
International Journal of the Physical Sciences Vol. 6(25), pp. 5996-6002, 23 October, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.703 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 

Full Length Research Paper 

 

Artificial-Neural-Network modeling of the compressive 
uniaxial stress dependence of ferroelectric hysteresis: 
An application to soft lead zirconate titanate ceramics 

 

Wimalin Laosiritaworn1*, Supattra Wongsaenmai2, Rattikorn Yimnirun3 and Yongyut 
Laosiritaworn4,5 

 
1
Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand. 

2
Program of Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand. 

3
School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand. 

4
Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand. 

5
Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400, Thailand. 

 
Accepted 29 July, 2011 

 

In this work, artificial neural network (ANN) modeling was used to model ferroelectric hysteresis under 
the influence of compressive uniaxial stress using the hysteresis data obtained from soft lead zirconate 
titanate as an application. The main objective is to model the role of external stress, including electric 
field perturbation, on the complex hysteresis properties, which are hysteresis area, remnant 
polarization, coercivity and loop squareness. With its false tolerance abilities, ANN was used to predict 

how the stress direction (on applying and releasing), the stress magnitude (σσσσ) the electric field 
amplitude (E0), and the electric frequency (f) affect on the hysteresis properties, quantitatively. The best 
network architecture with highest accuracy was found in the ANN training through extensive 
architecture search. It was then used to predict hysteresis properties of the unseen testing patterns of 
input. The predicted and the actual testing data were found to match very well for the whole extensive 
range of considered input parameters. This well match, even when the stress was applied, certifies the 
ANN one of the superior techniques, which can be used for the benefit of technological development of 
ferroelectric applications. 
 
Key words: Artificial neural network, hysteresis properties, soft lead zirconate titanate, uniaxial stress. 

 
 
INTRODUCTION 
 
During recent years, the ferroelectric hysteresis topic has 
become of frequent investigating issue due to the need of 
important ferroelectric applications (Auciello et al., 1998; 
Uchino, 2000). In such an application, the amplitude (E0) 
and frequency (f) dependence  of  hysteresis  parameters  
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Abbreviations: ANN, Artificial neural network; PZT, lead 
zirconate titanate; σσσσ,,,, stress magnitude; E0 the electric field 
amplitude; f, frequency; MLP, multilayer perceptron; BP, back 
propagation; A, loop area; Pr, remnant polarization; Ec, 

hysteresis coercivity , S, hysteresis loop squareness; MAE, 
mean absolute error. 

are of important consideration. Both experimental and 
theoretical studies have mainly focused on the use of 
power law scaling to investigate how hysteresis 
properties response to external field parameters in a form 

of 0A f E
α β∝  where A denotes the hysteresis area, α 

and β are exponents to the scaling, for example, consider 
Uchino (2000). In spite of its reasonable success on 
finding how hysteresis area relates to the field, each 
exponent obtained in this way is not truly independent. 

Therefore, in previous works, α and β were extracted 
separately (Yimnirun et al., 2006a). Specifically, one 
exponent was extracted at a time and when it was 
retrieved, it was assumed constant and fed back to the 
power law to find another exponent. However, though this 
method  is    sound,   the   extracted  exponents  are  very  



 
 
 
 

vulnerable where a small change or error in α could 

cause a considerable change in β. In addition, with 
further including of relevant parameters in the scaling 

such as the inclusion of the stress parameter σ to seek 

for the scaling in the form 0A f E
α β γσ∝ , the problem 

becomes even more complicated and some 
approximation has to be applied. For instance, instead of 
the sole magnitude of the hysteresis area, one has to 
consider the difference between the area at current 
applied stress and that of the unstressed to form the 
scaling (Yimnirun et al., 2006b). 

 

0 0A A f E
α β γ

σ σ=− ∝ .    (1) 

 
Though its reasonable success in constructing the 
scaling formalism, it is very obvious that the zero-stress 

hysteresis-area 0Aσ =  in Equation (1) must be known 

before hand for each f and E0 conditions. On the other 
hand, in some systems, the unstressed condition is not 
accessible such as in films structure where the internal 
stress is induced from the lattice spacing mismatch 
between the films and the substrate. In this case, one 
cannot make the best use of Equation (1) in the 
modeling. Instead, one has to phenomenologically 
propose new scaling function using either trial-and-error 
or more sophisticate empirical methods. Moreover, when 
including the minor hysteresis loop, 2 scaling functions 
have to differently proposed for minor loop and saturated 
loop even without the stress and in the same ferroelectric 
ceramic (Wongdamnern et al., 2009). Further, the scaling 
exponents are not truly constants but a function of field 

parameters, for example, α may be a function of E0 and β 
may be a function of f (Wongdamnern et al., 2009). 
Therefore, there is no guarantee if there really exists 

simple power-law-scaling form (where the exponents α , 

β and γ are truly constant) for all ferroelectric systems. In 
such cases, the simple power-law-scaling is no longer 
simple. 

Consequently, in this work, artificial neural network 
(ANN) which is another sophisticate technique was 
applied to model the hysteresis behavior. ANN is a 
technique widely used in industries for various purposes 
due to its ability to ‘learn’ from examples. For instance, 
ANN was used in modeling concrete strength (Hakim et 
al., 2011), landslide risk analysis (Pradhan and Lee, 
2009), traffic accidents (Bayata et al., 2011), faults in 
software systems (Ardil and Sandhu, 2010), rainfall-runoff 
prediction (El-Shafie et al., 2011), etc. Further, the ANN 
was recently found to be useful in modeling properties of 
material prepared/measured under various conditions 
(Laosiritaworn, 2008; Laosiritaworn et al., 2008, 2010a, 
2010b, 2011; Lemine et al., 2010; Laosiritaworn and 
Laosiritaworn, 2009; Laosiritaworn and Chotchaithanakorn, 
2009). Therefore, in this work, the ANN was used to 
model ferroelectric hysteresis  under  mechanical  loading  
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condition using soft Lead Zirconate Titanate as an 
application.  
 
 
BACKGROUND THEORIES 
 
ANN is a statistical model of actual system built by tuning 
a set of parameters known as weight. It can perform 
function mapping for a set of given value of inputs to 
corresponding set of outputs (Dayhoff, 1990; Swingler, 
1996). ANN simulates biological neural networks in 
human brains so that it can learn to pick up relationship 
or pattern in data the same way human brain function. 
The type of ANN used in this paper is a multilayer 
perceptron (MLP) which consist of input layer, hidden 
layer and output layer (Figure 1). Each layer consists of 
simple processing elements called neuron and neurons in 
each layer are connected together to form a neural 
network. Weight is assigned to each connection between 
neurons, initially by small random number. By tuning 
adjusting these weights, ANN can be used to learn 
relationship between input and output. 

A number of training algorithms are available for weight 
tuning process. In this study, the back propagation (BP) 
algorithm, one of the most widely used algorithms 
(Swingler, 1996), was applied. In BP learning, two steps 
were performed, the forward pass and the backward 
pass. In the forward pass, inputs are fed to ANN. Each 
neurons attain output by calculate weighted sum (Sj) 

from i ij

i

a w∑ , where ai is the activation level of unit i, and 

wij is the weight from unit i to unit j. Then, the logistic 

transfer function, that is, 
1

( )
1 x

g x
e−

=
+

 where x = Sj, 

were applied to the output. Then, g(x = Sj) becomes the 
output of unit j, and the same procedure repeats for all 
neurons to obtain the final output. This output is then 
compared with its corresponding target value and the 
deviation between them is calculated in the backward 
pass. Error in the output layer is calculated from 

( ) ( )j j j jt a g Sδ ′= −  and ( )
j k kj j

k

w g Sδ δ
 

′=  
 
∑  for 

the hidden layers. In these equations, tj is the target value 

for unit j, aj is the output value for unit j, ( )g x′  is the 

derivative of the logistic function g and Sj  is weighted 
sum of inputs to j. Then, the weight adjustment is 

calculated as 
ijji

aw ηδ=∆  where η is the learning rate. 

These forward and backward processes repeat with new 
input vector until stopping criteria are met (Nascimento et 
al., 2000). 
 
 
METHODOLOGY  

 
In   this   work,   the  ferroelectric  hysteresis  data  of  the  soft  lead 
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Figure 1.  The schematic diagram of the ANN used in this work.  

 
 
 

Table 1. Input and output data used in ANN training. 
 

Parameter Type Data format Max Min 

Stress action Input Categorical n/a n/a 

Stress magnitude Input Numerical 0.75 0 

Field amplitude Input Numerical 1800 600 

Field frequency Input Numerical 100 0.6 

Hysteresis area Output Numerical 49111000 248720 

Remnant polarization Output Numerical 8496.2 147.3 

Hysteresis Coercivity Output Numerical 1654.9 169.34 

Loop squareness Output Numerical 0.53345 0.10709 

 
 
 
zirconate titanate (PZT) ceramic was used to train the network. The 
hysteresis loops were measured at room temperature (25°C) from 
commercial soft PZT ceramic disks (PKI-552, Piezo Kinetics Inc., 
USA) with diameter of 10 mm and thickness of 1 mm with f covering 
from 2 to 100 Hz and E0 from 600 to 1800 mV. Details of the 
measuring system were described elsewhere (Yimnirun et al., 
2006b, 2006c). Then, from the hysteresis loops, the loop area A, 
the remnant polarization Pr, the hysteresis coercivity Ec, and the 
hysteresis loop squareness S were extracted and used as output 
hysteresis data for the ANN training. The input data for the ANN are 
the field frequency f, the field amplitude E0, the stress application 

(applying or releasing), and the stress magnitudeσ. These actual 
input experimental data were used to train the artificial neural 
network for predicting the output hysteresis properties. Input and 
output of the ANN are summarized in Table 1.  

 
 
RESULTS AND DISCUSSION 

 
As can be seen in Tables 1 and 2 network architectures 
were considered to maximize the training efficiency and 
for accuracy comparison.  Specifically, in the first 
architecture, a single ANN was used to model four 
outputs in the same time. Therefore, there were 4 

neurons in input layer (representing stress application,σ, 
E0, and f), 4 neurons in output layer (which are A, Pr, Ec 
and S representing hysteresis area, remnant polarization, 
hysteresis coercivity, and loop squareness  respectively). 
In the second architecture, 4 ANNs were trained 
separately to model the four outputs, that is, 1 network for 
1 output). Then the number of hidden layers and hidden 
nodes in each hidden layers search were conducted for 
up to 2 layers and up to 30 neurons in each layer. 
Appropriate number of hidden layer and hidden nodes 
were achieved through heuristic and exhaustive search. 
Note that the best architecture is listed in the format XX-
XX-XX-XX where XX refers to the number of nodes in 
input layer, first hidden layer, second hidden layer and 
output layer respectively.  After that, the raw input-output 
data of 788 records were separated into 3 sets which are 
training, validate and testing dataset at the ratio of 536: 
126: 126, respectively. 

From the training, the networks with highest accuracy 
for each architecture were found and they are sum-
marized in Table 2. The network accuracy is measured in 
terms of mean absolute error  (MAE)  and  the  square  of  
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Table 2. ANN training results. The symbols A, Pr, Ec and S refer to hysteresis area, remnant polarization, coercivity and loop-
squareness respectively, whereas MAE and r

2
 refer the mean absolute error and square of correlation coefficient. 

 

ANN architecture ANN output 
Training Testing 

MAE r
2
 MAE r

2
 

First 4-24-13-4 

A 748556.95 0.971936 920018.07 0.963404 

Pr 213.03 0.940677 250.451121 0.906773 

Ec 34.263541 0.975414 35.135949 0.980771 

S 0.009821 0.910215 0.012338 0.879406 

       

Second 

4-19-25-1 A 561048.86 0.986167 767065.37 0.978375 

4-22-22-1 Pr 157.87 0.968957 227.54 0.933713 

4-30-27-1 Ec 24.66 0.988093 33.61 0.983918 

4-30-20-1 S 0.006037 0.969711 0.011621 0.897849 

 
 
 

 
 
Figure 2. Scatter plot of target (testing group) and output of hysteresis area output generated 
from the area architecture (4-19-25-1). 

 
 
 
square of correlation coefficient (r

2
), that is, 

 

1

n

i ii
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n

=
−
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∑ ∑ ∑ ∑
 

 
where fi is the prediction from neural network for record i,  

yi is the actual value for record i, and n is the total number 
of data. In general, the smaller of MAE and the closer of 
r
2
 to 1 are desirable. Therefore, from Table 2, it can be 

concluded that training with 4 separate networks (second 
architecture) can improve modeling accuracy judging 
from both MAE and r

2
.  However, the first architecture 

required much less time and effort in training and 
provides acceptable r

2
 (> 0.8978). An example of scatter 

plot can be found in Figure 2, which shows the plot 
between target value (testing group) and output from 
ANN of the network trained to model hysteresis area with 
the architecture of 4-19-25-1. Further, Figure 3 shows the 
comparison between the actual data (open square) and 
that from the ANN predicting  (lines).  Being  evident,  the  
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                                                          (a) 

 
                                                        (b)  
 
Figure 3.  Comparison of the actual data (open square) and that from the 

ANN predicting (lines) for the field amplitude E0 ranging from 600 to 1800 mV 

and at σ = 0.375 kN/π(5mm )
2
  for (a) stress applying and (b) stress releasing. 

 
 

 

predicting data forms well representatives for the actual 
experiments data for both applying and releasing 
stresses. In addition, unlike the previous power-law-
scaling investigation where the scaling was performed on 
one particular stress application (applying) (Yimnirun et 

al., 2006b), as applying and releasing stress are of 
different behaviors, this work can modeling both stress 
applying and releasing at the same time. Therefore, 
including with the good r

2
 provided, it can be concluded 

that the ANN is  one  of  the  appropriate  and  successful  



 
 
 
 
techniques in modeling ferroelectric hysteresis even 
under both electrical and mechanical perturbations.  

It is also of interest to compare, discuss, pin-point, and 
summarize the benefit of using ANN upon previously 
used techniques in the analysis of the hysteresis data. 
Traditionally, the most commonly used technique in the 
investigating of how hysteresis properties depend on the 
external perturbation (that is, field parameters, 
temperature, external stress, etc.) is the power law 
scaling technique. The reason behind using this empirical 
technique is that it is simple and easy to implement which 
could suit the purpose without the need to know 
fundamental knowledge of the considered system. 
Nevertheless, there do exist a main drawback as the 
power law scaling technique is very much depend on the 
complexity in the ferroelectric material (for example, films 
or bulk, hard or soft ferroelectrics, grain size distribution, 
porosity, etc.) and ranges of the external perturbation (for 
example, how high is the measuring temperature (above 
or below critical temperature), how large is the field 
amplitude (sub-coercive field or saturated field), how fast 
is the field switching, how high is the stress acting on the 
materials and what is the applied stress direction 
(compressive or tensile), etc.). Therefore, with these 
numerous degrees of freedom, the simple power law 
scaling technique is no longer simple. Researchers had 
to perform the scaling with many approximations and had 
to propose limitation on the allowed ranges of the applied 
perturbation. This is unless it may be not possible to 
perform or obtain appropriate fit on the measured 
hysteresis data. For instance, even with the same piece 
of ferroelectric ceramics, increasing and decreasing 
stresses yield different scaling functions and hence 
difference the exponents to the power law function 
(Yimnirun et al., 2006b). Therefore, this is evident that the 
traditional power law technique is not applicable when the 
problems become very complex such as under the 
supplied dynamic field and with mechanical loading. 
Further, as previous investigation could perform scaling 
only for the difference in hysteresis area (between those 
at finite stress and zero stress), not the absolute area 
(Yimnirun et al., 2006b), the knowledge in predicting 
hysteresis behavior is somewhat limited.  

On the other hand, the ANN technique proposed and 
used in this work tends to overcome the difficulties 
encountered by the traditional power law technique. This 
is due to the ability in ‘learning by experiences’ of the 
ANN which could correctly predict the hysteresis behavior 
even under the loading condition during either applying or 
releasing stresses. Another benefit of using this ANN 
upon the scaling technique is that the ANN has to some 
extent high tolerance to electrical noises, generally arisen 
from poor experiment setup. These noises result in some 
data points with very high error, which have to be 
removed before performing the scaling unless the fit 
might not converge. Nevertheless, if the error is 
symmetry due  to  the  randomness  of  the  noise  or  the  
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noise affects only minor parts of the data signal, the ANN 
is not strongly affected by these noises and can still be 
used in the modeling. As a result, for example, in this 
work, all of these illustrate on how the use of the ANN in 
hysteresis modeling leads to significant improvement 
over traditional power law modeling. 

Further, to enhance the use of this ANN technique on 
modeling ferroelectric hysteresis, the next stage will be 
carried on modeling hysteresis properties from materials 
with possible different crystal structures depending on the 
chemical composition. For instance, in some mixed 
ferroelectrics, which are prepared from two or more 
different ferroelectric materials, could have different 
crystal structures depending on the ratio of those different 
ferroelectric compositions, and this leads to different 
ferroelectric properties (Uchino, 2000). Therefore, in the 
future work (research direction), the ANN will be used in 
modeling dynamic hysteresis properties to predict how 
they depend on microscopic crystal structures, chemical 
composition and external electrical field parameters in a 
particular material. 
 
 
CONCLUSION 
 
In this work, the ANN was used to model the hysteresis 
properties of soft PZT ceramics under loading condition. 
Based on the agreement between the actual experiment 
values and those from the ANN prediction, the ANN has 
assured itself one of the fruitful techniques in modeling 
ferroelectric hysteresis properties even under applied 
stresses. Further, without the need to separate the data 
for the stress applying and stress releasing, the ANN 
investigation further approved its advantage over the 
conventional power law scaling technique. 
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