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INTRODUCTION 
 
In this paper, we developed a third–stage inverse 
Rgunge-Kutta method to solve initial value problems 
(IVPs) of the form 
 

bxayxyyxfy ≤≤==′ ,)(),,( 00 ,                    (1.1) 
 
aimed at finding out its level of consistency and the rate 
of convergence in the solution of first order differential 
equations. 

Many researchers have done a great deal of work in 
this area. Worthy of note are those of Ademiluyi (2002, 
2005); Okunbor (1985); Ademiluyi and Babatola (2000); 
Burden et al. (2005); Verner (1990, 1991) and a host of 
others. In their different approaches, they showed that a 
two-stage explicit inverse Runge-Kutta method posses 
the potential of improving results if the parameters are 
varied.  

This idea led us to evolve the new third-stage explicit 
inverse Runge-Kutta method with the belief that it rate of 
convergence will be faster with improved results. 

According to Lambert (1973), the philosophy behind the 
Runge-Kutta method is to retain the advantages of one - 
step methods and to improve on the performance of 
Euler method. Due to loss of linearity in the one-step 
methods, error analysis is considerably more difficult than 
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the case of linear multi-step methods. Traditionally, 
Runge-Kutta methods are all explicit, although, recently, 
implicit Runge-Kutta methods have extensively been 
used to improved weak stability characteristics. Thus, a 
Runge-Kutta method may be regarded as a particular 
case of    
 

);,(1 hyxhyy nnnn φ=−+                                   (1.2) 
 
According to Shepley and Ross (1989); “the fact that the 
general method (2) makes no mention of the 
function ),( yxf , which defined the differential equation, 
makes it impossible to define the order of the methods 
independently of the differential equation, as was the 
case with linear multi- step methods”. 

As a matter of fact, when we derived a particular order 
of Runge-Kutta method there are, in general, a number of 
free parameters that cannot be used to increase the 
order. Shepley and Ross (1989); continued by saying that 
“we choose these parameters in such a way that the 
resulting methods have simple coefficients convenient for 
desk computation”. When these parameters are not 
carefully selected, it may lead to an increase of the local 
truncation error.  

Perhaps, the most important task is to apply these 
parameters for the reduction of the local truncation error. 
This error depends on the complicated nature of the 
function ),( yxf . 

These iterative methods   (the   Runge-Kutta  methods) 
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can be used to solve singular and non-singular initial 
value problems as will be seen later in this work. 
Agbeboh (2006) reaffirmed that “singular initial-value 
problems are problems that have points of discontinuities 
in a differential system. While non -singular initial -value 
problems do not have points of discontinuities”. We are 
therefore, interested in solving the general initial - value 
problem in (1.1), (whose gradient function ),( yxf  may 
have points of discontinuities), using our third-stage 
explicit inverse Runge-Kutta formula. 

Arising from the above stated problems, we: 
 
(a) Developed the new method by increasing the order of 
the two stage to three and derived a new formula that 
gives improved results in the solution of (1.1), 
(b) Implement the new rational third order Runge-Kutta 
method for better result by use of appropriate FORTRAN 
package,  
(c) Compared the performance of the new method with 
Ademiluyi (2005); Agbeboh et al. (2009) and the classical 
4th order RKF with a view to finding out which of the 
methods has a faster rate of convergence with minimal 
error bound. 
 
 
METHOD OF RESEARCH 
 
To carry out our assignment satisfactorily we modified the Runge-
Kutta methods of order three to produce our new version of third 
order inverse rational Runge-Kutta method by using Taylor series 
and binomial algorithm to develop our new Rational R-K scheme, 
and use the FORTRAN algorithms, to solve some tested singular 
ivps with known results. The results obtained from our formula 
compared favourably well with existing formulae in the works of 
Agbeboh et al. (2009); Ademiluyi (2005); Butcher (1987); Lambert 
(1973,1995) and Okunbor (1985) some of which are shown. 

However, these methods vary in performance and accuracy 
hence, Butcher (1987), specified, that “not all such method have the 
capacity to find solutions to these initial value problems”. This gave 
us the motivation to develop a one-step explicit Runge-Kutta 
formula that can provide solutions to singular and non -singular 
initial value problems. Our knowledge of complex analysis exposed 
us to a wide range of problem with singularities. 

Before designing our formula, we considered the works of 
Agbeboh (2006); Ademiluyi (2005); Okunbor (1985); Ademiluyi and 
Babalola (2000); Aashikpelokhai (1991) and Fatunla (1980, 1988) 
and were motivated by their striking proposals to study the third - 
order inverse Runge-Kutta formula. 
 
 
DERIVATION OF THE SCHEME 
 
Consider the case where R = 3, so that 
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 ),( 12122 kbzhaxhgk nn ++=                                       (3.1b) 

 

),( 23213133 kbkbzhaxhgk nn +++=                         (3.1c) 
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With constraints  
 

212332211 ,0 babba ==== ,  

3233132313 babbba −=�+=                                     (3.1e) 

 
Thus, a   3- stage explicit inverse formula of the form (3.1) is a 
formula of the form.  
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In developing the order we assume that the differential equation 
(3.1b) has a unique solution y(x) on [a, b] when expanded in Taylor 

series about any point nx   

 
as  
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This expansion holds for all ( )n n 1 n n 1x , x a,b ; x x x.+ +∈ < <  

since the step length n 1 nh  x – x ,+=  then, substituting 

n 1 nx , x  x  hnx += = +  in (3.3), yields: 

 

( ) ( ) ( ) ( ) ( ) ( )
2 3

4
n n n n ny x  h   y x   y x  y  x  y   x   0 h

1! 2! 3!
h h h′ ′ ′′ ′′′+ = + + + +         

                                                                                                   (3.4)                                           

Replacing ( ) ( )n n n n 1y x  by y ,  y x  h  by y ,++       we have,  
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Adopting the differential notations in (3.4), we have  
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                                                                                     (3.7) 
 

Where ,x yf f  represents the derivatives of f with respect to x and 

y respectively.        
Substituting (3.5) in (3.3), we have 
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                                                                                                    (3.8) 
 

2
x y xx xy yyF  f  ff , G  f  2ff  f f= + = + +                       (3.9) 

 
Substituting (3.9) into (3.8) we obtain  
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2 3

4
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Thus  
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From (3.1c) we have that an R–stage explicit inverse Runge-Kutta 
method is  
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Where  ( )1 n nK  hg x ,  z   hg= =                          (3.13) 
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length or grid – spacing, we obtain ' , 2,3ik s i =  in (3.12) 

about ( ,n nx z ) such that 
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Substituting (3.12) in (3.16), we obtain 
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From (3.1.4), we know that                  
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By sufficiently differentiating (3.20), we can express the differentials 
involving g and its partial derivatives in terms of f and its partial 
derivatives. To facilitate the comparison of coefficients in terms of f 
and its partial derivatives only, we make this following substitution: 
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 x xx xxx

x xx xxx z2 2 2
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From (3.19), we have that    
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On substituting for k1 and k2 and deduce by comparison, we obtain 
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1
K  hg  h a F h G  0 h  

2
a= + + +           (3.24)                                                                  
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 Adopting the binomial expansion theorem on the right hand side of 
(3.4) and ignoring higher terms we obtain 
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Simplifying further for i=1, 2, 3, (3.27) becomes 
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Substituting for k1, k2 and k3 in (3.28), we obtain 
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 Simplifying and arranging in powers of h, we have 
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Recalling from (3.11), we have that  
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Comparing the coefficients of h, h2 and h3 in (3.30) and (3.31) using 
(3.5.1) and (3.5.2) where condition 
  

( )4
n 1  T  0 h+ =                                                                 (3.33)   

 
is imposed. We obtained the following system of equations for the 
family of three – stage schemes of order three.  
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Where, ( )1 n nk hg x ,  z=   

 

2 n n 1K hg (x 2 / 3h,  z 2 / 3k )= + + , 

( ) ( )2
n n n n n ng x , z   f x ,y , z  1/ynz=− =                  (3.37)  

 
respectively. By putting R =3, we obtain (3.2) a scheme of order 

three with ( )4
n 1T 0 h ,+ = whose parameters must satisfy the 

following system of equations 
 

1 2 3w w w 1+ + = , 2 2 3 3a w a w 1/ 2+ = ,

2 2 1
2 3 3 3a w w /a+ = and 2 32 3a b w 1/ 6  =                 (3.38)  

                                             
There are now four equations in six unknown and there exist two 
parameters of families of curves. Ignoring terms of order h4, in this 
derivation, shows that no solution of (3.38), cause the expansion to 
differ by a term of order higher than h4. 

Thus, there exist a doubly infinite family of three–stage inverse 
Runge-Kutta methods of  order  three,  and  none  of  order  greater  



/ 

 
 
 
 
than three. Two particular solutions of (3.38) lead to well know third- 
order Runge- Kutta methods. 

Because the 6 unknowns have to satisfy only four equations, the 
values of the two of them can be chosen arbitrarily provided the 
equations have solution. 

By setting a2 = ½ and a3 = 1, equation (3.38) becomes  
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 Solving these equations non-linearly we have, 
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Thus the resulting method is  
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where   ( )1 n nK  hg x ,  z=  
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ERROR, ORDER AND CONVERGENCE OF THE METHOD  
 
According to Shephey and Ross (1989) numerical methods are 
employed in the solution of the differential equations of type 

),( yxfy =′ with the initial condition 00 )( yxy =  to obtain 

approximate solution at various selected values of x with the aim of 
having exact solution. To do this, we set φ as the exact solution of 
the problem, and let h denote a small positive increment in x, such 
that x1 = x0 + h, x2 = x1 + h, …., xn=xn-1+h, and consider φ(x1), 

φ(x2)…..φ (xn) as the solution set of the d. e. Let 1,y  y2, …,yn be the 

approximations to φ(x1), φ(x2)……..φ(xn) respectively, so that finding 
yn and finding an approximation to φ(xn) mean the same thing. In 
finding the approximation y1, y2, y3,…,yn, we proceed in the 
following way; 

First, we find the approximation y1 using the method of interest to 
solve the differential equation y = f(x,y) with the initial value y0.  
Then y2 is estimated using the estimate y1, y3 is estimated using the 
estimate y2, and so on, so that in general, yn+1 are estimated using 
the estimate yn. After the derivation of our method, we proceeded in 
the above manner, to generate results using our method. 

Shepley and  Ross  (1989),  continued  by  saying  that  given  an  
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approximation yn to φ(xn), the absolute error or simply the error 

defined as )( nn xy φ− ; is the error which measures how far away 

the approximation yn is from the exact value φ(xn). Naturally we 
hope that any given numerical method will keep the error small, that 
is, the method should have some level of accuracy. However, the 
size of this absolute error alone should not be used to judge the 
accuracy of a method, for the size of the error must be considered 
in the light of the size of what is being approximated. At this stage 
we introduce a better measurement of accuracy which is called the 
percentage relative error, defined as the difference between the 
exact solution and its approximation divided by the exact solution 
itself and then multiplied by 100 given by: 
 

Percentage relative  
)(

)(
)(

100
n

nn

n x
xy

x
error

xError
φ

φ
φ

−
==   

 
Notice that the Percentage Relative Error could be very large when 
φ(xn) itself is near zero; in fact if φ(xn) = 0, the percentage relative 
error is undefined. Now, when one method provides more accuracy 
than another, there is usually a corresponding increase in its 
computational complexity as well. Furthermore, the sizes of the 
errors often increase in succession when calculating y1, y2,…, yn, 
and there are two reasons why this may not be out of place. First, 
since at each stage finding yn+1 involve using previous 
approximations, chances are that yn+1 are much less accurate. 
Secondly, although a computer or calculator may be able to store 
numbers with, say, 10 or 11digit level of accuracy, any error 
introduced because such a machine cannot perfectly and 
accurately store (most) real numbers is less significant in size after 
thousand of (or may have far fewer) computations. 

When the exact solution φ(x1), φ(x2), ..., φ(xn), of the given initial – 
value problems have been found, we can compare the 
approximations y1, y2, y3,…,yn, found by a given method to the 
exact values and thereby gain some insight into the accuracy of the 
method. Finally, a numerical method involves doing numerical 
calculations, and it is this kind of computational work that computers 
are designed to carry out. One of the major and very significant 
aspects of numerical scheme is its ability to reliably control the 
global error  
 

( )n 1 n  1 n 1          e  y –  y x+ + +=                                           (4.1) 

 
Where yn+1 is the numerical solution at step xn+1 and y (xn+1) is the 
theoretical solution. A general requirement is that this error should 
be made as small as possible by making h sufficiently close to zero. 
Adopting the above procedure, we tested our method on problems 
below. 
 
 
COMPARISON OF RESULTS OF SOME SOLVED (VIPS)  
 
Problem 1: y1= -y, y(0)=1, 0≤x≤1 
New Inverse Runge-Kutta method of order 3 y1= -y, y(0)=1, 0≤x≤1. 
 

N Xn Y(Xn) Yn En 
  1    0.1000 0.913242008 0.904837419 -0.8405D-02 
  2    0.2000 0.834769593 0.818730756 -0.1604D-01 
  3    0.3000 0.763864099 0.740818219 -0.2305D-01 
  4    0.4000 0.699874019 0.670320050 -0.2955D-01 
  5    0.5000 0.642208660 0.606530669 -0.3568D-01 
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Problem 1. Continued. 
 

  6    0.6000 0.590332164 0.548811633 -0.4152D-01 
  7    0.7000 0.543757951 0.496585291 -0.4717D-01 
  8    0.8000 0.502043456 0.449328943 -0.5271D-01 
  9    0.9000 0.464785127 0.406569632 -0.5822D-01 
 10   1.0000 0.431613653 0.367879408 -0.6373D-01 

 
 
 

Inverse Runge-Kutta method of order 2 y1= -y, y(0)=1, 
0≤x≤1, (Ademiluyi, 2005). 
   
N Xn Y(Xn) Yn En 
1 0.1000 0.904837419 0.913103027 -0.8266D-02 
2 0.2000 0.818730756 0.834461076 -0.1573D-01 
3 0.3000 0.740818219 0.763345389 -0.2253D-01 
4 0.4000 0.670320050 0.699091815 -0.2877D-01 
5 0.5000 0.606530669 0.641093872 -0.3456D-01 
6 0.6000 0.548811633 0.588796260 -0.3998D-01 
7 0.7000 0.496585291 0.541688712 -0.4510D-01 
8 0.8000 0.449328943 0.499300257 -0.4997D-01 
9 0.9000 0.406569632 0.461193861 -0.5462D-01 
10 1.0000 0.367879408 0.426961516 -0.5908D-01 

 
 
 
Sixth Order R-KF y1= -y, y (0)=1, 0≤x≤1   (Agbeboh et al., 2009). 
 

NX  
NY  TSOL error 

.100 0.9048374417318D+00 0.9048374180360D+00     
-  .2369581120210D-07    

 
.200 

 
0.8187307959597D+00 

 
0.8187307530780D+00   
-  .4288171395750D-07 

 
.300 

 
0.7408182788832D+00 

 
0.7408182206817D+00   
-.5820146953273D-07 

 
.400 

 
0.6703201162528D+00 

 
0.6703200460356D+00   
-.7021715764388D-07 

 
.500 

 
0.6065307391315D+00 

 
0.6065306597126D+00   
-.7941889079710D-07 

 
.600 

 
0.5488117223274D+00 

 
0.5488116360940D+00   
- .8623342206970D-07 

 
.700 

 
0.4965853948232D+00 

 
0.4965853037914D+00   
-.9103176595859D-07 

 
.800 

 
0.4493290582532D+00 

 
0.4493289641172D+00   
-.9413594187491D-07 

 
.900 

 
0.4065697555655D+00 

 
0.4065696597406D+00   
-.9582493909477D-07 

 
 
 
 
Sixth Order R-KF y1= -y, y (0)=1, 0≤x≤1 (Agbeboh et al., 2009). 
Continued. 
 

1.00 0.3678795375114D+00 0.3678794411714D+00   
-.9633999070724D-07 

 
 
 
Classical 4th order RKF y1= -y, y(0)=1, 0≤≤≤≤x≤≤≤≤1. 
   

N Xn Y(Xn) Yn En 
  1 0.1000 0.904837419 0.904837500 -0.8056D-07 
  2 0.2000 0.818730756 0.818730901 -0.1458D-06 
  3 0.3000 0.740818219 0.740818422 -0.2034D-06 
  4 0.4000 0.670320050 0.670320289 -0.2387D-06 
  5 0.5000 0.606530669 0.606530934 -0.2655D-06 
  6 0.6000 0.548811633 0.548811934 -0.3014D-06 
  7 0.7000 0.496585291 0.496585619 -0.3280D-06 
  8 0.8000 0.449328943 0.449329290 -0.3468D-06 
  9 0.9000 0.406569632 0.406569991 -0.3591D-06 
 10 1.0000 0.367879408 0.367879774 -0.3659D-06 

 
 
 
Problem 2. y1=y, y(0)=1, 0≤x≤1. 
New Inverse Runge-Kutta method of order 3. 
 

N Xn Y (Xn) Yn En 
  1   0.1000 1.105175909 1.105170916    -0.4992D-05 
  2   0.2000 1.222564214 1.221402754    -0.1161D-02 
  3   0.3000 1.353486066 1.349858811    -0.3627D-02 
  4   0.4000 1.499408987 1.491824688    -0.7584D-02 
  5   0.5000 1.661964030 1.648721246    -0.1324D-01 
  6   0.6000 1.842964620 1.822118811    -0.2085D-01 
  7   0.7000 2.044427293 2.013752761    -0.3067D-01 
  8   0.8000 2.268594576 2.225541034    -0.4305D-01 
  9   0.9000 2.517960158 2.459603278    -0.5836D-01 
 10   1.0000 2.795297009 2.718282070    -0.7701D-01 

 
 
 
Problem 2: y1=y, y(0)=1, 0≤x≤1 (Ademiluyi, 2005). 
Inverse Runge-Kutta method of order 2. 
  
N         Xn Y(Xn) Yn En 
 1   0.1000 1.108033243 1.105170916 -0.2862D-02 
 2   0.2000 1.228368844 1.221402754 -0.6966D-02 
 3 0.3000 1.362346272 1.349858811 -0.1249D-01 
 4   0.4000 1.511455951 1.491824688 -0.1963D-01 
 5   0.5000 1.677355960 1.648721246 -0.2863D-01 
 6 0.6000 1.861890601 1.822118811 -0.3977D-01 
 7   0.7000 2.067110979 2.013752761 -0.5336D-01 
 8   0.8000 2.295297850 2.225541034 -0.6976D-01 
 9   0.9000 2.548986990 2.459603278 -0.8938D-01 
10   1.0000 2.830997453 2.718282070 -

0.1127D+00 
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Problem 2. y1=y, y(0)=1, 0≤x≤1 (Agbeboh et al., 2009). 
Sixth order R-K method. 
 

XN YN TSOL Error 
.1D+00 0.1105170892253D+01 0.1105170918076D+01 0.2582304325927D-07 
.2D+00 0.1221402701082D+01 0.1221402758160D+01 0.5707775252439D-07 
.3D+00 0.1349858712955D+01 0.1349858807576D+01 0.9462100680757D-07 
.4D+00 0.1491824558211D+01 0.1491824697641D+01 0.1394298454471D-06 
.5D+00 0.1648721078083D+01 0.1648721270700D+01 0.1926172610300D-06 
.6D+00 0.1822118544941D+01 0.1822118800391D+01 0.2554499913821D-06 
.7D+00 0.2013752378102D+01 0.2013752707470D+01 0.3293685479910D-06 
.8D+00 0.2225540512483D+01 0.2225540928492D+01 0.4160097559769D-06 
.9D+00 0.2459602593925D+01 0.2459603111157D+01 0.5172321126956D-06 
.1D+01 0.2718281193315D+01 0.2718281828459D+01 0.6351443135877D-06 

 
 
 

Problem 2. y1=y, y(0)=1, 0≤x≤1 
Classical 4th order RKF. 
  

XN YN TSOL Error 
.1D+00 0.9048375000000D+00 0.9048374180360D+00 .8196404044369D-07 
.2D+00 0.8187309014063D+00 0.8187307530780D+00 -.1483282683346D-06 
.3D+00 0.7408184220012D+00 0.7408182206817D+00 -.2013194597694D-06 
.4D+00 0.6703202889175D+00 0.6703200460356D+00 -.2428818514089D-06 
.5D+00 0.6065309344234D+00 0.6065306597126D+00 -.2747107467060D-06 
.6D+00 0.5488119343763D+00 0.5488116360940D+00 -.2982822888686D-06 
.7D+00 0.4965856186712D+00 0.4965853037914D+00 -.3148798197183D-06 
.8D+00 0.4493292897344D+00 0.4493289641172D+00 -.3256172068089D-06 
.9D+00 0.4065699912001D+00 0.4065696597406D+00 -.3314594766990D-06 
.1D+01 0.3678797744125D+00 0.3678794411714D+00 -.3332410563051D-06 

 
 
 

Problem 3. y1=1+y2, y(0)=1, 0≤x≤1. 
New Inverse Runge-Kutta method of order 3. 
   

N Xn Y(Xn) Yn En 
1 0.1000 1.223048884 1.235076167 -0.1203D-01 
2 0.2000 1.508497657 1.539838714 -0.3134D-01 
3 0.3000 1.895765178 1.960015192 -0.6425D-01 
4 0.4000 2.464962799 2.592044896 -0.1271D+00 
5 0.5000 3.408223442 3.679681411 -0.2715D+00 
6 0.6000 5.331855925 6.068965225 -0.7371D+00 
7 0.7000 11.681380355 16.077934500 0.4397D+01 
8 0.8000 68.479332859 26.198316356 0.4228D+02 
9 0.9000 8.687622253 7.230198297 0.1457D+01 

10 1.0000 4.588035196 4.164509569 0.4235D+00 
 
 
 
Conclusion 
 
Having derived and implemented the formula we 
compared our results with those of the existing formulae 
already considered in the works of Ademiluyi (2005), 
Agbeboh et al. (2009) and the classical 4th order RKF and 

discovered that the errors committed in using this new 
method to solve ivps is minimal. We also find out that the 
computer time required was smaller in ours than other 
methods considered. Furthermore, the parameters used 
represent constraints that ensure the consistency of the 
scheme; These parameters were chosen  to  ensure  that  
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Problem 3. y1=1+y2, y(0)=1, 0≤x≤1 (Ademiluyi, 2005). 
Inverse Runge-Kutta Method of Order 2.  
 

N Xn Y(Xn) Yn En 
1 0.1000 1.223048884 1.234567905 -0.1152D-01 
2 0.2000 1.508497657 1.538880977 -0.3038D-01 
3 0.3000 1.895765178 1.958484913 -0.6272D-01 
4 0.4000 2.464962799 2.589525967 -0.1246D+00 
5 0.5000 3.408223442 3.674915625 -0.2667D+00 
6 0.6000 5.331855925 6.056638867 -0.7248D+00 
7 0.7000 11.681380355 15.994363155 -0.4313D+01 
8 0.8000 -68.479332859 -26.420600456 -0.4206D+02 
9 0.9000 -8.687622253 -7.247147091 -0.1440D+01 

10 1.0000 -4.588035196 -4.170275448 -0.4178D+00 
 
 
 

Problem 3. y1=1+y2, y(0)=1, 0≤x≤1 (Agbeboh et al., 2009). 
Sixth Order R-K method. 
 

XN YN TSOL Error 
.1D+00      0.1223027752889D+01 0.1223048880450D+01 0.2112756091166D-04 
.2D+00      0.1508427566955D+01 0.1508497647121D+01 0.7008016635046D-04 
.3D+00      0.1895570024855D+01 0.1895765122854D+01 0.1950979986147D-03 
.4D+00      0.2464395431841D+01 0.2464962756723D+01 0.5673248815250D-03 
.5D+00      0.3406231293883D+01 0.3408223442336D+01 0.1992148453307D-02 
.6D+00      0.5321220102716D+01 0.5331855223459D+01 0.1063512074226D-01 
.7D+00 0.1151231991096D+02 0.1168137380031D+02 0.1690538893523D+00 
.8D+00 0.3064002024514D+03 -.6847966834558D+02 -.3748798707970D+03 
.9D+00 0.3614386869214D+69 -.8687629546482D+01 -.3614386869214D+69 

 
 
 

Problem 3. y1=1+y2, y(0)=1, 0≤x≤1. 
Classical 4th order RKF. 
 

XN YN TSOL Error 
.1D+00 0.1223048913837D+01 0.1223048880450D+01 -.3338691878518D-07 
.2D+00 0.1508496167191D+01 0.1508497647121D+01 0.1479930124670D-05 
.3D+00 0.1895754160233D+01 0.1895765122854D+01 0.1096262057532D-04 
.4D+00 0.2464899686958D+01 0.2464962756723D+01 0.6306976472326D-04 
.5D+00 0.3407820425152D+01 0.3408223442336D+01 0.4030171840324D-03 
.6D+00 0.5327896816591D+01 0.5331855223459D+01 0.3958406868224D-02 
.7D+00 0.1155393207572D+02 0.1168137380031D+02 0.1274417245901D+00 
.8D+00 0.1921699249630D+03 -.6847966834558D+02 -.2606495933085D+03 
.9D+00 0.3119852767022D+18 -.8687629546482D+01 -.3119852767022D+18 
.1D+01 0.3278192015012+261 -.4588037824984D+01 -.3278192015012+261 

 
 
 
the resultant  method, has; (a) Adequate and higher level 
of accuracy; (b) Minimum bound of local truncation error; 
(c) Large maximum interval of absolute stability, (d) 

Minimum computer storage facility and (e) Faster rate of 
convergence.  In subsequent publications we shall focus 
attention on the stability of the method. 
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