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In multi area electric power systems, if a large load is suddenly connected (or disconnected) to the 
system, or if a generating unit is suddenly disconnected by the protection equipment, there will be a 
long-term distortion in the power balance between that delivered by the turbines and that consumed 
by the loads. This imbalance is initially covered from the kinetic energy of rotating rotors of turbines, 
generators and motors and, as a result, the frequency in the system will change. Therefore The Load 
Frequency Control (LFC) problem is one of the most important subjects in the electric power system 
operation and control. In practical systems, the conventional PI type controllers are applied for Load 
Frequency Control. In order to overcome the drawbacks of the conventional PI controllers, numerous 
techniques have been proposed in literatures. In this paper, a new Fuzzy type controller is considered 
for Load Frequency Control problem. In this new Fuzzy technique, the upper and lower bounds of the 
Fuzzy membership functions are obtained using genetic algorithms optimization method and so this 
Fuzzy method is called “scaled-Fuzzy”. A multi area electric power system with a wide range of 
parametric uncertainties is given, to illustrate proposed method. To show effectiveness of the 
proposed method, a classical PI type controller optimized by genetic algorithms (GA) was designed in 
order to make comparison with the proposed scaled Fuzzy method. The simulation results visibly 
show the validity of scaled Fuzzy method, in comparison with the traditional PI type method.  
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INTRODUCTION 
 
For large scale electric power systems with 
interconnected areas, Load Frequency Control (LFC) is 
important to keep the system frequency and the inter-
area tie power as near to the scheduled values as 
possible. The input mechanical power to the generators 
is used to control the frequency of output electrical power 
and to maintain the power exchange between the areas 
as scheduled. A well designed and operated electric 
power system must cope with changes in the load and 
with system disturbances, and it should provide 
acceptable high     level     of     power     quality    while    
maintaining 
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both voltage and frequency within tolerable limits. Many 
control strategies for Load Frequency Control in electric 
power systems have been proposed by researchers over 
the past decades. 

This extensive research is due to fact that, Load 
Frequency Control constitutes an important function of 
electric power system operation where the main 
objective is to regulate the output power of each 
generator at prescribed levels while keeping the 
frequency fluctuations within pre-specifies limits. Robust 
adaptive control schemes have been developed by Lim 
et al. (1996), Wang et al. (1998) and Stankovic et al. 
(1998) to deal with changes in system parametrics under 



 

 

Load Frequency Control strategies. A different algorithm 
has been presented by Taher et al. (2008) to improve the 
performance of multi area electric power systems. 
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Figure 1. Four-area electric power system with 
interconnections. 

 
 
 

 
 

Figure 2. Block diagram for one area of system (ith area). 

 
 
 

Viewing a multi area electric power system under Load 
Frequency Control as a decentralized control design for a 
multi-input multi-output system, it has been shown by 
Yamashita et al. (1991) that, a group of local controllers 
with tuning parameters can guarantee the overall system 
stability and performance. 

The reported results demonstrate clearly the 
importance of robustness and stability issue in Load 
Frequency Control design. In addition, several practical 
and theoretical issues have been addressed by Xiaofeng 
et al. (2004), Doolla et al. (2006), Grigor’ev et al. (2005) 
and Gvozdev et al. (2005) which include recent 
technology, utilized by vertically integrated utilities, 
augmentation of filtered area control error with Load 
Frequency Control schemes and hybrid Load Frequency 
Control, that encompasses an independent system 

operator and bilateral Load Frequency Control. The 
applications of artificial neural network, genetic 
algorithms and optimal control to Load Frequency 
Control have been reported by Hematti et al. (2008),  
Rerkpreedapong  et  al. 
 
 
 
 
(2003) and Liu et al. (2003). This paper deals with a 
design method for Load Frequency Control in a multi 
area electric power system, using a new scaled Fuzzy 
type controller whose membership functions boundaries 
are tuned by genetic algorithms optimization method. In 
order to show effectiveness of the new scaled Fuzzy 
Load Frequency Control, this method is compared with 
the conventional PI type controller for Load Frequency 
Control. Simulation results show that the proposed 
method guarantees robust performance under a wide 
range of operating conditions and system uncertainties.  

 
 
Plant model 

 
A four-area electric power system is considered as a test 
system and shown in Figure 1. The block diagram for 
each area of interconnected areas is shown in Figure 2 
(Wood et al., 2003). The parameters in Figure 2 are 
defined as follows: 

 
∆: Deviation from nominal value  
Mi=2H: Constant of inertia of i

th 
area 

Di: Damping constant of i
th 

area 
Ri: Gain of speed droop feedback loop of ith

 
area   

Tti: Turbine Time constant of i
th 

area 
TGi: Governor Time constant of i

th 
area 

Gi: Controller of i
th 

area 
∆PDi: Load change of i

th 
area 

ui: Reference load of i
th 

area  
Bi=(1/Ri)+Di: Frequency bias factor of  i

th 
area 

∆Ptie ij: Inter area tie power interchange from i
th 

area to j
th
 

area.  
Where:  
i=1, 2, 3, 4          j=1, 2, 3, 4      and              i≠j 
The inter-area tie power interchange is as (1) (Wood et 
al., 2003). 

 
∆Рtieij=(∆ωi - ∆ωj)×(Tij/S)                                              (1) 
 
Where: 

 
Tij=377× (1/Xtieij) (for a 60 Hz system) 

 
Xtieij: impedance of transmission line between i and j 
areas. 

The ∆Ptie ij block diagram is shown as Figure 3. Figure 
2 shows the block diagram of i

th
 area and Figure 3 shows 

the method of interconnection between i
th
 and j

th
 areas. 



 

 

The state space model of four-area interconnected power 
system is as (2) (Wood et al., 2003). 
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Figure 3. Block diagram of inter area tie power (∆Ptieij). 

 
 
 

 
 

Figure 4. Scaled Fuzzy controller. 

 
 
 
Where: 
 
U= [∆PD1  ∆PD2  ∆PD3  ∆PD4  u1   u2  u3  u4] 
Y= [∆ω1  ∆ω2  ∆ω3  ∆ω4  ∆Рtie1,2  ∆Рtie1,3  ∆Рtie1,4 
 ∆Рtie2,3 ∆Рtie2,4  ∆Рtie3,4] 
X= [∆PG1  ∆PT1  ∆ω1 ∆PG2  ∆PT2  ∆ω2   ∆PG3   
∆PT3  ∆ω3   ∆PG4    ∆PT4  ∆ω4   ∆Рtie1,2  ∆Рtie1,3 
 ∆Рtie1,4  ∆Рtie2,3  ∆Рtie2,4  ∆Рtie3,4] 
 
The matrixes A and B in (2) and the typical values of 
system parameters for the nominal operating condition 
are given in appendix. 

 

 
DESIGN METHODOLOGY 

 
As mentioned before, in this paper a new scaled Fuzzy controller is 
considered for Load Frequency Control problem. Fuzzy method has 
three major  headings  as  membership  functions,  rule  bases  and 
defuzzification. In classical Fuzzy methods,  the  boundaries  of  the 
membership functions are adjusted based on expert person’s 
experiences that may be with trial and error and does not guarantee 
performance of the system. To solve this problem, in this paper the 
boundaries of the membership functions are tuned by an optimal 
search for achieving the best boundaries. Therefore, the boundaries of 
input and output membership functions are considered as uncertain 
and then the optimal boundaries are obtained by genetic algorithms 
(Cordon et al., 2001). Here the proposed Fuzzy controller block 



 

 

diagram is given in Figure 4. In fact, it is a nonlinear PI-type Fuzzy 
logic controller with two inputs and one output. The inputs are filtered 
by washout block to eliminate the DC components. 

Also, there are three parameters denoted by Kin1, Kin2 and Kout 
which are defined over an uncertain range and then obtained by 
genetic algorithms optimization method. Therefore, the boundaries of 

inputs and output signals are tuned on an optimal value. Though the 
Fuzzy controller accepts these inputs, it has to convert them into 
fuzzified inputs before the rules can be evaluated. To accomplish this, 
one of the most important and critical blocks in the whole Fuzzy 
controllers should be built and it is the ‘Knowledge Base’. It consists of 
two more blocks  namely  the  ‘Data  Base’  and
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Table 1. The linguistic variables for inputs and output. 

 

Big Positive (BP) Medium Positive (MP) Small Positive (SP)   

Big Negative (BN)    Medium Negative (MN) Small Negative (SN) 

Zero (ZE)   

 
 
 

 
 

Figure 5. Membership function of inputs and output.   

 
 
 

Table 2. Fuzzy rule bases. 

 

        ∆ω 

d(∆ω)/dt 
BN MN SN ZE SP MP BP 

BN BN BN BN BN MN SN ZE 

MN BN MN MN MN SN ZE SP 

SN BN MN SN SN ZE SP SP 

ZE MN MN SN ZE SP MP MP 

SP SN SN ZE SP SP MP BP 

MP SN ZE SP MP MP MP BP 

BP ZE SP MP BP BP BP BP 

 
 
 
the ‘Rule Base’ (Rajase et al., 2007).   
 
 

Data base 

 

Data base consists of the membership function for input and output 
variables described by linguistic variables shown in Table 1 (Rajase et 
al., 2007). The “triangular membership functions” are used as 
membership functions for the input and output variables. The Figure 5 
illustrates this in detail, indicating the range of the variable. This range 



 

 

is defined as default and then tuned via cascade K parameters (Kin1, 
Kin2 and Kout ) and adjusted on  the  optimal  value. 
Rule base  

 
The other half of the knowledge base is the Rule Base, which consists 
of all the rules formulated by the experts. The Fuzzy rules which are 
used in this scheme are listed in Table 2.  

 
 
Methodologies adopted in fuzzy inference engine  
 
Many methodologies have been mentioned in evaluating the various 
expressions like Fuzzy union (OR operation) and Fuzzy intersection 
(AND operation) with varying degree of  complexity.  Here  in  Fuzzy
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Table 3. Obtained values Kin1, Kin2 and Kout for Fuzzy controllers. 

 

 Kin1 Kin2 Kout 

First area Fuzzy parameters 1.4490 0.7482 1.3677 

Second area Fuzzy parameters 1.0136 0.5715 0.8600 

Third area Fuzzy parameters 0.5251 1.2349 1.1181 

Fourth area Fuzzy parameters 1.1886 1.1297 1.1172 

 
 
 
scheme, the most widely used methods for evaluating such 
expressions are used. The function used for evaluating OR is “MAX”, 
which is the maximum of the two operands and similarly the AND is 
evaluated using “MIN” function which is defined as the minimum of the 
two operands. It should be noted that in the present research paper, 
the equal importance is assigned to all the rules (Rajase et al., 2007).  
 
 

Defuzzification method 
 

The defuzzification method followed in this study is the “Center of Area 
Method” or “Gravity method”. This method is discussed in (Rajase et 
al., 2007). As mentioned before, in this paper the boundaries of the 
membership functions are adjusted by genetic algorithms. 
Subsequently, a brief introduction about genetic algorithms is 
presented.   
 
 

Genetic algorithms  

 
Genetic algorithms are global search techniques, based on the 
operations observed in natural selection and genetics (Randy and 
Sue, 2004). They operate on a population of current approximations 
(the individuals) initially drawn at random, from which improvement is 
sought. Individuals    are    encoded     as   strings (chromosomes) 
constructed over some particular alphabet, e.g., the binary alphabet 
{0.1}, so that chromosomes values are uniquely mapped onto the 
decision variable domain. Once the decision variable domain 
representation of the current population is calculated, individual 
performance is assumed according to the objective function which 
characterizes the problem to be solved. It is also possible to use the 
variable parameters directly to represent the chromosomes in the GA 
solution. At the reproduction stage, a fitness value is derived from the 
raw individual performance measure given by the objective function 
and used to bias the selection process. Highly fit individuals will have 
increasing opportunities to pass on genetically important material to 
successive generations. In this way, the genetic algorithms search 
from many points in the search space at once and yet continually 
narrow the focus of the search to the areas of the observed best 
performance. The selected individuals are then modified through the 
application of genetic operators. In order to obtain the next generation 
genetic operators manipulate the characters (genes) that constitute 
the chromosomes directly, following the assumption that certain genes 
code, on average, for fitter individuals than other genes. Genetic 
operators can be divided into three main categories (Randy and Sue, 
2004): 
 

1. Reproduction: Selects the fittest individuals in the current population 
to be used in generating the next population; 
2. Cross-over: Causes pairs, or larger groups of individuals to 
exchange genetic information with one another; 
3. Mutation: Causes individual genetic representations to be changed 
according to some probabilistic rule.  
FUZZY CONTROLLER TUNING USING GENETIC ALGORITHMS 

 
Here, the membership functions of the proposed scaled Fuzzy 
controller are tuned by K parameters (Kin1, Kin2 and Kout). These K 
parameters are obtained based on genetic algorithms optimization 
method. Next, the system controllers are shown in Figure 2 as Gi. 
Here, these controllers are substituted by scaled Fuzzy controllers 
shown in Figure 4 and the optimum values of Kin1, Kin2 and Kout in 
scaled Fuzzy controllers are accurately computed using genetic 
algorithms. In genetic algorithms optimization method, the first step is 
to define a performance index for optimal search. In this study, the 
performance index is considered as (3). In fact, the performance index 
is the Integral of the ‘Time multiplied Absolute value of the Error 
(ITAE)’.   
 

dt∆ωtdt∆ωtdt∆ωtdt∆ωtI

t

0

4

t

0

3

t

0

2

t

0

1 ∫∫∫∫ +++=TAE      (3) 

 
The parameter "t" in ITAE is the simulation time. A 100 s time period 
is considered for simulation. It is clear to understand that the controller 
with lower ITAE is better than the other controllers. To compute the 

optimum parameter values, a 10% step change in ∆PD1 is assumed 
and the performance index is minimized using genetic algorithms. The 
following genetic algorithm parameters have been used in the present 
research: 
  
1. Number of chromosomes: 12; Population size: 48 
2. Crossover rate: 0.5; Mutation rate: 0.08 
 
The optimum values of the parameters Kin1, Kin2 and Kout are obtained 
using genetic algorithms and summarized in Table 3. The boundaries 
of k parameters for optimal search are as follows: 
 
0.1 ≤ Kin1 ≤ 5                  0.1 ≤ Kin2 ≤ 5                 0.1 ≤ Kout ≤ 10 
 
In the controller design for multi-area electric power systems, some 
areas have more importance than the others for tie-power and also 
frequency control; but in this paper the importance of areas is 
considered as equal.  



 

 

 
 
RESULTS AND DISCUSSION  
 
Here, the proposed scaled Fuzzy controller is applied to 
the system for Load Frequency Control. In order to make 
comparison and show the effectiveness of the proposed 
method, a classical PI type controller optimized by 
genetic algorithms was designed for Load Frequency 
Control. The structure of PI type controller is shown in 
Figure 6. The optimum value of the parameters KP and 
KI for PI controllers   optimized   using   genetic   
algorithms  have 
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Figure 6. The structure of PI type controller. 

 
 
 

Table 4. Optimum values of KP and KI for PI controllers. 
 

 KP KI 

First area controller (G1) 1.0624 4.6021 

Second area controller (G2) 3.1791 4.2829 

Third area controller (G3) 2.4916 2.6287 

Fourth area controller (G4) 1.8912 5.8094 

 
 
 
been obtained and summarized in Table 4 (Randy and 
Sue, 2004). In order to study and make analysis of 
system performance under system uncertainties 
(controller robustness), three operating conditions are 
considered as follows: 
 
i. Nominal operating condition;  
ii. Heavy operating condition (20% changing parameters 
from their typical values); 
iii. Very heavy operating condition (50% changing 
parameters from their typical values). 
 
In order to demonstrate the robustness performance of 
the proposed method, the ITAE is calculated following 

step change in the different demands (∆PD) at all 
operating conditions (nominal, heavy and very heavy) 
and results are shown in Tables 5 and 6. Following step 
change, the optimal scaled Fuzzy controller has better 
performance than the optimized PI controller at all 
operating conditions. Fuzzy logic method has a nonlinear 
characteristic and therefore, with changing system 
parameters and system operating conditions, the fuzzy 
rule bases and the controller change with system 

conditions. In fuzzy method, instead of a fix 
performance, an intelligent controller with dynamic 
performance is applied to control system and therefore, 
the system with fuzzy controller has a softer and better 
performance than the other method.  Although the 
performance index results are enough to compare the 
methods, it can be more useful to show responses in 
figures. Figure 7 shows ∆ω1 at nominal, heavy and very 
heavy operating conditions, following 10% step change in 

the demand of first area (∆PD1). It is clear to see that, the 
scaled Fuzzy has better performance than the other 
method at all operating conditions.  
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Figure 7. Dynamic response ∆ω1 following step change in 
the demand of first area (∆РD1). (a) Nominal operating 



 

 

condition (b) Heavy operating condition (c) Very heavy 
operating condition. 

 
 
 
Conclusions 
 
In this paper, a new scaled Fuzzy approach for Load 
Frequency Control has been successfully proposed. The 
proposed method was applied to a typical four-area 
electric power system containing system parametric 
uncertainties   and   various   load  conditions.  
Simulation 
 
 
 
 
results demonstrated that the designed controllers 
capable to guarantee the robust stability and robust 
performance, such as precise reference frequency 
tracking and disturbance attenuation, under a wide range 
of uncertainties and load conditions. Also, the simulation 
results showed that the scaled Fuzzy approach is robust 
to change the system parameters and it has better 
performance than the conventional PI type controller at 
all operating conditions. 
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APPENDIX 
 
The typical values of system parameters for the nominal operating condition are as follows: 
 
1st area parameters 
 

TT1=0.03 TG1=0.08 M1=0.1667 R1=2.4 

D1=0.0083 B1=0.401 T12=0.425 T13=0.500 

T14= 0.400 T23= 0.455 T24= 0.523 T34=0.600 

 
 
 
2nd area parameters 
 

TT2=0.025 TG2=0.091 M2=0.1552 R2=2.1 

D2=0.009 B2=0.300 T12=0.425 T13=0.500 

T14= 0.400 T23= 0.455 T24= 0.523 T34=0.600 

 
 
 
3rd area parameters 
 

TT3=0.044 TG3=0.072 M3=0.178 R3=2.9 

D3=0.0074 B3=0.480 T12=0.425 T13=0.500 

T14= 0.400 T23= 0.455 T24= 0.523 T34=0.600 

 
 
 
4th area parameters 
 

TT4=0.033 TG4=0.085 M4=0.1500 R4=1.995 

D4=0.0094 B4=0.3908 T12=0.425 T13=0.500 

T14= 0.400 T23= 0.455 T24= 0.523 T34=0.600 

 
 
 
Also the matrixes A and B in (2) are as follows: 
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