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The Grüneisen parameter (in solids) and the pseudo Grüneisen parameter (in liquids) are of high 
importance in physics, chemistry and material science. The pseudo Grüneisen parameters in dense 
fluids have been evaluated using three known analytical expressions for radial distribution functions 
(RDFs). Using such approach not only tests the power of distribution functions theory in predicting the 
pseudo Grüneisen parameters, but also specifies better expressions in determining these properties. 
To calculate these quantities, the variation of radial distribution function with density and temperature 
is required. Therefore, we should have analytical expressions which explicitly present RDF as a 
function of temperature, density and interparticle distance. It is shown that if an expression properly 
presents RDFs as a function of interparticle distance, density and temperature, it is possible to 
calculate the pseudo Grüneisen parameters from analytical distribution functions. 
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INTRODUCTION 
 
Among the quantities of high importance is the Grüneisen 
parameter, which expresses the dependence of the 
lattice frequencies on the volume of a crystal. Knopoff 
and Shpiro (1970) extended the study of the Grüneisen 
parameter to the liquid state, where Grüneisen parameter 
takes the name pseudo Grüneisen parameter and can be 
determined from experimentally measured thermo-
dynamic properties of liquid.  

The radial distribution function (RDF) acts as a bridge 
for relating macroscopic thermodynamic properties to 
interparticle interactions of substances. The RDF is a key 
quantity in statistical mechanics because it characterizes 
how the particles correlations in a substance decay with 
increasing separation.  

Analytical expressions for radial distribution functions 
(RDFs) have most often been used for the evaluation of 
pressure and internal energy (Goldman, 1979; Matteoli 
and Mansoori, 1995; Morsali et al., 2005, 2006). In previous 
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cases as a substitute method, radial distribution functions 
could have been obtained directly as a function of 
distance using molecular dynamics (MD) or integral 
equations. Recently, these expressions have been used 

for the evaluation of P V T− − differential properties, 

such as internal pressure, thermal pressure and 
isothermal compressibility (Morsali et al., 2007). 

In this work, the pseudo Grüneisen parameters are 
evaluated using three known analytical expressions for 
RDFs (Goldman, 1979; Matteoli and Mansoori, 1995; 
Morsali et al., 2005). For the evaluation of pseudo 
Grüneisen parameters, differentials like 

( )
,

( , , ) /
r T

g r Tρ ρ∂ ∂  and ( )
,

( , , ) /
r

g r T T
ρ

ρ∂ ∂  are required 

where ( , , )g r Tρ , r , ρ  and T  are radial distribution 

function, interparticle distance, density and temperature, 
respectively. This problem shows our requirement for 
analytical expressions which explicitly presents RDFs as 

a function of r , ρ , and T . Until now, this approach 

(using distribution functions theory) has not been utilized 
to estimate the values of pseudo Grüneisen parameters. 

Using   such   approach   not  only  tests  the  power  of 
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distribution functions theory in predicting the pseudo 
Grüneisen parameters, but also specifies better 
equations in determining these properties. The results 
are compared with experimental data for argon (Stewart 
and Jacobsen, 1989) and an accurate analytic equation 
of state for the LJ fluid (Mecke et al., 1996). 
 
 
THEORY 
 
Statistical mechanical equations for the pseudo Grüneisen 
parameter 
 

The pseudo Grüneisen parameter ( Γ ) may be defined as:   
 

( / ) /( )
V V

P T CρΓ = ∂ ∂                                                     (1) 

                                                                

where 
V

C  is the heat capacity at constant volume. 

The temperature dependence of the internal energy (E)  is 

given by the heat capacity at constant volume V(C )  at a given 

temperature, formally defined by  
 

( )/V V
C E T= ∂ ∂                                                                 (2) 

                                                             

where E and 1/V ρ=  are internal energy and molar volume, 

respectively. Heat capacities have been also obtained from density 
functional theory (Wang et al., 2008; Beyramabadi and Morsali, 
2011) 

Since 
  

2

0
2 ( ) ( , , )

∞

= + ∫
ig

E E N u r g r T r d rπ ρ ρ          (3) 

                                                         

d ( )u r  are internal energy for ideal gas and interparticle pair 

potential, respectively; we have: 
 

( ) 2

,
0

2 ( ) ( , , ) /(3 / 2)
r TV N u r g r T T r drC N k π ρ ρ

∞

= ∂ ∂+ ∫                                                                                         

                                                                                                    (4) 
Since 

 

2 3

0

( ( ) / ) ( , , )2 / 3) (P kT du r dr g r T r drρ ρ ρπ
∞

= − ∫      (5) 

 

where k is the Boltzmann’s constant, we have: 

 

( ) ( )2 3

,
0

( ( ( )/ ) ( , , )// 2 /3)
rV

k du r dr g r T T r drP T
ρ

ρ ρ ρπ
∞

= − ∂ ∂∂ ∂ ∫         (6) 

 

Another way to evaluate ( )/
V

P T∂ ∂  is to use internal pressure 

equation: 

 

( ) (/ ) /
TV

P T P Tπ=∂ ∂ +                                                (7)                                                            

 

where ( / )
T T

E Vπ = ∂ ∂ is internal pressure and using (3), we 

 
 
 
 
have: 
 

( )2 2

,
0

( ){ ( , , ) ( , , ) /2 }
rT u r g r T g r T r dr

ρ
ρ ρ ρ ρ ρπ π

∞

= − + ∂ ∂∫     (8) 

 
 
The known expressions for RDF of a LJ fluid  

 
Goldman expression 

 
The first expression was introduced by Goldman (1979). The 
expression is 

 

)()()()( **** rgrgrgrg
cba

++=                                   (9) 

where 
 

0)( * =rg
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1

* Br ≤                                                                                       (10) 

 
* * * 2

a 2 1 3 1 4g (r ) B /(r B )exp( [B {ln(r B ) B } ])= − − − +       

1

* Br >                                                                                      (11) 
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* Br ≤                                                                                      (12) 
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0)( * =rg
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75

* 25.0 BBr −≤                                                                   (15) 

 
* * *

c 8 5 7 7g (r ) exp( B r )sin(2 (r B 0.25B ) / B )= − π − +    

75

* 25.0 BBr −>                                                                  (16)  

 

where σ/* rr = , ε/* kTT = , and 
3* ρσρ =  are reduced 

interparticle distance, reduced temperature, and reduced density, 

respectively. ,,,,, Trk εσ  and ρ  are the Boltzmann 

constant, length parameter of a potential function, energy  
parameter of a potential function, interparticle distance, absolute 
temperature, and density, respectively. B1-B9 and C are adjustable 
parameters being functions of temperature and density and given in 
Goldman (1979). These parameters have been presented as 

polynomials in 
*ρ  and 

*
T , using 108 constants. This expression 

is valid within 1.55.0 * ≤≤ T  and 
*0.35 1.1ρ≤ ≤ . 



 

 
 
 
 
Matteoli and Mansoori expression 

 
Matteoli and Mansoori (1995) have derived an expression for RDF 
of a LJ fluid as the followings 
 

)]1(cos[)]1({exp[]/)1[(]1)([1)( −−−×+−+−−+= −
yyyydgyyg

m βαλλ

,1,1 ≥≥ ym                                                                  (17)                                                                                 

 

1],)1(exp[)()( 2 <−−= yydgyg θ                          (18) 

                                                                                 

where /y r hσ=  is dimensionless interparticle distance and h, 

m, λ, α, and β are adjustable parameters being functions of 
temperature and density. These parameters have been expanded 

in terms of 
*ρ and 

*
T , using 21 constants. This expression is 

valid within 
*0.6 3.7T≤ ≤  and 

*0.35 0.9ρ≤ ≤ . In this 

paper, this expression is referred as MM expression. 
 
 
Morsali et al. (2005) expression 
 
Morsali et al. (2005) derived the following expression for RDF of a 
LJ fluid:  
 

* * 2 * *

* 2 * * *

g(r ) 1 (r ) exp[ (ar b)]sin[(cr d)]

(r ) exp[ (gr h)]cos[(kr l)] r 1

−

−

= + − + + +

− + + >

                                                                                                                         

                                                                                                   (19) 
 

* * 4g(r ) sexp[ (mr n) ]= − +                                                    

*
r 1≤                                                                                      (20)     
 
where a, b, c, d, g, h, k, l, s, m, and n are adjustable parameters 
being functions of temperature and density. These parameters have 

been expanded in terms of 
*ρ and 

*
T , using 65 constants. This 

expression is valid within 
*0.5 5.1T≤ ≤  

and
*0.35 1.1ρ≤ ≤ . This expression is referred hereafter as 

MGMA expression. MGMA expression for RDF is a continuous 
function of r*, since it consist of two parts, one for r*≤1 (like hard 
sphere model (Farzi et al., 2011; Tehrani and Jalali, 2011)) and one 
for r*>1. This expression has been obtained from molecular 
dynamics calculations on the assumption of Lennard-Jones 
interaction potential. 
 
 
RESULTS AND DISCUSSION 
 

The values of ( )/
V

P T∂ ∂  and 
V

C  should be expressed 

in their reduced form in order to calculate them as 

functions of reduced density,
*ρ , and reduced 

temperature, 
*

T : 
 

( ) ( )* * 3

VV
P / T P / T ( / k)∂ ∂ = ∂ ∂ σ                  (21) 

                                                                   
*

V VC C / Nk=                                                       (22) 
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The reduced form for ( ), , , ,V Tu r P E C π , and 

( / )P T∂ ∂ are   

 
* * 12 * 6( ) 4[( ) ( ) ]u r r r− −= −                                      (23) 
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0
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ρ

∞

ρ − π ρ − ∂ ρ ∂∂ ∂ = ∫  
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,

*

0
8 ( ) [( ) ( ) ] ( , , ) ( , , )/

r T
T r r g r T g r T drπ ρ ρ ρ ρ ρπ − −

∞
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                                                                                (28) 
 
Using internal pressure equation for the evaluation of  

( )* *
/

V
P T∂ ∂  is more suitable for MGMA expression and 

leads to less error. 
 

( )* * * * *
(/ ) /

TV
P T P Tπ=∂ ∂ +                               (29) 

                                                                           
Using (21) to (29) and Goldman, MM and MGMA 
expressions, theoretical values of 

* * * *( / ) /( )
V V

P T CρΓ = ∂ ∂  are obtained. These 

quantities are compared with experimental data (Stewart 
and Jacobsen 1989) and Mecke et al. equation of state 
(Mecke et al., 1996, 1998). 

 The equations related to Mecke et al.  EOS are as 
follows 

 

= +
H A

F F F                                                         (30) 

 
where F is residual Helmholtz energy. FH accounts for 
the hard-body interaction and FA for the attractive 
dispersion forces. 

For a system of hard spheres with a packing fraction 

ξ , the residual Helmholtz energy FH is given according 

to Carnahan and Starling (1969) as 
 
* * 2 2/ (4 3 ) /(1 )

H
F T ξ ξ ξ= − −                                  (31) 

 

where 
*

H H
F F Nε=  and 
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1
* * * * 0.3674

0.1617( / ) 0.689 0.311( / )
−

 = + c c
T Tξ ρ ρ    (32) 

where 
* 0.3107
c

ρ =  and 
* 1.328

c
T =  are the critical 

density and temperature, respectively. 
FA is presented by the following equation with powers 

(mi, ni, pi and qi) and coefficients (ci ) given in Mecke et 
al. (1996, 1998). 
 

*

* * * * * *

*
( / ) ( / ) exp[ ( / ) ]=∑ i im qniA

i c c i c

i

F
c T T p

T
ρ ρ ρ ρ         (33) 

 

where 
* =

A A
F F N ε .  

* * *

H A
F F F= + is reduced Helmholtz energy and the 

pseudo Grüneisen parameters are derived from it by 
differentiation. 
 

**

* 2 * * *

* * 2 * *2

( ) ( ( / ) / )

( / )

T
F T

T F T

ρρ ρ

ρ

∂ ∂ ∂ ∂
Γ = −

∂ ∂
                     (34) 

 

The experimental data (reduced Helmholtz energy (
*

F ) 
for Argon) have been obtained using (10) and (12) of 
Stewart and Jacobsen (1989). 

The pseudo Grüneisen parameters have been 
calculated using three expressions for RDFs of a LJ fluid 
at reduced temperature, 

*
0.8,1,1.2,1.5,1.8,2,2.5,3,3.5,4,4.5,5T =  and reduced 

densities,
*0.357 1.1ρ≤ ≤  (165 points altogether) and 

compared with those of EOS and experimental data. 
Although range of validity of Goldman equation 

*0.5 5.1T≤ ≤  and 
*0.35 1.1ρ≤ ≤  has been reported, 

but care should be taken when it is applied at high 
temperatures and low densities (Morsali et al., 2007). 
Also, due to range of validity of MM expression, 

* 3.50 5.00T = −  has been omitted (100 points 

altogether). 
Therefore, initially, the pseudo Grüneisen parameters 

are evaluated at reduced temperatures of 0.800 to 3.00 

(100 points altogether). Figure 1 demonstrates Γ  versus 
*ρ  at 

* 2.00, 3.00T = . In this figure, theoretical values 

obtained from Goldman, MM, and MGMA expressions 
have been compared with those of Mecke et al. EOS and 
experimental data (Exp.). Table 1 shows the numerical 

values of Γ  at reduced temperatures 
* 1.20, 1.80T =  

and different densities. 
As it is seen from Figure 1 and Table 1, Goldman and 

MGMA expression well predict the values of Γ , both 
quantitatively and qualitatively, but MM expression is 
accompanied with many errors, both quantitatively and 
qualitatively. 

If Mecke et al. EOS is taken as the criteria for 
comparison, the  values  of  average  absolute  deviations 

 
 
 
 

(AAD) 
1

1
( 100 )

n

Mecke EOS theory Mecke EOS

i

AAD
n =

= × Γ − Γ Γ∑  

related to Γ  in connection with Goldman, MM, and 
MGMA expressions at range of applied temperatures and 
densities are 6.38, 34.46 and 2.14, respectively. 

If Exp. is taken as the criteria for comparison, the AAD 

values 
. .

1

1
( 100 )

n

Exp theory Exp

i

AAD
n =

= × Γ − Γ Γ∑  related 

to Γ  in connection with Goldman, MM, and MGMA 
expressions at range of applied temperatures and 
densities are 6.40, 37.20 and 3.79, respectively. 

The aforementioned description was related to 

temperatures 
*0.80 T 3.00≤ ≤ . Goldman’s expression 

is not able to reproduce RDFs well at high temperatures 
and low densities. The MM expression does not apply at 

temperatures 
*3.50 T 5.00≤ ≤  and the Goldman’s 

expression should be used with caution (Morsali et al., 
2007). Therefore, for temperatures within the range of 

*3.50 T 5.00≤ ≤ , only  the  errors  related  to  MGMA 

expression are reported (65 point altogether). 

Figure 2 demonstrates Γ  versus 
*ρ  at 

* 4.00T = . In 

this figure, theoretical values obtained from Goldman and 
MGMA expressions have been compared with those of 
Mecke et al. EOS and experimental data. 

If Mecke et al. EOS (Exp.) is taken as the criteria for 

comparison, The AAD value related to Γ 

( , ( .) , , ( .)

1

1
100

n

i MeckeEOS Exp i theory i MeckeEOS Exp

i

AAD
n =

= × Γ −Γ Γ∑ ) 

in connection with MGMA expressions at the range of 

applied temperatures (
*3.50 T 5.00≤ ≤ ) and densities 

is2.96 (9.61). 
Generally, the Goldman and MGMA expressions both 

predict the values of Γ  with acceptable errors, but MM 
expression is not suitable for this purpose. The Goldman 
and MM expressions are not reliable for the evaluation of 

Γ  at high temperatures and low densities. The MGMA 

equation well predicts the quantities of Γ  within all 
ranges of temperatures and densities, because MM 
expression (21 parametrs) reproduces RDFs with an 
average root-mean-squared deviation (rmsd) of 0.053, 
while Goldman expression (108 parameters) reproduces 
RDFs with an average rmsd of 0.034. MGMA expression 
is capable of producing a balance between the number of 
parameters (65 parameters) and the accuracy needed for 
reproducing the Lennard-Jones fluid RDF (rmsd of 
0.025). Also, it is able to predict the pseudo Grüneisen 
parameter in an efficient and reliable way. 

 
 
Conclusions   

 
By using radial  distribution  function  theory,  the  pseudo
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Figure 1. Γ  versus 
*ρ  at 

* 2.00, 3.00T = . Theoretical values obtained from Goldman (—), MM (▲), and 

MGMA (●) expressions have been compared with those of Mecke et al. EOS (●●●) and Exp. (■).
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Table 1. Comparison of numerical values of Γ  at  
* 1.200,1.800T = . 

 

*
T  

*ρ  
.Exp

Γ  
Mecke EOS

Γ  
MGMA

Γ  
Goldamn

Γ  
MM
Γ  

1.800 0.350 1.022 1.066 1.011 1.050 3.384 

1.800 0.400 1.120 1.175 1.146 1.153 1.979 

1.800 0.450 1.233 1.300 1.276 1.266 1.871 

1.800 0.500 1.360 1.435 1.410 1.391 1.932 

1.800 0.550 1.495 1.576 1.545 1.523 1.988 

1.800 0.600 1.632 1.716 1.682 1.659 2.035 

1.800 0.650 1.768 1.852 1.819 1.798 2.073 

1.800 0.700 1.899 1.981 1.956 1.935 2.103 

1.800 0.750 2.025 2.105 2.090 2.069 2.126 

1.800 0.800 2.145 2.224 2.216 2.198 2.142 

1.800 0.850 2.257 2.338 2.330 2.320 2.153 

1.800 0.900 2.360 2.445 2.426 2.434 2.157 

1.800 0.950 2.450 2.541 2.506 2.538 2.157 

1.800 1.000 2.526 2.622 2.578 2.632 2.151 

1.800 1.050 2.585 2.685 2.665 2.715 2.142 

1.800 1.100 2.625 2.722 2.820 2.787 2.128 

1.200 0.550 1.280 1.457 1.011 1.716 2.340 

1.200 0.600 1.595 1.717 1.714 1.837 2.417 

1.200 0.650 1.856 1.951 1.901 1.961 2.481 

1.200 0.700 2.064 2.146 2.086 2.086 2.532 

1.200 0.750 2.234 2.307 2.268 2.211 2.573 

1.200 0.800 2.382 2.444 2.441 2.335 2.604 

1.200 0.850 2.520 2.564 2.597 2.455 2.626 

1.200 0.900 2.656 2.668 2.730 2.571 2.640 

1.200 0.950 2.792 2.754 2.839 2.681 2.647 

1.200 1.000 2.925 2.819 2.931 2.785 2.647 
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Figure 2.  Γ  versus 
*ρ  at 

* 4.00T = . Theoretical values obtained from 

Goldman (—) and MGMA (●) expressions have been compared with those 
of Exp. (■) and Mecke et al. EOS (●●●). 



 

 
 
 
 
Grüneisen parameter was calculated. Three analytical 
expressions were used for this purpose which presents 

RDFs as a function of r , ρ , and T . Within the range of 

lower temperatures, the Goldman and MGMA 

expressions both predict the values of Γ  with acceptable 
errors, but MM expression is not suitable for this purpose.  

The MM expression does not apply at temperatures 
*3.50 T 5.00≤ ≤  and the Goldman’s expression should 

be used with caution. Within this range, the MGMA 

expression still well predicts the values of Γ . The reason 
for this, besides more accuracy of MGMA expression in 
the reproducing of RDFs (rmsd: 0.025 versus 0.034), is 
attributable to the number of parameters in these two 
expressions (65 versus 108). Because of the high 
number of parameters in Goldman expression, 
differentiation of this expression causes more errors. 

Therefore, if an expression is used which properly 

presents g(r) as a function of r , ρ , and T , it is possible 

to calculate the pseudo Grüneisen parameters from 
RDFs. 
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