (for breakfast and total 
sales) and Pearson (for lunch and dinner sales) 
distributions (Figures 10(a), 11(a), 12(a), and 13(a)); that 
is, there are correlations that decay sufficiently fast that 
they can be described by a characteristic correlation time 
scale. 

At the same time, for larger horizons, 14 ≤ , < 32, the 
conditional probability of realized volatilities is the heavy-
tailed Log-logistic distribution for breakfast (Figure 9(b)), 
lunch (Figure 10(b)), dinner (Figure 11(b)), and total sales 
(Figure 12(b)), that is, there are correlations that decay 
sufficiently slow that a characteristic correlation time 
scale cannot be defined. 

Finally, we find that for time horizons, , ≥ 32, the 
conditional probability of realized volatilities is the 
Triangular distribution for breakfast (Figure 9(c)), lunch 
(Figure   10(c)),   dinner   (Figure  11(c)),  and  total  sales
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Figure 9. Conditional probability distributions of breakfast sales volatilities for horizons: (a) n = 3 (bins: experimental data, solid 

lines fitting by the Beta General distribution); (b) n = 14 (bins: experimental data, solid lines fitting by the Log-logistic distribution); 
and (c) n = 32 (bins: experimental data, solid lines fitting by the Triangular distribution). 

 
 
 

 
 
Figure 10. Conditional probability distributions of lunch sales volatilities for horizons: (a) n = 3 (bins: experimental data, 
solid lines fitting by the Pearson distribution); (b) n = 14 (bins: experimental data, solid lines fitting by the Log-logistic 
distribution); and (c) n = 32 (bins: experimental data, solid lines fitting by the Triangular distribution). 

 
 
 

 
 
Figure 11. Conditional probability distributions of dinner sales volatilities for horizons: (a) n = 3 (bins: experimental data, solid lines 

fitting by the Pearson distribution); (b) n = 14 (bins: experimental data, solid lines fitting by the Log-logistic distribution); and (c) n = 32 
(bins: experimental data, solid lines fitting by the Triangular distribution). 

 
 
 

(Figure 12(c)). 
 
 
Conclusions 
 
In this work, we show that the time series of sales volatility 
of a  restaurant  (a  tourism  company  seen  as  complex 

system) can be characterized within a fractal geometry 
framework (a non-linear method for analysis). In this way 
we find a transition of the breakfast, lunch, dinner, and 
total sales volatilities from anti-persistent (negative 
correlations) to persistent (positive correlations) behavior 
in the horizon scale. This transition or crossover is 
accompanied   by  the  changes  in  the  type  of  volatility
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Figure 12. Conditional probability distributions of total sales volatilities for horizons: (a) n = 3 (bins: experimental data, solid lines fitting by 

the Beta General distribution); (b) n = 14 (bins: experimental data, solid lines fitting by the Log-logistic distribution); and (c) n = 32 (bins: 
experimental data, solid lines fitting by the triangular distribution). 

 
 
 

distributions, which are light-tailed for short horizons and 
there are heavy-tailed for long-horizons (explained by 
power lows). The crossover from anti-persistent to 
persistent behavior has been observed in a wide variety 
of systems displaying generalized scaling dynamics with 
continuously varying exponent the existence of a 
“universal” mechanism which gives rise to crossover from 
antipersistent to persistent behavior in system of different 
nature could provide a new insight to the physics of 
complex system. 

As we have seen, the complex system under study is 
characterized by multifractal (several Hurst exponent) 
dynamics. This finding will help in obtaining predictions 
on the future behavior of the system and on this reaction 
to external perturbation changes in the boundary 
conditions. One can test and interactively improve 
models of the system until they reproduce the observed 
scaling behavior. One example for such an approach is 
climate modeling, where the models were shown to need 
inputs from volcanoes and solar radiation in order to 
reproduce the long-term correlated (fractal) scaling 
behavior (Vyushin et al., 2004) previously found in 
observational temperature data (Koscielny-Bunde et al., 
1988). 

Our findings have potential implications in the 
construction of a branch of tools to control in-puts and 
forecasting the meals demand in order to improve the 
customer-service as well as reduce operative costs in 
restaurants that belong to Great Tourism Category 
hotels, because we have demonstrated that the sales 
volatilities analyzed get a critical point where positive 
correlations are displayed (, ≥ 14) and fitted by the 
heavy-tailed Log-logistic distribution (14 ≤ , < 32) 
expressed by power-laws. 
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